
   

Springer Theses
Recognizing Outstanding Ph.D. Research

Interdecadal 
Changes in Ocean 
Teleconnections 
with the Sahel

Roberto Suárez Moreno

Implications in 
Rainfall Predictability



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D. 
theses from around the world and across the physical sciences. Nominated and 
endorsed by two recognized specialists, each published volume has been selected 
for its scientific excellence and the high impact of its contents for the pertinent field 
of research. For greater accessibility to non-specialists, the published versions 
include an extended introduction, as well as a foreword by the student’s supervisor 
explaining the special relevance of the work for the field. As a whole, the series will 
provide a valuable resource both for newcomers to the research fields described, and 
for other scientists seeking detailed background information on special questions. 
Finally, it provides an accredited documentation of the valuable contributions made 
by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only 
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences, 

Engineering and related interdisciplinary fields such as Materials, Nanoscience, 
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this 

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to 

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction 

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Roberto Suárez Moreno

Interdecadal Changes  
in Ocean Teleconnections 
with the Sahel
Implications in Rainfall Predictability

Doctoral Thesis accepted by the Complutense University 
of Madrid, Spain



ISSN 2190-5053     ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-3-319-99449-9    ISBN 978-3-319-99450-5 (eBook)
https://doi.org/10.1007/978-3-319-99450-5

Library of Congress Control Number: 2018962408

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Roberto Suárez Moreno
Faculty of Physical Sciences
Department of Earth Physics and Astrophysics 
Complutense University of Madrid
Los Molinos, Madrid, Spain

Supervisor
Belén Rodríguez de Fonseca
Department of Geophysics and Meteorology 
University Complutense of Madrid
Madrid, Spain

https://doi.org/10.1007/978-3-319-99450-5


The research leading to this thesis was supported by the PREFACE-EU project (EU 
FP7/2007–2013) under grant agreement no. 603521, the Spanish national project 
MULCLIVAR (CGL2012-38923-C02-01), and the VR: 101/11 project from the 
VIII UCM Call for Cooperation and Development.



To David and Raúl

Some people feel the rain. Others just get 
wet.

Bob Marley

We specially need imagination in science. It 
is not all mathematics, nor all logic, but it is 
somewhat beauty and poetry

Maria Montessori



ix

Supervisor’s Foreword

The understanding of climate variability has been enhanced in the last decades due 
to the huge amount of available data provided by the most prestigious meteorologi-
cal centers. These data come from observations, reanalysis, and simulations per-
formed with general circulation models.

The use of this huge amount of data has given the opportunity to the research 
community to better understand the causes of rainfall variability in regions like the 
Sahel, which has suffered severe droughts with a society strongly dependent on 
agriculture and therefore water.

The understanding of seasonal to decadal rainfall variability in this region is one 
of the most important challenges of climate research, and the Sahel has become a 
natural laboratory due to its sensitivity to changes in climate.

In recent decades, the ocean has been put forward as the main external forcing on 
Sahelian rainfall variability from interannual to decadal timescales. The sea surface 
temperature variability of the Pacific, Atlantic, Indian, and Mediterranean have been 
demonstrated as potential predictors, enhancing rainfall forecast skill.

Nevertheless, at the beginning of this thesis, there were some important open 
questions regarding the stability of the SST-Sahelian rainfall links along the obser-
vational record. Some works had suggested that the Pacific influence on the Sahel 
was not stable and had even disappeared after the 1970s. In addition, coupled mod-
els still lacked on reproducing mean state and variability of some regions such as the 
tropical Atlantic, so further analysis was still needed for the correct assessment of 
seasonal to decadal predictability of Sahelian rainfall.

This thesis started with a cooperational project with the University Cheikh Anta 
Diop (UCAD) in Dakar and the Universidad Complutense de Madrid.

At that time, we committed to donate a statistical prediction model for seasonal 
rainfall based on the predicting value of sea surface temperatures (SSTs). Using 
available grid observational data from SSTs and rainfall, discriminant analysis tech-
niques were implemented together with all the preprocessing in the S4CAST (Sea 
Surface Temperature-based Statistical Seasonal foreCAST) model. This model 
included a study of the stability of the SSTs-rainfall links, and it was able to 
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 determine the regions and periods in which each predictor could be used for the 
Sahel. A cross-validated hindcast was included together with an analysis of the skill.

Roberto Suárez started his PhD working on the design and implementation of 
this S4CAST tool. Roberto visited the UCAD department during his 3-month stay, 
sharing this tool with students and researchers working not only in rainfall variabil-
ity but also in malaria and coastal upwelling.

