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Systematic Data Analysis in Production
Controlling Systems to Increase Logistics

Performance

Lasse Härtel(&) and Peter Nyhuis

Institute of Production Systems and Logistics, Leibniz University Hannover,
An der Universität 2, 30823 Garbsen, Germany

{haertel,nyhuis}@ifa.uni-hannover.de

Abstract. Logistics performance becomes an ever more important strategic
factor for manufacturing companies. A continuous production controlling sup-
ports in identifying weak points and deriving effective counter measures
improving logistics performance sustainably. In this paper a framework for
production controlling is presented, which allows data based identification of the
root-causes of low logistics performance. It illustrates how systematic data
analyses can be performed based on causal trees structuring the complex and
multi-causal logistical interdependencies in a company’s internal supply chain.
Step by step analysis guidelines will especially enable SMEs in particular to
benefit from increasing data availability and quality and will build the basis for
advanced IT-based support systems.

Keywords: Logistics � Production planning � Production controlling

1 Introduction

Manufacturers have to encounter the challenges of global markets. Limited differen-
tiation potentials of products through functionality, quality or price elevate the
importance of logistics performance as a major factor of competitiveness [1] that
significantly influences customers’ purchasing decisions [2]. Studies show that enter-
prises striving towards a consistent optimisation of their supply chain regarding logistic
objectives can verifiably increase market success [3]. Despite the great importance of
high logistics performance, many companies have considerable deficits in achieving
their own and market-related logistical targets [4]. Especially manufacturing companies
in the individual and small-series production are facing increasing challenges regarding
on-time delivery and delivery time [5].

Production controlling aims at countering this deficit through continuous collection,
analysis and interpretation of relevant feedback data within the closed loop of pro-
duction planning and control (PPC) [6]. Within the business control system, production
controlling thus aims to increase transparency within the company’s internal supply
chain by means of IT-supported data collection and processing [7]. The focus of
production controlling is on evaluation and regulation of the production system con-
figuration rather than on controlling single production orders [8].

© Springer Nature Switzerland AG 2019
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Digitalisation of production processes and the associated increase in data avail-
ability and quality offer tremendous improvement potentials regarding decision support
systems in the context of PPC and production controlling. Yet, most companies still
perform PPC and controlling activities manually as they do not rely on automatically
generated planning results [9]. At the same time, companies often lack the under-
standing of the manifold and multi-causal interactions in logistics systems [10]. This
leads to unsystematic data analysis and wrong interpretations of key performance
indicators. Hence, there is a high risk of defining ineffective measures not countering
the real root-causes of present problems or even resulting in an even worse logistics
performance due to inconsistent logistic objectives and target settings or incorrect or
inconsistent settings of PPC parameters (see [10]). So far, there is a lack of assistance
systems adequately supporting enterprises in data analysis and decision making within
the framework of production controlling [11].

This paper addresses existing shortcomings and presents a framework building the
basis for an advanced production controlling system particularly focusing on small and
medium sized enterprises (SMEs). Based on generally valid cause-effect-relationships
in logistics systems, the most relevant indicators that need to be tracked and monitored
along the internal supply chain are proposed. Furthermore, it is shown how to use this
information to systematically identify weaknesses and improvement potentials using
logistic models and selected further analysis methods. Firstly, this will result in an
enhanced understanding of existing logistical interdependencies and thus enable SMEs
to derive effective measures sustainably improving logistics performance. Additionally,
it sets the guidelines for cross-data interpretation, which build the foundation for future
algorithms of IT-based decision support systems.

2 Fundamentals of Production Controlling

In this chapter, the basics of production controlling are presented. This includes general
requirements for production controlling, the general controlling process as well as the
most important logistic target figures that need to be controlled.

Production Controlling. Today, controlling is a tool used by corporate management
to support operational planning, control and monitoring functions [12]. The tasks of
controlling include retrieval, preparation and analysis and distribution of data within
the company [13]. Within the framework of production controlling, as a subsystem of
corporate controlling, not only financial, but also logistical key figures of production
must be taken into account [14]. For this purpose, production controlling must be able
to record the effects of logistical decisions in the area of PPC on the company’s
performance and cost objectives [15]. Hence, production controlling, as defined in this
paper, could also be called logistic production controlling and does explicitly not
include controlling of technical manufacturing processes. The general controlling
process is illustrated in Fig. 1 [16].

