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Preface

Cotton fiber is the most important natural fiber used in the textile industry. The 
physical structure and chemical compositions of cotton fibers have been extensively 
studied. Newer high-speed spinning instruments are being deployed around the 
world that demand longer, stronger, and finer fibers. Consequently, genetic improve-
ment in fiber quality has been stressed. With improvement in fiber quality has come 
the realization that further fiber improvement will require a better understanding of 
fiber development and biology. As a consequence, cotton fiber developmental biol-
ogy, genetics, and genomics have become focal points in the cotton research com-
munity. As the longest single-celled plant hair, cotton fiber has been used as an 
experiment model to study trichome initiation and elongation in plants. This book 
provides a comprehensive update on cotton fiber physics, chemistry, and biology 
that naturally separate the book into three sections. In the physics section, the physi-
cal structure of cotton fiber is first illustrated in great detail. Then a suite of fiber 
properties and their measuring methods are described. The pros and cons of each 
method are outlined. New methods to measure physical properties of single fiber 
and young developing fibers are included. In the chemistry section, the chemical 
compositions of cotton fibers are described in detail. This knowledge is necessary 
for efficient modification of cotton fibers for better and broader utilization. The 
advancement in cotton fiber modification using chemical and enzymatic methods 
opened new ways to utilize cotton fibers. In the biology section, the book first intro-
duces the utilization of naturally occurring color cottons. Color cottons possess 
unique attributes such as better fire retardant ability. Advancement in understanding 
fiber color genetics and biochemical pathways and new utilization of color cottons 
are discussed. Recent technological advancements in molecular biology and genom-
ics have enabled us to study fiber development in great depth. Many genes and 
quantitative trait loci related to fiber quality attributes have been identified and 
genetically mapped. Some of these genes and QTLs are being used in breeding. 
Progresses in cotton fiber improvement using breeding and biotechnology are dis-
cussed in the last chapter. This book serves as a reference for researchers, students, 
processors, and regulators who either conduct research in cotton fiber improvement 
or utilize cotton fibers.
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Chapter 1
General Description of Cotton

David D. Fang

Throughout the world, cotton fiber is the most widely used plant-produced fiber for 
apparel, home furnishings, and industrial products. In 2016, about 106.5 million 
bales (218 kg or 480 pounds per bale) of cotton fiber were produced from more than 
50 countries around the world. The economic value of the worldwide raw cotton 
fiber is estimated at $35 billion annually. India, China, the United States, Pakistan, 
and Brazil account for over 75% of world cotton production (www.cottoninc.com). 
Of the entire world production, about 36 million bales were destined to the export 
market with the United States being the largest exporter and Vietnam as the largest 
importer in 2016.

Naturally, a cotton plant grows as a perennial in tropical and subtropical regions, 
often reaching the size of a small tree. However, for commercial production of raw 
fibers, most if not all cotton cultivars are grown as annuals, i.e., the crop is harvested 
in the same year of planting. An “annual” cotton is not a true annual because the 
death of a plant is not a natural consequence of seed ripening, rather due to applica-
tion of chemicals or mechanical destruction. A cotton plant can be maintained indef-
initely under a warm environment such as a glasshouse. Indeed, cotton germplasm 
repositories in several countries use glasshouses to maintain live cotton plants 
(Percy et al. 2014).

Cotton belongs to the family Malvaceae, the tribe Gossypieae, and the genus 
Gossypium (Wendel and Grover 2015). The cotton genus (Gossypium L.) consists 
of about 45 diploid species (2n = 2x = 26) classified as 8 genome groups (A–G and 
K) and 6 allotetraploid (AD) species (2n = 4x = 52) (Fryxell 1992; Wendel and 
Grover 2015). The haploid genome size of diploid species ranges from 885 Mbp of 
a D-genome species to 2570 Mbp of a K-genome species. A tetraploid species has 
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a genome size of about 2400 Mbp (Hendrix and Stewart 2005; Zhang et al. 2015). 
A preponderance of evidence has demonstrated that the six tetraploid cotton species 
(G. barbadense, G. darwinii, G. ekmanianum, G. hirsutum, G. mustelinum, and G. 
tomentosum), which are entirely New World distribution, originated from a single 
hybridization event between an A-genome species (either G. herbaceum or G. arbo-
reum) and a D-genome species (possibly G. raimondii) 1–2 million years ago 
(Endrizzi et al. 1985; Paterson et al. 2012; Wendel and Cronn 2003; Wendel and 
Grover 2015; Zhang et al. 2015). Four species, i.e., G. arboreum, G. barbadense, 
G. herbaceum, and G. hirsutum, are cultivated for their ability to produce high 
fiber yield.

