
Advances in Intelligent Systems and Computing 855

Raquel  Fuentetaja Pizán   
Ángel García Olaya   
Maria Paz Sesmero Lorente   
Jose Antonio Iglesias Martínez   
Agapito Ledezma Espino    Editors 

Advances 
in Physical 
Agents
Proceedings of the 19th International 
Workshop of Physical Agents (WAF 2018), 
November 22–23, 2018, 
Madrid, Spain



Advances in Intelligent Systems and Computing

Volume 855

Series editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all
disciplines such as engineering, natural sciences, computer and information science, ICT, economics,
business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the
areas of modern intelligent systems and computing such as: computational intelligence, soft computing
including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms,
social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and
society, cognitive science and systems, Perception and Vision, DNA and immune based systems,
self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric
computing, recommender systems, intelligent control, robotics and mechatronics including
human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent
data analysis, knowledge management, intelligent agents, intelligent decision making and support,
intelligent network security, trustmanagement, interactive entertainment,Web intelligence andmultimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings
of important conferences, symposia and congresses. They cover significant recent developments in the
field, both of a foundational and applicable character. An important characteristic feature of the series is
the short publication time and world-wide distribution. This permits a rapid and broad dissemination of
research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa
Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, School of Computer Science & Electronic Engineering, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Department of Information Technology, Faculty of Engineering Sciences, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, Faculty of Engineering and Information, University of Technology Sydney, Sydney, NSW, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wrocław University of Technology, Wrocław, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, Department of Mechanical and Automation, The Chinese University of Hong Kong, Shatin,
Hong Kong

e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

mailto:nikhil@isical.ac.in<?tic?>
mailto:rbellop@uclv.edu.cu
mailto:escorchado@usal.es
mailto:hani@essex.ac.uk
mailto:koczy@sze.hu
mailto:vladik@utep.edu
mailto:ctlin@mail.nctu.edu.tw
mailto:Jie.Lu@uts.edu.au
mailto:epmelin@hafsamx.org
mailto:nadia@eng.uerj.br
mailto:Ngoc-Thanh.Nguyen@pwr.edu.pl
mailto:jwang@mae.cuhk.edu.hk
http://www.springer.com/series/11156


Raquel Fuentetaja Pizán
Ángel García Olaya • Maria Paz Sesmero Lorente
Jose Antonio Iglesias Martínez
Agapito Ledezma Espino
Editors

Advances in Physical Agents
Proceedings of the 19th International
Workshop of Physical Agents (WAF 2018),
November 22–23, 2018,
Madrid, Spain

123



Editors
Raquel Fuentetaja Pizán
Computer Science Department
Universidad Carlos III de Madrid
Leganés, Madrid, Spain

Ángel García Olaya
Computer Science Department
Universidad Carlos III de Madrid
Leganés, Madrid, Spain

Maria Paz Sesmero Lorente
Computer Science Department
Universidad Carlos III de Madrid
Leganés, Madrid, Spain

Jose Antonio Iglesias Martínez
Computer Science Department
Universidad Carlos III de Madrid
Leganés, Madrid, Spain

Agapito Ledezma Espino
Computer Science Department
Universidad Carlos III de Madrid
Leganés, Madrid, Spain

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-99884-8 ISBN 978-3-319-99885-5 (eBook)
https://doi.org/10.1007/978-3-319-99885-5

Library of Congress Control Number: 2018961590

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-99885-5


Preface

Physical agents are likely to change the society in the next years. Despite their
inherent risks, many times exaggerated by apocalyptic and catastrophic views, it is
expected that they will revolutionize our daily life and will have a positive impact in
many different fields, from work to health or leisure. The possibilities for research
and application are limitless, and the unstoppable “robotics revolution” will
increase well-being and open a myriad of new opportunities and challenges.