4 L. Härtel and P. Nyhuis



In order to derive suitable measures, it is crucial to carefully analyse the real
reasons for occurring deviations. Therefore, this paper will especially emphasise
analysis of the root-causes of deviations in the following. For that purpose, relevant
targets that need to be controlled are proposed in a first place.

Logistic Target System. The overall objective in production logistics is logistics
efficiency. Hence, companies aim to achieve high logistics performance at low logistics
costs. Logistics performance expresses itself in short delivery lead times and a high due
date compliance. Logistics costs can be expressed in terms of production and capital
commitment costs. From the corporate view, logistics costs mainly result from work in
process (WIP) and capacity utilization [17]. In analogy, the target system for storage
systems comprises low inventory and low storage costs, which define the logistics cost,
while logistics performance is mainly defined by the means of the service level [18].

Based on this overall logistic target system, targets for each department across a
company’s internal supply chain, generally consisting of procurement, a preliminary
production stage, an interim storage (or buffer), an end production stage and dispatch,
can be derived. As dispatch is the last step in the internal value chain, the performance
measures towards the end customer are measured in this process. The delivery time to the
customer equals the sum of throughput times of the order-specific processes in the
internal value chain. The delivery due date compliance achieved, results from the late-
ness of the single processes. The timeliness in processes with a storage or buffering
function is evaluated using the target figures service level (storage) or due date com-
pliance (buffer). According to the definition of due date compliance, orders are con-
sidered on time if they are finished up to the date of demand. Negative effects of materials
being provided too early are taken into account via the resulting stock level. In order to
evaluate the scheduling situation in production processes, however, the target schedule
reliability is applied. In that case, orders are only considered on time if they are finished
within an interval of the accepted lateness. Delivery capability is another important
indicator regarding the scheduling situation. While due date compliance and schedule
reliability are computed by comparing actual to planned finishing dates, delivery
capability compares actual to the desired delivery date of the customer. Figure 2 sums up
the resulting target systems across a company’s internal supply chain [19].

Fig. 1. The controlling process
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3 Cause-Effect-Relationships and Relevant KPIs

In order to analyse the real root-causes of target deviations, general logistical interde-
pendencies must be known. For that purpose, this chapter provides a brief introduction
into general influencing factors on the attainment of logistical targets before an approach
for structuring these factors into generally valid cause-effect-relationships is presented.

Influencing Factors on the Attainment of Logistical Targets. The attainment of
logistical goals depends on a large number of influencing factors. First, the objectives
itself affect each other and are partly contradicting. A high service level, for instance,
requires a correspondingly high stock level, which causes high inventory costs. The
required stock level to achieve the desired service level in turn depends on the schedule
reliability and the throughput times of upstream processes. Throughput times in pro-
duction processes mainly result from the WIP in the production stage. This illustrates
that there is a rather complex interplay between the logistic target figures within each
core process but also between the target figures across the entire value chain.

Second, PPC configuration has a significant influence on target achievement. With
the production control model, LÖDDING has already displayed how production control
measures affect the logistical targets by identifying and structuring actuating and
control variables [19]. The order release process, for instance, directly determines the
WIP in a production stage and thus the realisable throughput times and capacity util-
isation. SCHMIDT and SCHÄFERS extended the model and developed an integrative model
of PPC showing the interrelations between control variables determined by PPC tasks,
affected actuating variables and logistics objectives [20].

The third group of influencing factors are subsumed under organisational bound-
aries, building the general framework of the value chain and limiting the scope of
action of PPC. The supply chain design regarding the position of the order penetration
point, for instance, strongly determines achievable delivery times. Another example of
this category is capacity flexibility determining to which extend production control can
react to changing workload levels.