G. hirsutum (Fig. 1.1), native to Mexico and Central America, was introduced 
into the United States as early as the sixteenth century shortly after Columbus’ dis-
covery of the Americas (Beckert 2014). Tremendous efforts in introduction, selec-
tion, and breeding significantly improved G. hirsutum plants to better adapt to 
commercial production under new environments in subsequent centuries (Fig. 1.2). 
Eli Whitney’s invention of a saw gin to mechanically separate cotton fiber from 
seeds in 1793 greatly helped the expansion of cotton production in the United States 
and the spread of American cotton varieties to other countries (Lee and Fang 2015). 
Of the four commercially cultivated species, G. hirsutum commonly known as 
upland cotton or American upland cotton is grown on the most acres and accounts 
for over 90% of the world’s raw cotton fiber production. In general, upland cottons 
have fiber length ranging from 20 to 32 mm, micronaire value falling between 3.5 
and 5.5, and bundle fiber strength between 27 and 32 g/tex.

G. barbadense (Fig. 1.3) originated in South America and has a wide range of 
distribution across the continent. This species includes commercial varieties com-
monly known as Egyptian, Sea Island, Pima (also called American Pima), American 

Fig. 1.1 G. hirsutum plant (a) and boll (b) (courtesy of Doug Hinchliffe)
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Egyptian, and extra-long staple. This species provides about 3–5% of the world’s 
cotton production. G. barbadense varieties are mainly grown in Egypt, Sudan, and 
the western United States. The fiber of G. barbadense is longer (>33 mm), stronger 
(>32 g/tex), and finer (micronaire <4.0) than that of G. hirsutum. G. barbadense 
fibers are mainly used to produce high-quality apparel that can command a pre-
mium price. Although G. barbadense has better fiber, its low yield and poor adapt-
ability to variable environments limit its cultivation. Since the beginning of the 
twentieth century, a lot of breeding efforts in the United States have been dedicated 
to introgression of G. barbadense fiber traits into G. hirsutum varieties. Many germ-
plasm resources including commercially successful Acala-type varieties with vari-
able levels of G. barbadense introgression have been developed (Smith et al. 1999).

G. arboreum and G. herbaceum are known as Asiatic or old world cottons 
(Figs. 1.4 and 1.5). They are also called “desi” cottons. These two diploid spe-
cies have been cultivated by mankind for thousands of years (Lee and Fang 2015). 

Fig. 1.2 Gossypium hirsutum. (a) Landrace, (b) cultivar (courtesy of James Frelichowski)

Fig. 1.3 G. barbadense (courtesy of James Frelichowski)
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Their fibers are short (<20 mm), coarse (micronaire >5.0), and weak (<22 g/tex) 
(Reddy and Reddy 2011), and yield is low. However, desi cottons have favorable 
traits such as resistance or immunity to leaf curl virus (a destructive disease affect-
ing cottons in India and Pakistan) (Nazeer et al. 2014), blue disease (a virus disease 
prevalent in South American countries) (Fang et al. 2010), and bunchy top disease 
(another virus disease in Australia) (Ellis et al. 2016). In addition, desi cottons are 
drought tolerant which makes these two diploid species suitable to the arid 

Fig. 1.4 G. arboreum plant (a) and boll (b) (courtesy of Doug Hinchliffe)

Fig. 1.5 G. herbaceum plant (a) and boll (b) (courtesy of Doug Hinchliffe)
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 sub- Indian continent. Desi cottons account for less than 2% of the world’s cotton 
production and are mainly cultivated in India and Pakistan.