The International Conference Workshop of Physical Agents (WAF 2018) is a
forum for information and experiences exchange in different areas regarding the
concept of agent on physical environments, especially applied to the control and
coordination of autonomous systems: robots, mobile robots, industrial processes, or
complex systems. The authors cover several topics in different areas such as soft-
ware agents, multiagent systems, robotic manipulators, RoboCup and soccer robots,
autonomous and semiautonomous robots, machine learning and robotics, industrial
robotics, computer vision and robotics, artificial vision and robotics, and artificial
intelligence and robotics.

The nineteenth edition of the conference has been organized at Madrid in
November 2018 by the Department of Computer Science of the Universidad
Carlos III de Madrid, Spain, and the Spanish Physical Agents Network (Red de
Agentes Físicos), and technically sponsored by Robotics journal and Springer.

This volume collects 22 papers (73 authors) accepted and presented at the
conference. The 73 authors from 5 different countries confirm the international
status of the event.

This conference will provide a friendly atmosphere and will be a leading
international forum focusing on discussing problems, research, results, and future
directions in the area of physical agents.

v



WAF 2018 has been possible thanks to the work of many people. We would like
to thank the authors and reviewers. Thanks to the Universidad Carlos III de Madrid
for letting us use their facilities for the conference sessions. Thanks for the hard
work and dedication of the program and organizing committee members. And
special thanks to our editor, Springer, that is in charge of this Conference
Proceedings edition. Thank you.

September 2018 Angel Garcia-Olaya
Raquel Fuentetaja

Jose Antonio Iglesias
Agapito Ledezma

M. Paz Sesmero Lorente
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Semantic Localization of a Robot
in a Real Home

Edmanuel Cruz1,2(B), Zuria Bauer1, José Carlos Rangel2, Miguel Cazorla1,
and Francisco Gomez-Donoso1

1 Institute for Computer Research, University of Alicante,
P.O. Box 99, 03080 Alicante, Spain

edcruz@dccia.ua.es
2 RobotSIS, Universidad Tecnológica de Panamá, Santiago, Panama

Abstract. In social robotics, it is important that a mobile robot knows
where it is because it provides a starting point for other activities such
as moving from one room to another. As a contribution to solving this
problem in the field of the semantic location of the mobile robot, we
pro- pose to implement a methodology of recognition and scene learning
in a real domestic environment. For this purpose, we used images from
five different residences to create a dataset with which the base model
was trained. The effectiveness of the implemented base model is evalu-
ated in different scenarios. When the accuracy of the site identification
decreases, the user provides feedback to the robot so that it can process
the information collected from the new environment and re-identify the
current location. The results obtained reinforce the need to acquire more
knowledge when the environment is not recognizable by the pre-trained
model.

Keywords: Robotics · Deep learning · Semantic localization
CNN training · Neural networks

1 Introduction

It is becoming increasingly common to design and create robots with the ability
to interact with humans, whether it be caring for the disabled or older adults,
or as assistants in shopping malls or receptionists. Social robotics is a research
lines that allows these robots to be easily integrated into their environments. In
this context, the semantic localization of mobile robots plays a crucial role.

Changing between different environments is currently a challenging task
because the systems are unable to adapt to a continually changing environment.
The usual scenario is a system that loses accuracy when the changes become
more drastic. According to the deployment place of the robot the same semantic
categories may also be visually different.

In the same way as a human who first analyzes where he or she is and then
decides where to go or what to do, it is important that the robot recognizes
where it is in order to perform other activities.
c© Springer Nature Switzerland AG 2019
R. Fuentetaja Pizán et al. (Eds.): WAF 2018, AISC 855, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-319-99885-5_1
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In this work, we propose to implement a methodology of recognition and
scene learning in a real domestic environment. The steps carried out are: (1)
taking images from five residences; (2) creating a dataset with images from one
residence; (3) training a base model; and (4) experimenting with images from
the other residences.

The rest of the paper is organized as follows: Sect. 2 presents the state-of-
the-art in the field. Then, Sect. 3 details a description of the proposal. This
is followed by Sect. 4, where the procedures for testing the proposed approach
are described. Next, Sect. 5 details the results of experiments. Finally, Sect. 6
includes the conclusions and future works.

