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This book is in memory of Duygu Balçan, who has been a fantastic 

scientist and friend. She was suddenly taken away from us and from 

science, but she will always be with us in our dearest memories and 

through her outstanding scientific contributions.
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INTrODuCTION

OUR INTENT IS TO INTRODUCE NON TECHNICAL READERS TO THE

PROCESS THAT, STARTING FROM REAL-WORLD DATA, MAKES IT

POSSIBLE TO DEVELOP SIMULATED SCENARIOS AND REAL-TIME

FORECASTS OF THE GLOBAL SPREADING OF INFECTIOUS DISEASES.

 

 

 

T he first successful weather forecast performed by a digital computer 

can be traced back to 1950. Five years later, a joint project by the US Air 

Force, Navy, and Weather Bureau began operational numerical weather 

prediction in the United States. Nowadays, computer-generated weather 

forecasts are at the fingertips of billions of individuals through government 

or commercial services, accessible by any mobile platform on the Internet. 

Weather forecasts can be very specific, focusing on local area models, or 

global. They can span a few hours or several days. They are part of our daily 

life and have helped popularize concepts like the “butterfly effect.”1

A non-expert reader might reasonably think that the use of computer 

simulations for infectious disease outbreak forecast is as developed as the one 

1  James Gleick, Chaos: Making a new science (Viking Press, 1987).
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regarding weather forecast; unfortunately this is far from the case. Although 

the birth of mathematical epidemiology dates back to the eighteenth century, 

public health scientists and policy-makers started only in the last 20 years or 

so to increasingly rely on simulated models to understand epidemiological 

patterns and guide control measures in real time. It may come as a surprise, 

but while the weather forecast research community has built thousands of 

weather stations around the world, put satellites in orbit, and connected large 

supercomputing infrastructures, the modeling of epidemic outbreaks has long 

suffered from the lack of near-real-time, high-quality data on populations, human 

and animal mobility/behavior patterns, and pathogens’ biology. For instance, 

the 1985 pioneering work of Ravchev and Longini2 on a mathematical model 

for the global spread of influenza had to wait on a shelf for almost 20 years 

before a full-fledged implementation integrating the complete International 

Airlines database3 saw the light. Similarly, the first cross-comparison of three 

different data-driven, individual-based, stochastic models of pandemic flu 

examining the consequences of intervention strategies in the United States 

had to wait until 2008.4

In the last 10 years, we have seen dramatic advances in data collection 

and availability in a number of areas, ranging from pathogen genetic sequences 

to human mobility patterns and social media data. These advances, often 

dubbed as the “big data” revolution, have finally lifted many of the limitations 

affecting epidemic predictive modeling. The big data paradigm is generally 

associated with “inductivist” approaches such as statistical modeling, phe-

nomenological models, or machine learning-based methodologies. However, 

data availability also allows the development of detailed mechanistic models 

based on the construction of synthetic populations that statistically mimic 

the real world. They explicitly account for the dynamics of epidemics by cal-

culating the future state of the system from its initial state, through time- and 

space-dependent equations, as well as the stochastic simulation of individual 

disease transmission processes.  

Mechanistic approaches are clearly data hungry, and the amount of data 

integration depends on the scale of the model—global, regional, and local—as 

well as the level of detail in the population description. The latter can go down 

to the level of single households and specifically consider multiple transmis-

sion settings, such as schools or workplaces. It is worth stressing, however, 

that mechanistic models contain assumptions and approximations too. The 

theory and equations used to describe the system dynamics are often based 

2  Leonid A. Rvachev and Ira M.Longini, Jr., “A mathematical model for the global spread of influenza, “ Mathematical 
Biosciences, 75:3 22 (1985).

3 Lars Hufnagel et al., “Forecast and control of epidemics in a globalized world,” Proceedings of the National Academy of 
Sciences of the United States of America 101, 15124–15129 (2004).

4 M. Elizabeth Halloran et al., “Modeling targeted layered containment of an influenza pandemic in the United States,” 
PNAS 105, 4639–4644 (2008).
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on effective or coarse-grained integration of degrees of freedom that are 

informed by the questions the model is set up to answer. No model fits all 

diseases or spans all scales and geographical resolutions.

In this context, predictive epidemic modeling is emerging as an inter-

disciplinary field that promises to advance the capabilities of projecting the 

course of an epidemic already underway or to anticipate the effectiveness of 

possible interventions or clinical trials. Indeed, computational modeling has 

been used to support responses to recent outbreaks such as the 2009 H1N1 

pandemic, the 2014 West Africa Ebola outbreak, the Zika epidemic in the 

Americas in 2016, and the highly pathogenic avian influenza A(H7N9) in 2014 

and 2015. Although predictive epidemic modeling is not yet as developed as 

weather forecasting, and many practical and foundational challenges still need 

to be addressed, the promise of computer simulations to improve epidemic 
5preparedness and response is now recognized.

THE PROMISE OF DATA-DRIVEN 
MODELING APPROACHES 
TO IMPROVE EPIDEMIC 
PREPAREDNESS AND RESPONSE 
IS NOW RECOGNIZED.