Cotton originated in the tropics, and the plant becomes inactive at temperatures 
below 16 °C. Cotton plants need about 160 days above 16 °C to produce a crop 
(Snider and Oosterhuis 2015; Waddle 1984). Planting time for cotton varies by 
locality. Planting recommendations are generally based on soil temperature greater 
than 16 °C at a certain planting depth and favorable air temperature forecasts for the 
next 3–7 days after planting. In the United States, the planting season can start as 
early as February in the lower Rio Grande valley in Texas and continue as late as 
May in the southeast regions. Soil temperature greatly affects seed germination. 
Seedlings emerge from the soil within a week after planting. Flower buds or squares 
are visible near the top part of the plant about 5–6 weeks after seedling emergence. 
Blossoms appear in another 3–4 weeks. The time interval from the day of anthesis 
(flowering) to open boll ready for harvesting is about 50–80 days depending on 
genotypes and environments.

Cotton fibers are unicellular trichomes or plant hairs that differentiate from 
epidermal cells of developing cotton seeds. Cotton fiber development occurs in a 
temporally ordered series of developmental stages and divides into four distinctive 
yet overlapping stages: initiation, elongation, secondary cell wall (SCW) 
biosynthesis, and maturation (Haigler et al. 2012; Lee et al. 2007). Visible signs of 
fiber initiation are first evident 1 or 2 days before anthesis; therefore, developmental 
events are staged by the number of days post-anthesis (DPA). Over a 2–3-week 
period, fiber cells elongate up to 25–40 mm, making them among the longest cells 
in the plant kingdom (Kim and Triplett 2001). During the elongation stage, only a 
thin (0.1–0.2 μm) primary cell wall with a waxy cuticle surrounds each fiber cell. 
Depending on genotypes, there are 10,000 to 20,000 fibers per seed (Zhang et al. 
2011). In each boll (ovary), there can be over half a million synchronously elongating 
fiber cells that are in a sole cell type (Bowman et al. 2001).

In upland cotton, fiber cell starts to elongate as early as on the first day of anthesis 
and continues up to 20 DPA. Fiber length is largely determined at the elongation 
stage especially the length of elongation period as demonstrated by Avci et  al. 
(2013) based on comparison of G. hirsutum and G. barbadense fiber length devel-
opment. SCW biosynthesis begins approximately 12 to 16 DPA and continues until 
approximately 35 DPA or later. This stage is critical for fiber strength and maturity. 
The fiber SCW is deposited between the plasmalemma and the primary cell wall 
and is 1.5–3.0 μm thick at maturity. At or around 45 DPA, fiber development enters 
into maturation stage. Fiber development ceases when the fruit wall dehisces and 
the fibers dry upon exposure to the environment. The cytoplasmic contents of the 
living cell adhere to the drying cell wall.

Fiber primary cell walls (PCW) are a composite of carbohydrate polymers 
(cellulose, hemicellulose, and pectin) and structural wall proteins. The cellulose 
content of the expanding PCW is less than 15% by weight, whereas mature fibers 
have thickened secondary cell wall composed of nearly pure cellulose (>95%). 
Cellulose is a linear β-1,4-d-glucopyranose polymer that aggregates into higher- 
order structures called microfibrils (5–15 nm diameter and 10 μm long) (Fig. 1.6). 

1 General Description of Cotton
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Cellulose microbrils (CMF) are helically arranged around the longitudinal axis of 
the fiber in layers. Periodically the gyre of the helix reverses direction, and a reversal 
is formed. There is a strong association between the orientation of CMF in the fiber 
secondary cell wall and fiber strength (Moharir 1998; Moharir et al. 1999; Warwicker 
et al. 1966). Fibers with CMF oriented with a shallow angle relative to the long axis 
of the fiber are stronger than fibers with larger orientation angles. The orientation of 
CMF in the fiber cell wall, as in other plant cells, appears to be influenced by the 
cytoskeleton (Seagull 1991); however, how the cytoskeleton exerts an influence on 
cell wall structure remains an unanswered question in plant cell biology. The degree 
of polymerization (number of glucose molecules per polymer) of cellulose is much 
larger in the secondary cell wall than in the primary cell wall (Timpa and Triplett 
1993). As the cellulose degree of polymerization increases in the secondary cell 
wall, fiber strength increases (Timpa and Ramey 1994).