2 Related Works

In recent decades, many researchers have conducted investigations related to
semantic localization. We start with works like [1], where the authors train a
neural network to estimate the location of a mobile robot in its environment
using the odometry information and ultrasound data. The authors in [2] use a
pre-programmed routine to detect doorways from range data. In [3], a system was
developed with the ability to learn to use a hybrid methodology based on human
demonstrations and user advice. Two years later, the authors in [4] describe a
virtual sensor that is able to identify rooms from range data. The same year, in
[5], the authors apply different learning algorithms to learn topological maps of
the environment.

In [6], the authors proposed to use line features to detect corridors and door-
ways. Furthermore, [7] merges data from local and global features of an image
with data from laser sensors. The authors then predict the category of a place
by training a Support Vector Machine (SVM) system.

According to [8], many mobile service robots operate in close interaction with
humans. They present an approach to people awareness for mobile service robots
that utilizes knowledge about the semantics of the environment.

The use of semantic labels was considered in the proposal of [9]. Here, the
authors manually insert semantic labels into a 2D image and complement this
representation with 3D points.

Before continuing, it is important to mention the tools that have helped the
development of semantic localization research. The appearance of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [10] allowed algorithms to
be evaluated for large-scale object detection and image classification. Researchers
were able to compare progress in detection across a wider variety of objects
taking advantage of the expensive labeling effort. The work put forward in [11],
introduces a scene-centric database called Places with over 7 million labeled
pictures of scenes. The authors propose new methods to compare the density
and diversity of image datasets and show that the Places dataset is as dense
as other scene datasets and has greater diversity. Using CNN, they learn deep
features for scene recognition tasks.

Continuing with our review of previous works, developing a robot with a
grounded spatial vocabulary is the proposal in [12]. The authors propose a CNN
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architecture based on engineered features. Such a vocabulary would allow it to
give and follow directions and would give it valuable additional information in
aiding localization and navigation.

In [13] the authors describe the problem of location as follows. The problem
of semantic localization in social robotics could be defined as the identification
of the location of a robot by semantic categories representing a place. The tra-
ditional approach for solving semantic localization problems is the utilization
of semantic categories such as living room or kitchen, together with the robots
perceptions as input data for a supervised classification process.

The survey [14] analyzes the different approaches used to address the local-
ization problem. The problem of recognition of changes in environments is also
presented in this work. Robust visual localization under a wide range of view-
ing conditions is a fundamental problem in computer vision. Dealing with the
difficulties of this problem is not only highly challenging but also of significant
practical importance, e.g., in the context of life-long localization for augmented
reality or autonomous robots.

The authors in [15] propose a novel approach based on a joint 3D geometric
and semantic understanding of the world, enabling it to succeed under conditions
where previous approaches failed.

In [16], the authors propose a method for semantically parsing the 3D point
cloud of an entire building using a hierarchical approach.

The authors in [17] provide an overview of indoor localization technologies,
popular models for extracting semantics from location data, approaches for asso-
ciating semantic information and location data, and applications that may be
enabled with location semantics. Environment representation for scene classi-
fication could be produced by using different kinds of descriptors such as 3D
and 2D.

In [18], the authors propose to develop a study for building robust scene
descriptors based on the combination of visual and depth data. The approach
was tested for classification problems.

The authors in [19] combine semantic web-mining and situated robot per-
ception to develop a system capable of assigning semantic categories to regions
of the space.

In [20], the main idea is to leverage the semantic information provided by
the user activities and the accurate metric map created by an assistive robot. In
[21], the authors proposal includes the evaluation of several CNN classification
models in order to find the one that produces the most accurate classification
results.

The authors in [22] propose a probabilistic framework that combines human
activity sensor data generated by smart wearables with low level localization
data generated by robots.