Additionally, there are environmental factors that cannot or that can only hardly be
affected by the company. These primarily comprise customer and employee behaviour,
technical errors, supplier reliability, as well as market and political developments.
Figure 3 sums up the relevant categories of influencing factors that need to be considered.

Fig. 2. Logistics objectives in the company’s internal supply chain

6 L. Härtel and P. Nyhuis



Structuring Approach. The complex interactions in a company’s internal supply chain
have been analysed and systemised in the form of causal trees. A poor performance in
terms of schedule reliability in the end production stage, for example, can, on a first level,
either be caused by deviations between the actual completion sequence and the planned
completion sequence or bybacklog.Moreover, orders can alreadybe started either early or
late. Possible reasons for backlog, deviations from the planned processing sequence or
input lateness are structured in further levels of the tree until no further subdivision is
feasible. Such trees have been developed for each logistic target figure. The single causal
trees are interconnected as deviations from one target figure may influence other target
figures aswell. For example, one reason for a late start of a production order can bemissing
materials because of a low service level of the interim storage. In that way, the developed
causal trees form a consistent causal network along the internal supply chain (Fig. 4).

These causal trees increase the logistical understanding of employees in SMEs in
particular to enable them to identify weak points without external guidance. Further-
more, they are the basis for further quantitative analyses.

Derivation of Relevant KPIs. Based on the causal trees, relevant data and key per-
formance indicators that need to be tracked can be derived. This is demonstrated for the
causal tree of a low service level. A low service level may occur due to a low target

Fig. 3. General influencing factors on logistics performance

Fig. 4. The general concept of the developed causal network
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service level, due to a planned stock level that is lower than required to achieve the
target service level or due to deviations of the actual stock level from the planned stock
level. As the stock level equals the sum of lot stock and safety stock, possible reasons
for the planned stock level being too low are a low planned lot stock level, resulting
from small incoming lot sizes or a low planned safety stock level. Safety stock is
required to compensate for deviations from actual to planned inward and outgoing
stock movements. Deviations to consider are especially late deliveries and varying
demand rates. If these variations are not considered properly, losses in service level
occur. Furthermore, a low planned safety stock level might also be due to calculation
errors. Reasons for the actual stock level being lower than the planned stock level can
be exceptional (short-term) events, such as promotional campaigns, which have not
been considered or changes in the general framework conditions. These can either be a
long-term increase of the demand rate or long-term supply shortages. In these cases,
planned stock levels need to be adjusted to the new conditions [19].

In accordance with the first level of the tree, two main KPIs need to be available:
the planned mean stock level, and the actual mean stock level. Whereas the actual stock
level can directly be retrieved from the enterprise resource (ERP) system, the planned
mean stock level equals the sum of the mean planned lot stock and the planned safety
stock. The lot stock equals half the lot size of incoming orders. The planned safety
stock is usually part of the master data of each article. According to the causal tree,
information about occurring deviations from plan, which in fact are input lateness as
well as demand rate variations, are required to evaluate, if the planned safety stock is
sufficient. To compute those KPIs, warehouse movement data as well as planned arrival
dates are required. As these are the same data required to assess the causes for low
actual mean stock levels, no further information is required. Figure 5 sums up the
causal relations and the resulting data requirements.

Similarly, data requirements and suitable KPIs for the analysis of the root causes for
a poor performance regarding the other logistic target figures have been derived and
aggregated in a catalogue of KPIs. These should be tracked in order to facilitate
identification of weak points in the company’s internal supply chain. Table 1 illustrates
the top-level indicators. There are overall performance indicators that should be applied
in order to identify general weaknesses within the supply chain. Throughput time and
lateness indicators of this category refer to the entire order flow. Hence, they are
measured at the end of a production stage. Especially if lateness KPIs are not tracked
for single workstations, the order flow related indicators need to be taken into account
to identify improvement potentials. Information about the backlog of a production
stage are indicators for possible capacity or planning problems causing lateness.
However, as the lateness distribution itself already allows prioritisation of possible
causes for the resulting lateness [19], backlog indicators are not necessarily required
but could be helpful to simplify root cause analysis. Besides those overall performance
KPIs, information regarding the single workstations in production and assembly pro-
cesses are required for detailed analysis and identification of bottlenecks and weak
points within the production process. Here again, some KPIs are not necessarily
required, but would simplify further analysis if accessible. The last category of indi-
cators addresses storages, which are found in procurement as well as in production and
dispatch. Besides KPIs regarding the stock level, especially information concerning
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occurring deviations from plan are required. Besides the listed KPIs there are many
other possible KPIs that could be used in root cause analysis, such as KPIs for quality
issues or employee availability. However, the provided list already allows localisation
of the actual problem. Further, company-specific KPIs can be applied for even more
detailed analysis (e.g. causes for machine errors).