Cotton harvesting methods vary from different regions in the world. Almost the 
entire cotton crop in the United States is mechanically harvested; however, manual 
harvesting is still prevalent in many cotton-growing countries where labor cost is 
relatively low. There are two major types of mechanical cotton harvesters: picker 
and stripper. A picker harvester selectively collects seed cotton from open bolls, 
leaving much of the bur and other plant materials in fields. A stripper harvester col-
lects seed cotton along with significant amount of other plant materials. Cottons 
harvested by a stripper tend to be dirtier and require more cleaning in the subse-
quent ginning process (Wanjura et al. 2015). After harvesting, seed cotton will be 
transported to a ginning facility. During the peak of harvesting, ginning facilities 
cannot immediately process all the seed cottons that were harvested. Thus, the har-
vested seed cottons are temporarily stored in fields in compacted modules wrapped 
in plastic films or covered with tarps.

Although the main function of the ginning operation is to separate fibers from 
seeds, the ginning process also includes conditioning (to adjust moisture), cleaning 
(to remove non-fiber trash), and packing into bales for transportation and marketing. 

Fig. 1.6 Cotton fiber structure (courtesy of Cotton Structure and Quality Research Unit, USDA- 
ARS, New Orleans, LA)

D. D. Fang
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Inappropriate ginning can break fibers and greatly affects fiber quality. Upland cot-
tons are usually ginned on saw gins, while Pima cottons are often ginned using 
roller gins. A cotton bale varies in dimension, volume, and weight. A typical US 
cotton bale weighs 218  kg (480 pounds) with dimension of 1400  mm 
(length) × 533 mm (width) × 736 mm (height). A cotton bale is wrapped with plastic 
films or cotton fabric (Wanjura et al. 2015).

Quality of upland cotton raw fibers is becoming a critical factor in cotton 
production in the United States. Nearly every bale of cotton produced in the United 
States is classed by the USDA Agricultural Marketing Service using high volume 
instruments (HVI) that rapidly measure fiber physical properties including length, 
length uniformity, strength, micronaire (MIC), and trash content. Fiber length is 
largely influenced by the genetic background of each cultivar, but adverse 
environmental conditions will reduce fiber length below a genotype’s potential 
(Bradow and Davidonis 2000; Kelly et al. 2015; Meredith et al. 2012). Fiber length 
and length uniformity are important determinants for yarn strength, evenness, 
fineness, and spinning efficiency (Kelly et al. 2015; Thibodeaux et al. 2008). Short 
fibers may be generated during ginning process if the fibers are weak. Fiber strength 
is highly influenced by cotton genotype and may also be negatively affected by poor 
growing conditions (Hinchliffe et al. 2011; Zhang et al. 2017). High-speed textile 
processing machinery, especially rotor-spinning equipment that spins cotton fiber 
into yarn found in most US textile plants, puts an increased demand on higher cotton 
fiber strength. MIC is a measurement of the air permeability through a mass of fiber 
compressed to a fixed volume and is influenced by both fiber fineness and maturity. 
Modern high-yield cotton varieties produce high-MIC cotton (>5.0) because the 
yield is positively correlated to MIC value (Nichols et al. 2012). The high-MIC cot-
ton is composed of coarse and thick fibers, and it is unfavorable to both textile 
manufacturers and consumers. Cotton fibers with intermediate MIC values ranging 
from 3.7 to 4.2 are classified as premium cotton. Buyers discount the value of high- 
(>5.0) and low-MIC (<3.4) cotton. In summary, the value of cotton fiber in the 
market, regardless of its end use, is directly related to the combination of its physi-
cal properties. These combined physical attributes of cotton fiber have a direct and 
significant impact on the economical return to cotton farmers and other related 
downstream entities. The highly mechanized production and processing of cotton 
products at increasingly higher speed demand that the raw fiber be as uniform, long, 
and strong as possible.