Roberto used Sahelian rainfall variability as a benchmark for the model. Key 
results emerged when analyzing the stability of the rainfall-SSTs links found. At 
that time, the thesis started to take shape.

The application of S4CAST to Sahelian rainfall ended with important insights on 
the influence of the tropics versus the extratropics on the Sahel. On the one hand, 
results suggested that the tropics counteract their impact on the Sahel acting together 
during decades in which the intertropical convergence zone was located equator-
ward. On the other hand, the extratropics, and in particular the North Atlantic and 
the Mediterranean Sea enhanced their influence in decades in which the ITCZ was 
located northward. The decadal migration of the ITCZ seemed to be modulated by 
multidecadal ocean variability.

The thesis conluded with an experiment done with a general circulation model to 
check the next hypothesis: “the position of the ITCZ, forced by the ocean multi-
decadal variability, as responsible for the enhanced Mediterranean influence on 
Sahelian rainfall variability.”

A second visit was then planned, and Roberto made a 3-month stay in the 
Université Pierre and Marie Curie working, under the supervision of Marco Gaetani 
and Cyrille Flamant, in performing simulations with the IPSL model in which those 
hypotheses were confirmed.

The implications of the results of this thesis go far from the seasonal forecast. 
They are also useful when analyzing decadal variability. In this way, under skillful 
decadal predictability, we can determine the decades in which some particular oce-
anic predictors can be used in seasonal forecast. Nowadays, the S4CAST tool is 
being used by other groups working in crop forecasting, malaria prediction, and 
upwelling.

Some international important projects such as PREFACE have ended with 
important conclusions in which the ITCZ has been pointed out as the main actor to 
be better simulated. Thus, GCMs still need to be improved to better determine the 
stability of Sahelian rainfall-SST variability links.

This thesis has three different dimensions: a technical dimension, a research 
dimension, and a human dimension. Working in the Sahel is a gift for a scientist not 
only for being sensitive to climate variability but also on the impacts that the 
improvement of its knowledge has on society.

Madrid, Spain Belén Rodríguez de Fonseca
April 2017

Supervisor’s Foreword
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Preface

The West African Sahel is the transition region between the wet equatorial zone and 
the dry Sahara desert. Year to year, the Sahel alternates an extremely dry season 
with a strong rainfall regime from July to September. The water resources available 
during the long dry season depend almost entirely on the intensity of rainfall during 
the rainy season, also known as the West African Monsoon (WAM).

The WAM presents a marked variability at interannual timescales (e.g., Sultan 
et  al. 2003; Sultan and Janicot 2003), being a major topic of study. The severe 
drought experienced in the Sahel from the 1970s to the 1990s, and the apparent 
recovery trend in the recent period, also reveals the pronounced interdecadal vari-
ability of the WAM (Hulme et al. 2001; Nicholson 2005; Lebel and Ali 2009).

The WAM system is primarily determined by the northward shift of the inter-
tropical convergence zone (ITCZ) along with a thermal gradient between the Sahara 
desert to the north and the Guinean Gulf to the south (e.g., Sultan and Janicot 2000; 
Chiang et al. 2000, 2002; Kushnir et al. 2003; Nicholson 2009). Thus, although land 
surface processes and internal variability cannot be neglected, the oceanic forcing 
plays the leading role in the predictability of the WAM (e.g., Folland 1986; Palmer 
1986; Fontaine et al. 1998; Skinner et al. 2012; Rodriguez-Fonseca et al. 2015). On 
the one hand, it is presented as the main driver of the decadal variability (e.g., 
Janicot et al. 2001; Biasutti et al. 2008; Mohino et al. 2011a; Martin et al. 2013). On 
the other hand, several observational studies address the interannual oceanic tele-
connections from the tropical Pacific (Janicot et al. 2001; Rowell 2001; Joly and 
Voldoire 2009), the tropical Atlantic (Giannini et al. 2003; Polo et al. 2008; Joly and 
Voldoire 2009; Nnamchi and Li 2011), and the Mediterranean (Rowell 2003; 
Gaetani et al. 2010; Fontaine et al. 2011a).

Moreover, recent observational studies put forward interdecadal changes in the 
interannual sea surface temperature (SST)-forced response of the WAM (Janicot 
et al. 1996; Fontaine et al. 1998; Mohino et al. 2011b; Rodriguez-Fonseca et al. 2011, 
2015; Losada et al. 2012). Nevertheless, the underlying causes of these unstable tele-
connections and its consequent implications in Sahelian rainfall predictability have 
not been addressed so far, this being the leading motivation of the present thesis.
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 Objectives

The objectives are stated as follows:

• Design and creation of a statistical tool based on the SST capability to impact on 
climate-related variables, analyzing the nonstationary behavior of the potential 
teleconnections.