Fig. 5. Causal tree for a low service level and derived data requirements

Table 1. Most relevant KPIs for logistics analysis
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4 Systematic Data Analysis

With the relevant KPIs being identified and causal trees indicating the relationships
between the KPIs, systematic data analysis is possible. Detailed procedure guidelines
starting from problem identification over root-cause-analysis to derivation of measures
have been developed. According to the controlling process, deviations are identified by
continuously monitoring the logistics target values and comparing actual values to the
defined target values. Once a deviation is detected, the first step is to localise the most
critical workstations (in production stages) or group of articles (in storages) mainly
causing the deviations by analysing the above listed KPIs. By comparing the share of
throughput times, for example, the workstations, which do affect the resulting overall
throughput time of a production stage the most, are identified. Further analyses should
focus on those bottlenecks. The required analysis steps for root-cause identification are
directly derived from the causal trees. Based on the structure of the trees, step by step
analysis instructions have been developed determining which analyses to perform at
each fork (decision point) of the trees. The proposed analyses are mainly based on well-
approved logistic models and supportive further analysis methods such as correlation
analysis or time series. The developed instructions contain information about the type
of analysis, required input data to perform the analysis and hints regarding result
interpretation. They hence enable employees to draw the right conclusions from the
KPIs proposed above and may serve as specifications regarding which queries and
analyses to integrate in IT-based support systems. The general procedure for root-cause
identification is demonstrated in the following based on two simple examples.

When analysing the root causes of long throughput times, the basic relations
described in the production operating curves can be used as shown in Fig. 6. The
relative WIP, which is the ratio between the actual mean WIP and the ideal minimum
WIP [18], indicates throughput time potentials. If the planned relative WIP is signifi-
cantly higher than about 250%–500%, the planned throughput time can usually be
reduced. This also already indicates that a suitable measure would be limiting the WIP
level. If the throughput time ratio of the work station in question is very high, but WIP
level cannot be further reduced without expecting utilisation losses, reducing the
operating time is the sole possibility for throughput time reduction.

Fig. 6. Throughput time potential identification using production operating curves
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Another example of how to use logistic models in root cause analysis is illustrated
in Fig. 7. According to the causal tree for a low service level presented above, the first
decision is, whether the low service level results from a planned stock level that does
not match the desired target or if the actual stock level is lower than the planned level
or from an already low target level. The service level operating curve is applied for
analysis. Based on the target service level the required mean target stock level can be
calculated. In Fig. 7 the actual mean stock level is significantly lower than the planned
stock level. Hence, the respective branch of a low actual stock level needs to be further
pursued. At the same time, the planned stock level is significantly higher than the target
stock level. This value should be corrected to avoid unnecessary inventory costs, once
the actual stock level approaches the planned stock level again.

The developed analysis procedures are being translated into flow charts. In com-
bination with the detailed descriptions of each analysis step, comprehensive procedure
guidelines for how to perform data analyses in the context of production controlling is
provided, which can be used as the basis for intelligent algorithms applied by IT-based
decision support systems. The analysis procedure is further complemented with a
catalogue of suitable measures for each root-cause. In that way, the developed approach
supports the entire controlling process.