There are three primary products derived from cotton production: cotton lint, 
linters, and cottonseed. Cotton lint is long (>25 mm) fiber that can be spun into yarn. 
This product is used in clothing, denim, towels, and dollar bills. The lint fibers can 
be easily separated from seeds through the ginning process. Linters are short fibers 
(usually <15 mm) that are still attached to the seeds after ginning. The linter fibers 
are removed during the delintering process. Linters are used in plastics, paper prod-
ucts, films, and cosmetics. Besides length, there are many notable differences 
between lint and linters in physical and chemical properties (Wakelyn et al. 1998). 
Linters are coarser and thicker and often show pigmentation. Lint fiber cells usually 
initiate before or on the day of anthesis and elongate as late as 20 DPA (Avci et al. 

1 General Description of Cotton
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2013). In contrast, linter fiber cells initiate at 3–4 DPA and stop elongation as 
early as 12 DPA. There are cotton varieties or mutants that are linter-free (e.g., G. 
barbadense varieties, N1 and n2 mutants) and fiberless (e.g., XZ142 fl) (Zhang and 
Pan 1991). These mutants are widely used to study the biology of fiber development 
(Naoumkina et al. 2016). Cottonseed is crushed into three separate products—oil, 
meal, and hulls (the outer covering of a seed). The oil is the cottonseed’s most valu-
able by-product and is purified and used in cooking. The hulls are used in livestock 
feed, fertilizer, fuel, and packing materials. The meal is made by grinding the 
cottonseed and is used in livestock and poultry feed, as well as in natural fertilizers 
for lawns, gardens, and flower beds.

Although almost all cottons of commerce are white, naturally colored cotton 
fibers exist in various hues including light to dark brown, red, rust, and green, and 
they are found in both diploid and tetraploid species (Hinchliffe et  al. 2016). 
Naturally colored cottons have been grown for several thousand years but almost 
completely disappeared in the mid-twentieth century because of the availability of 
inexpensive dyes, higher production of white cotton, and cotton ginners’ concern of 
contamination to white cottons. In recent years, there is a renewed interest in grow-
ing colored cotton for better stewardship of the environment by reducing the amount 
of dying chemicals used to artificially color cotton fabrics. Currently, colored cot-
tons are typically grown as a source of fiber for niche textile markets that promote 
the use of natural colors in textiles as an alternative to dying scoured and bleached 
cotton fibers. Colored cotton fibers are usually weaker, shorter, and finer and often 
yield lower. However, these shortcomings associated with colored cotton can be 
overcome through breeding if demand for naturally colored cotton fibers is 
increased. A recent finding that naturally colored cotton fibers confer higher flame 
retardancy may spark new demand for colored cotton (Hinchliffe et al. 2016).

Cotton is one of the first crops that were genetically modified using transgenic 
technologies. In 1996, the first transgenic cotton variety containing a Bt gene from 
the bacterium Bacillus thuringiensis was introduced to the US market. Since then, 
transgenic cotton has been grown in more than 15 countries. As of today, transgenic 
cotton accounts for more than 85% and about 60% of cotton acreages in the United 
States and the world, respectively (Zhang 2015). There are two major transgenic 
traits: Bt toxin (a protein from Bacillus thuringiensis) expressed in cotton varieties 
to protect fruit from lepidopteran insects such as boll worms and herbicide tolerance 
that enables easy management of weeds using herbicides such as glyphosate. Bt 
cotton includes a variety of genes producing different toxins developed by several 
companies (Luttrell et al. 2015). The first herbicide-tolerant gene to be commercial-
ized in cotton conferred tolerance to the herbicide bromoxynil (BXN by Stoneville 
Pedigree Company). The BXN varieties were soon replaced by those containing 
genes that confer tolerance to glyphosate under the name of RoundUp Ready® 
(Monsanto Company). Later, RoundUp Ready Flex (Monsanto Company) and 
LibertyLink (Bayer CropScience) cottons were introduced. Many cotton varieties 
contain both Bt- and herbicide-tolerant genes. So far, no other genes controlling 
agronomic traits and fiber properties have been introduced into cotton via transfor-
mation with commercial success. Manipulation of fiber properties especially length 
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and strength via biotechnology is recognized as a potential means to improve 
quality and develop new products.