In [23], the authors explore different retraining strategies and experimenta-
tion in order to obtain insight about which method provides better precision-
training time trade-off. Different settings on the training data are presented, and
modifications to different fine-tuning strategies are also explored.
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Semantic classification is currently an exciting topic with a great number
of published works. In this research, we only focus on current techniques for
place categorization that take advantage of DL in order to provide a semantic
definition for a place.

3 Proposal

The aim of this study is to implement a methodology to achieve a solid and
long-term understanding of the interior scene in changing scenarios. We focus
on expanding the work in [23], which presented an optimal methodology for
a robot to learn a new environment, from already acquired knowledge. The
abovementioned methodology was carried out in a laboratory while the aim of
the present work is tested in a real domestic environment.

Fig. 1. System interaction

The scenario we wish to present is as follows: first, the robot captures images
of the environment and tries to classify them using a previously trained model
with images belonging to another place. When the robot is in a new environment,
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the system is expected to obtain low accuracy due to the differences in the visual
features of the new environment. In this case, the user can provide information
to the robot to collect data and re-identify the location. If the category provided
by the user is not pre-defined, this will be added as a new category, thus allowing
the robot to increase its knowledge of the environment. This scenario is shown
in Fig. 1.

To complete this goal, we use the neural network architecture shown in Fig. 2.
This works as follows: an input image is forwarded to the ResLoc CNN architec-
ture. In this case, we removed the last fully connected layer in order to obtain
the visual features descriptor for the input image. As a result, the output of
ResLoc CNN is a 2048-dimension feature vector.

The visual features and the respective categories of each image of the dataset
are extracted using the ResLoc CNN part of the architecture and inserted into
the features database. This feature database is a model that stores the learned
data, features of the training samples, and is used during the inference stage.

In the inference stage, the unknown image is forwarded to ResLoc CNN in
order to extract the visual feature vector. A K-Nearest Neighbors (KNN) classi-
fier then performs a query on the feature database using the recently computed
feature vector. Next, a polling is carried out among the categories of the neigh-
bors, and the most voted category is returned as the final classification of the
unknown image.

The performance of the KNN is highly dependent on the k parameter (num-
ber of neighbors). Experimentation is carried out using the value of k, which is 3
as it appears in [23]. We used the Annoy1 implementation of the (approximate)
KNN classifier.

4 Experimentation

4.1 Dataset

The experiments described in this work were carried out using our own dataset
that provides a semantic category for each RGB image. It is important to clarify
that the base model was built with images from only one residence which is
identified in the document as House 01. The categories come from the location
in which the images were acquired.

Figure 3 shows representative images for the 7 categories available in the
dataset.

In order to train the base model we took video sequences from House 01,
them randomly shuffled and split them into a 70% training and 30% test ratio.
We use only RGB frames.

Table 1 shows the final number of samples per category.

1 https://github.com/spotify/annoy.

https://github.com/spotify/annoy
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Fig. 2. This Architecture uses the features of a ResLoc CNN with a vector of 2048
features as output. The training samples are forwarded to the ResLoc CNN in order
to extract their feature vector. The feature vectors construct the model of a KNN
classifier.

Table 1. Images distribution per category.

Cat. ID Category Training Test

1 Corridor 3,782 1,622

2 Dining-living room 4,084 1,751

3 Balcony 1,121 481

4 Kitchen 2,664 1,143

5 Laundry 1,714 735

6 Bathroom 3,932 1,686

7 Bedroom 4,868 2,087
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Corridor Dining-LivingRoom Balcony

Laundry Bathroom Bedroom

Kitchen

Fig. 3. Sample images for each category of our Home Dataset.

4.2 Experimentation Setup

The experiments were carried out as follows:

– Experiments 1 to 2 consist of using a trained model with data from the House
01 in House 02.

– Experiments 3 to 8 consist of using a trained model with data from House 01
in House 03.

– Experiments 9 and 10 consist of using a trained model with data from House
01 in House 04.