5 Conclusion

In this paper an approach for systematic data analyses in the context of production
controlling is presented. For the most important logistics objectives causal trees
structuring the complex logistical interdependencies have been developed. Based on
these causal trees relevant KPIs that should be tracked and monitored have been
derived. Furthermore, the identified causal relations set the guidelines for systematic
data analyses based on logistic models and further analysis methods. Concluding, a
systematic and simple approach for production controlling has been developed

Fig. 7. Root cause identification for a low service level using the service level operating curve
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supporting in terms of which data to analyse, which analyses to perform, and how to
interpret analysis results to identify logistical weaknesses in the company’s internal
supply chain. Due to its simplicity, it will increase the understanding of employees
about the complex logistical interdependencies. In times of ever more available feed-
back data, the structured approach will thus enable especially SMEs to perform
exhaustive logistical analyses with the help of the guidelines provided. Based on the
analyses results, effective measures can be derived countering the root-causes of pre-
sent problems. The developed analyses guidelines are being translated into flow charts,
which can be used as specifications for future IT-systems allowing automatic or semi-
automatic data preparation and analysis. The rather simple and transparent approach
would allow employees to comprehend the conducted analyses and would thus also
positively affect user acceptance (e.g. compared to complex supply chain simulations).
In that way, such a controlling system would help to ensure that the potential of higher
data availability is also exploited in the future, as less expert know-how and manual
tasks would be required.

Acknowledgment. This paper presents the results of the IGF project “QuantiLoPe” (IGF
No. 19223) funded by the Federal Ministry of Economic Affairs and Energy on the basis of a
resolution of the German Bundestag.

References

1. Wiendahl, H.H.: Auftragsmanagement der Industriellen Produktion, Grundlagen, Konfig-
uration, Einführung. Springer, Heidelberg (2011)

2. Handfield, R., Straube, F., Pfohl, H.C., Wieland, A.: Trends and Strategies in Logistics and
Supply Chain Management - Embracing Global Logistics Complexity to Drive Market
Advantage. DVV Media Group GmbH, Hamburg (2013)

3. Geissbauer, R., Roussel, J., Schrauf, S., Strom, M.A.: Global Supply Chain Survey 2013,
Next-Generation Supply Chains: Efficient, Fast and Tailored. PricewaterhouseCoopers AG,
London (2013)

4. Schuh, G., Stich, V. (eds.): Produktion am Standort Deutschland, Ergebnisse der
Untersuchung 2013. FIR, Aachen (2013)

5. Schuh, G., Potente, T., Thomas, C., Hauptvogel, A.: Cyber-physical production manage-
ment. IFIP Adv. Inf. Commun. Technol. 415, 477–484 (2013)

6. Wiendahl, H.P., Nyhuis, P., Bertsch, S., Grigutsch, M.: Controlling in Lieferketten. In:
Schuh, G., Stich, V. (eds.) Produktionsplanung und –steuerung 2, 4th edn., pp. 11–57.
Springer, Heidelberg (2012)

7. Much, D., Nicolai, H.: PPS-Lexikon, Cornelsen, Girardet (1995)
8. Schuh, G., Brandenburg, W., Cuber, S.: Aufgaben. In: Schuh, G., Stich, V. (eds.)

Produktionsplanung und -steuerung 1, 4th edn, pp. 29–79. Springer, Heidelberg (2012)
9. Schuh, G., Prote, J., Luckert, M., Schmidhuber, M.: Potenzial von Echtzeitdaten für die

Produktion, Ergebnisse einer Studie des Werkzeugmaschinenlabors WZL der RWTH
Aachen. Wt Werkstattstechnik online 108(4), 198–203 (2018)

10. Wiendahl, H.H., von Cieminski, G., Wiendahl, H.P.: Stumbling blocks of PPC: towards the
holistic configuration of PPC systems. Prod. Plann. Control 16(7), 634–651 (2005)

11. von Cieminski, G., Nyhuis, P.: Modeling and analyzing logistic interdependencies in
industrial-enterprise logistics. Prod. Eng. 1, 407–413 (2007)

12 L. Härtel and P. Nyhuis



12. Horváth, P., Gleich, R., Seiter, M.: Controlling, 13th rev. ed. Vahlen, München (2015)
13. Gottmann, J.: Produktionscontrolling, Wertströme und Kosten optimieren. Springer,