Cotton is also on the cutting edge of genomic methods and technologies. Genome 
sequences of G. arboreum, G. raimondii, G. hirsutum, and G. barbadense have been 
published (Li et al. 2014; Paterson et al. 2012; Yuan et al. 2015; Zhang et al. 2015). 
Many fiber quality quantitative trait loci have been identified, and some of them are 
being used in breeding practices (Fang 2015; Said et al. 2013). Genes relating to 
fiber cell initiation (Wan et al. 2016; Wu et al. 2018; Zhu et al. 2018), elongation 
(Thyssen et al. 2017), and maturity (Thyssen et al. 2016) have been identified. Many 
more fiber genes will be identified, and the network of fiber genes regulating fiber 
development may be elucidated in the foreseeable future. In the subsequent chap-
ters, the physical and chemical characteristics of cotton fiber will be described in 
detail. How fiber cells initiate and elongate into a 35–40-mm-long hollow tube will 
be illustrated. Improvement of fiber quality through conventional breeding and 
marker-assisted selection will be discussed.
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Chapter 2
Cotton Fiber Structure

Alfred D. French and Hee Jin Kim

2.1  Introduction

Cotton is the most important natural fiber used in textiles, and it also has other uses 
such as being a component of high-quality paper. Because of its importance, cotton 
has received a great deal of study. Still, at the time of this writing, much remains to 
be learned about many of the details of the cotton fiber structure. These structural 
details must become known to understand the relations between the structure and 
performance properties of the fiber. That is a prerequisite for knowledge-based 
improvements.

A reason for failure to learn the entire story about cotton fibers is that they are 
very small yet have a variable and complex organization. As seed hairs, they are 
complete cells that undergo a multistage biosynthesis (Chap. 7). Unlike the trunk of 
a tree, the cotton fiber develops its outer perimeter first and then grows inward 
toward the lumen at the center of the fiber. The biosynthetic tissues are themselves 
synthesized within the fibers, but at the end of the fiber development, they have 
diminished to insignificance as a fraction by weight. During the 45-day or somewhat 
longer development of the Gossypium hirsutum fiber, numerous types of structures 
must be constructed. Various aspects of the fiber will reflect the influence of the 
environment during this development. Temperature, sunlight, nutrients in the soil, 
and especially water are keys to the characteristics of the final product. A primary 
variant is the amount of secondary wall cellulose within a given fiber. That degree of 
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thickening, or maturity, of the fiber is a primary quality parameter (measured as 
maturity ratio, or by inference, micronaire; see Chap. 3) as it is a major factor in 
processing and one that impacts the response of the fiber to dye. Even for fibers on 
the same seed, different amounts of nutrients will be available, and the crowding of 
fibers in the developing boll will result in different growth environments.

Cotton has the distinction of being, with only mechanical cleaning, quite pure 
cellulose, as much as 95%. Cellulose, the sugar of little cells, is a polymer of as 
many as 20,000 glucose residues linked β-1→4. Figure 2.1 summarizes many of the 
widely accepted, if incompletely understood, components and properties of the 
fiber. Later in this chapter, a revision is proposed. This figure is a montage, and the 
individual segments are not presented to a constant scale. The dimensions are for a 
typical upland (G. hirsutum) cotton fiber; other cotton species may differ consider-
ably in fiber diameter and length. Chapter 4 discusses more of the composition of 
the cuticle and primary wall; it suffices for this chapter to state that the cuticle and 
primary wall are the locations of waxes, pectins, and other polysaccharides, as well 
as various sugars and metals. Substantial amounts of these components are often 
removed during processing, leaving the cellulose component behind. The winding 
layer (Fig. 2.2) is associated more with the secondary cell wall fibers; little is known 
about it.

Fig. 2.1 Montage of electron micrographs, not to scale, selected and placed to resemble the dif-
ferent layers that compose the cotton fiber that is modified from the original figure described in 
Goynes (2005). In particular, the progressive change in the orientation of the microfibrils to the 
fiber axis as the fiber is penetrated may not be correct; see the section below on synchrotron dif-
fraction of single fibers
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