– Experiments 11 and 16 consist of using a trained model with data from House
01 in the House 05.

We simulated scenarios in which the robot was incorrectly located in different
environments and we obtained feedback from users to correct this knowledge.

For experiments in which new knowledge was included, we used images that
were captured in different houses. In these houses, we have the same semantic
categories but different visual appearance. The robot then proceeded to capture
new information about the environment that the system had failed to identify.
Subsequently, the new information was added to the current learned model.

Table 2 shows information on the categories of the different houses. We used
this data to validate the efficiency of the model.
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Table 2. Images from different houses.

No. Category Qty. House

1 Kitchen 1, 113 02

2 Bedroom 1, 293 02

3 Bedroom 1 378 03

4 Bedroom 2 330 03

5 Bedroom 3 403 03

6 Bedroom 4 512 03

7 Corridor 1 436 03

8 Corridor 2 529 03

9 Bedroom 359 04

10 Kitchen 212 04

11 Bedroom 1 641 05

12 Bedroom 2 642 05

13 Balcony 571 05

14 Bathroom 427 05

15 Corridor 412 05

16 Kitchen 665 05

5 Results and Discussion

First, we comment on the experiments carried out in the different houses using
only the base model, and then we discuss what happened when the system was
unsuccessful with the classification and we capture information from the new
environment. A summary of the results for the experiments performed can be
found in Table 3.

Experiment 1 establishes the baseline we use to compare the following exper-
iments. The total accuracy of the test is 99.98%. This represents the starting
line, as no new knowledge was added.

In Experiment 2, a 69.81% success rate was obtained. This was conducted
in House 02. This can be considered a considerable success given that we used a
completely different environment that the system had never seen before.

Experiment 3 used the bedroom in House 02, obtaining a success rate of
50.27%.

Experiments from 4 to 9 were performed in House 03, obtaining results of
(Bedrooms 1 → 48.14%), (Bedrooms 2 → 32.12%), (Bedrooms 3 → 28.53%),
(Bedrooms 4 → 60.54%), (Corridor 1 → 85.09%) (Corridor 2 → 75.61%).

As in the kitchen of House 02, the Corridors and Bedroom 4 achieved an
acceptable accuracy percentage considering that it was an environment the sys-
tem had never seen before.
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Table 3. Summary of the experiments

No. Data House Acc. without retraining Acc. with retraining

1 Test 01 99.9 Not applicable

2 Kitchen 02 69.8 100

3 Bedroom 02 50.3 99.5

4 Bedroom 1 03 48.1 100

5 Bedroom 2 03 32.1 100

6 Bedroom 3 03 28.5 100

7 Bedroom 4 03 60.5 100

8 Corridor 1 03 85.1 100

9 Corridor 2 03 75.6 100

10 Bedroom 04 24.5 100

11 Kitchen 04 10.4 100

12 Bedroom 1 05 46.8 100

13 Bedroom 2 05 66.9 100

14 Balcony 05 0.7 100

15 Bathroom 05 48.7 100

16 Corridor 05 44.7 100

17 Kitchen 05 10.5 100

Experiments 10 and 11 were carried out in House 04. Experiment 10 scored
24.51%. This is the lowest success rate obtained in this category. This was mainly
due to the visual difference between this category and the images used in the
model. Experiment 11 scored 10.37%. As in the previous case, a low percentage
was obtained, which was due to the visual difference between this category and
the images used in the model.

Experiments 12 to 17 were carried out in House 05, obtaining a result
of (Bedrooms 1 → 46.80%), (Bedrooms 2 → 66.97%), (Balcony → 0.70%),
(Bathroom → 48.71%), (Corridor → 44.66%) (Kitchen → 10.52%).