Wiesbaden (2016)
14. Wildemann, H.: Produktionscontrolling, Controlling von Verbesserungsprozessen in

Unternehmen, 4th rev. ed. TCW, München (2001)
15. Reichmann, T., Kißler, M., Baumöl, U., Hoffjan, A., Palloks-Kahlen, M., Richter, H.J.,

Schön, D.: Controlling mit Kennzahlen, Die systemgestützte Controlling-Konzeption mit
Analyse- und Reportinginstrumenten, 8th edn. Vahlen, München (2011)

16. Gollwitzer, M., Karl, R.: Logistik-Controlling, Wirkungszusammenhänge, Leistung, Kosten,
Durchlaufzeiten und Bestände. Langen Müller/Herbig, München (1998)

17. Tracht, T., Reinsch, S.: Einleitung. In: Wiendahl, H.W. (ed.) Erfolgsfaktor Logistikqualität,
Vorgehen, Methoden und Werkzeuge zur Verbesserung der Logistikleistung, 2nd edn,
pp. 1–7. Springer, Heidelberg (2002)

18. Nyhuis, P., Wiendahl, H.P.: Logistische Kennlinien, Grundlagen, Werkzeuge und Anwen-
dungen. Springer, Heidelberg (2012)

19. Lödding, H.: Verfahren der Fertigungssteuerung, Grundlagen, Beschreibung, Konfiguration.
Springer, Heidelberg (2016)

20. Schmidt, M., Schäfers, P.: The Hanoverian Supply Chain Model, modelling the impact of
production planning and control on a supply chain’s logistic objectives. Prod. Eng. 11(4–5),
487–493 (2017)

Systematic Data Analysis in Production Controlling Systems 13



CAD-Model Based Contour Matching
of Additively Manufactured Components

Using Optical Methods

Nicolai Hoffmann, Christoph Pallasch(&), Simon Storms,
and Werner Herfs

Laboratory for Machine Tools and Production Engineering,
Department for Automation and Control, Steinbachstrasse 19,

52074 Aachen, Germany
{n.hoffmann,c.pallasch,s.storms,

w.herfs}@wzl.rwth-aachen.de

Abstract. Additive processes offer the possibility to produce complex
geometries that are not possible to manufacture with traditional methods such as
turning, milling or electrical discharge machining. Due to the layered structure
of the material during the production process, the process time in the Fused
Deposition Modeling (FDM) or Fused Layer Manufacturing (FLM) process is
primarily dependent on the layer thickness. However, a large layer thickness
induces deviations from the ideal shape of the component and features such as
bores or fits. In a new approach, the additive process time will be reduced by
applying excess material with a large layer thickness close to the desired con-
tour. In a subsequent machining step, the excess material is removed, and the
target contour is produced. This paper presents the first stage of this approach in
which the alignment of an additively manufactured component within the
working area of a milling machine is estimated based on CAD-Model and
optical methods.

Keywords: 3D-Image processing � Computer Aided Manufacturing (CAM)
Fused deposition

1 Introduction

Additive manufacturing provides the ability of designing and manufacturing work
pieces with major engineering freedom by applying material in a layered structure [1].
Within the last 15 years additive technologies have become more important in the
industrial manufacturing [2]. Because of the developed technological advantages over
the last years additive manufacturing has become more and more an alternative process
technology for short runs as well as highly individual production [3]. Therefore,
additive manufacturing enables designers and engineers to develop new functional
parts with higher complexity as well as lower material usage while keeping nearly the
same mechanical characteristics. However, additively manufactured work pieces of 3D
printing processes often do not fulfill tolerance requirements regarding the geometrical
shape and surface finishing [4]. The tolerance deviations in most technologies,
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especially in Fused Deposition Modeling (FDM) or Fused Layer Manufacturing
(FLM) processes, amounts to 0.1 mm and more. Reducing the layer height and/or the
speed of the extruder’s movement can increase the production quality but is accom-
panied by an increase in costs, as the production time raises. Hence, general work
pieces manufactured in 3D printing processes need a finishing process in order to fulfill
tolerance deviations.