• Application of the statistical tool to conduct an observational analysis of the 
nonstationary SST-Sahel interannual teleconnections. The leading SST impacts 
are considered (tropical Atlantic, tropical Pacific, Mediterranean) to characterize 
the underlying dynamics.

• Characterization and analysis of the role of multidecadal SST variability in driv-
ing the nonstationarity of interannual teleconnections, with a special emphasis 
on those teleconnections that may be dominating Sahelian rainfall variability in 
the recent period.

 Data and Methodology

Different observational datasets have been used in order to avoid data-related uncer-
tainties. Regarding SST, the Extended Reconstructed Sea Surface Temperature 
(ERSST; e.g., Smith and Reynolds 2004) and the Hadley Center Sea Ice and Sea 
Surface Temperature (HadISST; e.g., Rayner et al. 2003) databases have been used. 
For rainfall, a novel dataset of rain-gauge rainfall records across West Africa (Sanogo 
et al. 2015) has been used for the first time to assess the nonstationary SST- forced 
response of rainfall in the Sahel. In addition, data from the Climate Research Unit 
(CRU; e.g., Harris et al. 2014) and reanalysis from the Global Precipitation Climatology 
Centre (GPCC; e.g., Schneider et al. 2014b) have been used. Moreover, the ERA-20C 
reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
has been used to explore the atmospheric dynamical processes (Poli et al. 2016).

The statistical methodology used in this thesis mainly corresponds to the maximum 
covariance analysis (MCA). This technique is widely applied in climate variability to 
isolate co-variability coupled patterns between two fields (e.g., Bretherton et al. 1992). 
Based on the ability of the SST as predictor field, the MCA has been applied to analyze 
the predictability of Sahelian rainfall. Both parametric (t-test) and nonparametric 
(Monte Carlo) methods have been used to assess the statistical significance.

A series of numerical experiments were conducted by using the Laboratoire de 
Meteorologie Dynamique Zoom (LMDZ, version 5A) atmospheric general circula-
tion model (AGCM) (Hourdin et  al. 2006), coupled with the land surface model 
Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) (Krinner 
et  al. 2005). LMDZ and ORCHIDEE are, respectively, the atmospheric and land 
components of the Institute Pierre Simon Laplace Earth system model (IPSL- CM5A) 
(Dufresne et al. 2013).

Preface
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 Results

The results obtained in this thesis can be expressed in three main blocks:

• The Sea Surface Temperature-based Statistical Seasonal foreCAST model 
(S4CAST, Suárez-Moreno and Rodríguez-Fonseca 2015) has been designed 
and programmed on the basis of the SST capability to predict phenomena such 
as the WAM. The S4CAST has been subjected to benchmarking. As a result, the 
tropical Atlantic (e.g., Polo et al. 2008; Rodríguez-Fonseca et al. 2011) and tropi-
cal Pacific (e.g., Rowell 2001; Joly and Voldoire 2009) teleconnections with the 
Sahel, the El Niño-Southern Oscillation (ENSO) teleconnection with the Euro- 
Mediterranean sector (López-Parages and Rodríguez-Fonseca 2012; López- 
Parages et al. 2015) and the tropical interbasin Atlantic-Pacific teleconnection 
(Martín-Rey et al. 2012, 2014) have been satisfactorily reproduced.

• The S4CAST model has been used to explore the leading interannual SST tele-
connections (tropical Atlantic, tropical Pacific, Mediterranean) with the Sahel. 
Robust nonstationary links have been found, consequently analyzing the under-
lying dynamical mechanisms. The multidecadal SST background has been found 
to exert an influence in modulating interannual teleconnections, with the Atlantic 
Multidecadal Variability (AMV) and global warming (GW) playing an outstand-
ing role (Suárez-Moreno et al. 2018a, submitted).

• The Mediterranean influence in the Sahel is found to be nonstationary, increasing 
its impact during recent decades (Suárez-Moreno et al. 2018b, submitted). A 
set of sensitivity experiments is conducted to show how a multidecadal SST 
warming in the North Atlantic promotes the impact on the Sahel associated with 
a warm Mediterranean event, resulting in a rainfall increase. Thus, the 
Mediterranean and North Atlantic become key factors for the improvement of 
Sahelian rainfall predictability.

Madrid, Spain Roberto Suárez Moreno
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