It should also be noted that many of the confusions were caused by specific
elements appearing in the scenes, such as the case of Experiment 2, which was
conducted in a kitchen that had a washing machine, with the system mistaking
these images for a laundry (see Fig. 4). When the data was captured, accuracy
in all categories increased considerably.
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(a) Image from the Laundry category

(b) Image from the Kitchen of House 2

Fig. 4. Image comparison

6 Conclusions and Future Work

As mentioned at the beginning of this study, it is important for the robot to
know its location since this is the starting point for other actions it can perform.
To provide the robot with the ability to identify its location we used an existing
methodology to identify a place. However, this methodology had previously only
been developed in the laboratory and had not been tested in a real environment.

After conducting the appropriate evaluations, we conclude that a model will
produce better recognition results when tested in an environment similar to that
in which it was trained compared to when tested in a different environment.
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Our experimental results show that a trained model will obtain more accurate
results when re-testing images from the same environment. Furthermore, for
images belonging to a different house, the model obtained less accurate results
when compared to those for the same house. On the other hand, as was to
be expected when adding new knowledge on the environment, the success rate
increased considerably.

As future work, we propose to evaluate this approach with different lighting
conditions and also introduce more houses in the study. Another feature could
be evaluation using 3D information about the places to improve the results using
more information.

We also plan to merge the original set of images used in the study with the
information generated by user feedback in order to create a full dataset.
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Elena López-Guillén(B), and Luis Miguel Bergasa(B)

Robesafe Group, Department of Electronics, University of Alcala,
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Abstract. This paper presents a global positioning system for an
autonomous electric vehicle based on a Real-Time Kinematic Global
Navigation Satellite System (RTK- GNSS), and an incremental-encoder
odometry system. Both elements are fused to a single system by an
Extended Kalman Filter (EKF), reaching centimeter accuracy. Some var-
ied experiments have been carried out in a real urban environment to
compare the performance of this positioning architectures separately and
fused together. The achieved aim was to provide autonomous vehicles
with centimeter precision on geolocalization to navigate through a real
lane net.

Keywords: Autonomous vehicle · Positioning · Odometry
Multi-GNSS · Kalman Filter

1 Introduction

Vehicle positioning and tracking have numerous applications in general
transport-related studies including vehicle navigation, fleet monitoring, traffic
congestion etc. In the last decade, many works have been focused in study-
ing driving behaviour through examining the vehicle movement trajectory using
GNSS signals, mostly GPS [1–3]. These methods have been able to provide both
geolocalization and time information to a receiver employing multiple satellite
signals while they stay fast, accurate, and cost-efficient. However, their perfor-
mance has a strong dependence on several system factors such as the number
of visible satellites, their positions or the capability of the GPS receiver. In
addition, the signal trips through the layers of the atmosphere, and some other
c© Springer Nature Switzerland AG 2019
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sources contribute to inaccuracies and errors in the GPS signals by the time they
reach a receiver. Thus, the accuracy provided by this methods is low (usually
between 1 and 10 m), they need a considerable time (over 30 s) to provide the
first position measurement and they do not guarantee a robust service in several
situations such as environments with poor signal conditions.

The development of Intelligent Vehicles (IVs) has specially grown during the
last years. These systems aim to solve complex issues with specially demanding
accuracy requirements (usually decimeter precision) like autonomous driving
applications where tasks such as lane maintenance analysis demand centimeter
precision [4]. Furthermore, autonomous vehicles also require robust solutions
with low latencies and high time availability so standalone GNSS techniques are
not adequate for them.

Various solutions are proposed to achieve a better service quality: to deal
with the accuracy problem Differential GPS (DGPS) is used to obtain an accu-
racy enhancement using data from a reference station [5,6] and the more com-
plex Real-time Kinematic (RTK) positioning solution, which uses carrier phase
information, has attracted much interest in applications with strict precision
requirements due to its centimeter-level accuracy [7]. To approach the robust-
ness issue Multi-GNSS (multiple Global Navigation Satellite Systems) techniques
are being widely-used, boosted by the appearance of alternative GNSSs based
on different satellite constellations like Russian (GLONASS), European Union
(Galileo), Chinese (Beidou) or Japanese (QZSS). Multi-GNSS allows to easily
increase the number of tracked satellites to over 10 in good signal conditions and
to more than 5 in almost any other situation, even including dense urban areas
combining multiple GNSS [4]. Several studies have proven the benefits of these
techniques combining GPS and GLONASS [8,9], GPS and Galileo [10] or even
four of the available systems (GPS+Galileo+BeiDou+QZSS) [11].