Nowadays the difficulty lies in contour adjustment and referencing of the semi-
finished component in the finishing process’ mounting-area. This paper will present a
method for determining the reference position of a workpiece as a prerequisite in post-
processing of additively manufactured components created in 3D printing processes.

2 Overall Concept for Hybrid Process

Figure 1 depicts the overall concept of a hybrid (additive and subtractive) process,
whereas Fig. 2 shows the computer vision processing pipeline for CAD-Model based
contour matching. In a first step, the component is additively manufactured using G-
code instructions based on an existing CAD model. Next an actual contour adjustment
is performed by an edge detection of a 2D-image of the current surface to determine the
orientation. The appropriate surface in the CAD model is selected by template
matching, the barycenter of the surface as well as the orientation is computed and the
real part is matched with the CAD model for further CAM analysis and code gener-
ation. Thereafter the work coordinate system can be matched with the CAM system or

Fig. 1. Concept for removing excessive material in additive manufacturing parts
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the offsets on the machine can be set accordingly to the required boundary conditions.
Finally, the G-code for the selected part can be generated on the host and executed on
the machine resulting in the removal of excess material.

3 Mathematical Background

The calculation of necessary parameters and features of recorded camera images pri-
marily requires an information extraction that is invariant to interfering factors or uses
special computation. For the approach presented below, the Principal Component
Analysis, Hu Moments and Template Matching are used as mathematical or Computer
Vision methods to extract necessary information. These three methods are briefly
introduced in this section.

Principal Component Analysis. The Principal Component Analysis (PCA) is a sta-
tistical method for calculating a main direction of a given multidimensional point
cloud. This method is used to structure or prepare multivariate data sets in such a way
that individual variables are related in the form of factors or linear combinations. In the
Computer Vision area, the PCA is used to determine the orientation of an object in an
image data set [5]. Since this is a statistical method, the image data must be prepared in
such a way that there is a two-dimensional point cloud whose variables represent the X
and Y positions. Based on an appropriate data record preparation, the following steps
are performed:

Fig. 2. Overview of computer vision processing steps
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1. Compute the two-dimensional mean vector vm
�! ¼ �x

�y

� �

2. Calculate the covariance matrix Cov(X) of the data set X
3. Derive theEigenvectors e1!; e2

!and Eigenvalues e1; e2 of the covariancematrixCov(X)
4. Choose the Eigenvector with the corresponding highest Eigenvalue as first

component.

Hu Moments. In Computer Vision it is often necessary to derive properties of an
image invariant of rotation, translation or perspective distortion. In this case, Hu
moments are used to extract equal weighted averages from images that reflect the
geometric properties of the image [6]. Hu moments can be applied to grayscale image
information and are calculated as follows:

Mij ¼
Xn

i¼0

Xm

j¼0
xiy jG x; yð Þ ð1Þ

whereas G(x,y) is the gray value located at pixel position x, y. Moments can be
computed to any degree and combination of i and j. In order to obtain translation
invariance, the so-called central moments are used:

lij ¼
Xn

i¼0

Xm

j¼0
x� �xð Þi y� �yð Þ jG x; yð Þ ð2Þ

Central moments form the base for computing properties of object within images
like rotation or barycenter etc. Furthermore, moments are used as classifier for dis-
tinguishing different features of several detected objects.

Template Matching Template matching is a method applied in computer vision to
detect or find a matching between a template image and a target image. The goal of
template matching is to find the position of a (similar) template within the target image
[7]. One possibility is to use the template as a filter kernel to achieve a correlation in the
target image with the template by means through filtering. However, this method is
only suitable if an exact template image (grayscale or color) shall be found in the target
image. Another possibility is the fitting of templates in the target image using edge
template matching. The templates consist of edges or contours of an object to be
searched for, so that the search essentially consists of matching a geometry. In this case
Chamfer Matching, as edge template matching, basically calculates the distances
between the template and an excerpt of the target image [8]. Chamfer Matching is
performed by the following steps using a grayscale target and an edge template
image [9]:

1. Perform distance transform on target image to retrieve the transformed image
Ddist x; yð Þ using either Euclidean, City Block, Chess-Board or other distance metrics
(dependent on requirements and computation power)

2. Translate the template image over the target image and compute the distances
d u; vð Þ ¼ T u; vð Þ � Ddist xþ u; yþ vð Þj j for a given position x, y on the target image
and for each pixel of the template image, resulting in the distance matrix
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MT ;D ¼
d 0; 0ð Þ � � � d 0;Vð Þ
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3. Compute the chamfer score as average sum of all distances Dchamfer T ;Dð Þ ¼
1

MT ;Dj j �
P MT;Dj j

i¼0 MT ;D ið Þ for several positions, resulting in a set of chamfer scores

D1
chamfer. . .::D

n
chamfer

4. Select the lowest chamfer score that is below a specific threshold Dchamfer\Dthreshold

5. Region on position x and y associated with this chamfer score fits with the edge
template image

Chamfer Matching is the most common used method in computer vision to detect
skeletonized templates in images or camera recordings (e.g. gesture or hand recogni-
tion). Furthermore, it is a fast method for matching edge-based templates and finding
candidate matches in the beginning of a recognition pipeline.

Canny Edge Detection. To find templates in images or camera recordings using
Chamfer Matching, a template image has to be preprocessed first to extract a pure
skeletonized image. The Canny Edge Detector is a commonly used method for
detecting edges in an image. For this the image is processed in several steps [10]:

1. Perform Gaussian Smoothing on grayscale image
2. Compute the partial differential derivatives gx x; yð Þ and gy x; yð Þ of the image in x

and y direction using Sobel Filters
3. Compute the gradient of the image as H x; yð Þ ¼ atan2 gY x; yð Þ; gx x; yð Þð Þ. As each

pixel has only 8 neighboring pixels, the computed angle per pixel is mapped to 0°,
45°, 90° or 135°

4. Calculate the absolute edge strength using G x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx x; yð Þ2 þ gy x; yð Þ2

q

5. Using G x; yð Þ check for each pixel the left and right neighboring pixel value and set

the value to G x; yð Þ ¼
G x� 1; yð Þ; if G x� 1; yð Þ[G x; yð Þ
G xþ 1; yð Þ; if G xþ 1; yð Þ[G x; yð Þ

G x; yð Þ; otherwise

8<
:

This step is also called non-maximum suppression, as only pixels with maximum
values are left along a potential edge. Pixel with non-maximum values are removed.

6. Hysteresis is applied as last step for determining from which edge strength a pixel is
to be count to an edge using two threshold values T1\T2. The image is scanned
until a pixel value greater or equal T2 is found. All pixel values of the corresponding
edge that are greater or equal T1 are marked as edge components.

18 N. Hoffmann et al.



4 Experimental Setup and Workflow

Orientation Detection. As a preparatory step of calculating the location of a work-
piece, the orientation of the main components in relation to the surface of the CAD
model used is determined (see Fig. 3). To do this, both image data and CAD surface
data must first be converted to an equivalent format, as they are not comparable in their
original form. As shown in Fig. 3 Canny edge detection is performed for both images
to identify and use edges [11]. Additionally the general orientation of the image is
computed using Principal Component Analysis of the thresholded image data itself.
After this step, the main orientations in the image have been determined and a template
matching can take place in the next step for cropping out the image to retrieve the
region of interest.

Template Matching. To identify the views of interest in the streamed images the view
has to be cropped to improve the overall performance of the algorithm. Since the
orientations within the image have been found out, a template matching is performed in
the next step to determine the important area of the image with the component to be
localized. From the CAD data images of all 6 sides of the part are exported by a
suitable interface in the CAD program. These images are rotated by the specific main
orientations from the previous step before template matching is applied. If the template
matching has found the most appropriate section the image is cropped.

Computation of Barycenter. After setting the appropriate orientation the next step is
to compute the barycenter. This can be done by applying centralized Hu Moments on
the grayscale image (see Fig. 4). The barycenter is then transformed using affine

Fig. 3. Canny edge detection, template matching and PCA for determining main orientations.
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