Nevertheless, even the combination of the previous methods might not be
enough to cover autonomous vehicles needs in certain environments such as dense
urban or concrete places like tunnels. To face this challenging situations, GNSS
data needs to be fused with local sensors information when the measurement’s
quality is degraded. In [12] RTK-DGPS was fused with speed vehicle sensors and
steering-wheel position measurements to improve vehicle tracking. Other works
like [13] used an Extended Kalman Filter to integrate DGPS with some vehicle
sensors like an inertial navigation system (INS) through a kinematic model in
order to achieve enough accuracy to enable vehicle cooperative collision warning
without the use of ranging sensors.

This paper presents a robust real-time positioning system for autonomous
vehicles that reaches centimeter precision. The system uses a GNSS receiver
and an incremental-encoder odometry, integrated by an Extended Kalman Fil-
ter which leverages quality of the received satellite measurements. As well as,
odometry system is calibrated through an automatic process applying a least
square adjustment of the position error of a variety of routes. Experiments pre-
sented in Sect. 4 show that our system is able to keep the vehicle in the mid-
dle of the lane nets even in regions without available differential corrections.
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Furthermore, the system is complemented with a reactive navigation module
based on vision and Lidar that slightly relaxes the positioning requirements.

This paper is organized as follows: Sect. 2 presents the system’s structure
together with an analysis of the main modules that compose it and their cor-
responding standalone performances. Section 3 analyzes the integration of both
modules using the Extended Kalman Filter and the following Sect. 4 exposes
the results of the performed experiments to test the final system with different
configurations. Last Sect. 5 presents the final conclusions and future work lines.

2 System Architecture

The positioning system is integrated in an open-source electric vehicle (TABBY
EVO Vehicle 4 seats version) modified and automatized by the University of
Alcalá. The system’s architecture includes a Real-Time Kinematic Multi-Global
Navigation Satellite System based on both GPS and GLONASS with a local
base station that broadcasts differential corrections, a GPRS modem, and an
incremental-encoder odometry system. Its sensor equipment is composed of a
GNSS receiver, a Choke-Ring Antenna for the local base station, and two Kübler
3700 incremental encoders for odometry. All these modules are fused in Robotic
Operating System (ROS) using an Extended Kalman Filter. Figure 1 shows the
general diagram of the system.

Fig. 1. System architecture diagram

GNSS receiver is set on top of the vehicle to obtain maximum coverage,
and Choke-Ring Antenna for a base station is set on the Polytechnic School
building’s roof. The odometry encoders are assembled in both rear-wheel shafts
by 3D-printed pieces. ROS runs on two embedded GPUs looking for the benefits
of modularity. These GPUs are a Nvidia Jetson TX2, and a Raspberry Pi 3 for
odometry processing. Figure 2 displays the entire vehicle, and Fig. 3(a) (where
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Fig. 2. General view of the TABY EVO-OSVehicle

(a) GPS and Lidar (b) Incremental encoder

Fig. 3. Vehicle sensor equipment

Lidar is shown as part of reactive navigation system) and Fig. 3(b) show GNSS
receiver and odometry encoder details.

2.1 Multi-GNSS

The main module of the localization system consists of a multi-constellation
system (multi-GNSS) with RTK positioning solution. In addition, it also includes
two elements: a differential Hiper Pro GPS+ receiver configured as rover, and a
local base station to generate differential corrections.

The rover is able to obtain data from both GLONASS and GPS to provide a
more robust solution than a standard GPS by increasing the number of visible
satellites. It provides positioning information at 10 Hz as autonomous vehicles