The many types of descriptive and predictive models that were used during 

recent, large‐scale outbreaks are often hidden behind the veil of technical 

jargon, mathematical and statistical language, and computational implemen-

tation. In order to reach out beyond the circle of practitioners and convey the 

transformative potential of computer simulations for public health preparedness 

and response, this book aims to provide a visual journey through the data and 

model integration process at the core of large-scale computational approaches. 

This overview is mostly done by using a storyboard that exemplifies data and 

algorithms through concrete examples and illustrations. Our intent is to intro-

duce non technical readers to the process that, starting from real-world data, 

makes it possible to develop simulated scenarios and real-time forecasts of 

the global spreading of infectious diseases. 

In its first part, this book guides the reader in the construction of the modern 

frameworks used to project and analyze the global spread of epidemics and 

pandemics. The results of these modeling activities are intuitively communi-

cated by powerful infographics; in particular, we present examples of results 

obtained from numerical simulations concerning the international spreading of 

potentially pandemic pathogens. The second part of this book is focused on a 

set of pandemic charts that illustrate, through the infographic tools described 

in the first part, the possible scenarios of future pandemics. This atlas is meant 

to show commonalities and patterns in emerging health threats, as well as 

explore the wide range of possible scenarios that can be used by policy-makers 

to anticipate trends, evaluate risks, and eventually manage future events. In 

a nutshell, the second part of this book is a visual catalog that captures the 

possible evolution of future pandemics and introduces the reader to a vast 

range of interventions characterizing the fight against infectious diseases. 

5 National Science and Technology Council Report, “Towards Epidemic Prediction: Federal Efforts and Opportunities in 
Outbreak Modeling” (2016).
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In order to exemplify numerical epidemic modeling, throughout the book 

we used GLEAM, the global epidemic and mobility framework,6 developed 

and supported by a team of researchers and institutions around the world. This 

framework is by no means to be considered prototypical; however, it integrates 

many of the data and concepts common to the many types of descriptive and 

predictive models available to the scientific community. We feel this frame-

work conveys to a general audience the kind of work and results that can be 

achieved in computer simulated epidemic models. We also refer to several 

other models and approaches that attain the same level of complexity and 

results that we present here; we apologize in advance to all the colleagues 

that have done extraordinary work in this area if their contributions are not 

referenced or explained in detail. Indeed, this book is not meant as a technical 

review of the field, but rather as an introduction for non-practitioners to the 

richness of this approach, showing the potential of looking to the future of 

global epidemic modeling through data-driven numerical approaches. 

It is also important to stress that the pandemic charts are not to be con-

sidered an exhaustive catalog of epidemic events: a full exploration of all the 

possible scenarios, as well as the risks associated to pandemic events, is far 

beyond the scope of this book and necessarily involves a large effort from 

the entire scientific community. 

THE RIGOROUS ANALYSIS AND 
DISCUSSION OF PANDEMIC RISK 
IS NOW ONE OF THE RESEARCH 
FRONTIERS OF COMPUTATIONAL 
EPIDEMIC MODELING.

The rigorous analysis and discussion of pandemic risk is now one of the 

research frontiers of computational epidemic modeling, where a number of 

major scientific challenges still need to be addressed in the coming years, 

as acknowledged in the book’s final outlook chapter. Indeed, we hope that 

this book will contribute to fueling the interest in solving these challenges 

and advancing numerical epidemic modeling to the point of an operational 

framework analogous to the one used for numerical weather forecasting.

6 The Global Epidemic and Mobility model, www.gleamviz.org

http://www.gleamviz.org
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CHAPTER 1

INFECTIOUS DISEASE SPREADING: 
FROM DATA TO MODELS

W e live in an increasingly interconnected world where every day 

one billion cars take the road and more than two billion people travel 

each year by plane. Urbanization, growing populations, and global 

migrations are creating a new and complex battlefield in the fight against 

new and old diseases. As a result, we demand ever-increasing predictive 

power to anticipate future epidemic outbreaks and evaluate associated risks. 

In scientific terms, this power corresponds to the mathematical description 

of patterns found in real-world data needed to develop models that can be 

used to predict future events. 

In the natural sciences, we are used to predicting the complex properties 

of new materials through precise measurements of physical quantities and 

the implementation of numerical models or studying the performance of a 

new airplane by means of computers before we even assemble one of 



parts. One of the most successful examples of predictive power is that of 

weather forecasts, which are generated using sophisticated simulations on 

supercomputer infrastructures which integrate present data and huge col-

lections of previous meteorological patterns into large systems of non-linear 

equations. Although weather forecasts may help us plan for our next barbecue, 

more importantly the science behind this allows us to prepare for extreme 

and disruptive natural events like tornadoes, storms, and hurricanes, saving 

countless lives every year. 

In sharp contrast, for a long time, achieving predictive power in areas such 

as epidemic spreading meant confronting the insurmountable obstacle of a 

lack of high-quality data on human behavior and mobility at all scales. In fact, 

although mathematical models have been important tools in analyzing the 

spread and control of infectious diseases for more than a century, in most cases 

it was impossible to gather detailed data concerning individual and collective 

behavior and turn those models into real-time predictive computational tools. 

In the last 20 years, this foundational limitation has started to lift: indeed, every 

1.2 years, more human-driven socioeconomic data is produced than during 

all preceding human history.1

1  James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela H Byers, “Big 
data: The next frontier for innovation, competition, and productivity,” (2011).

 This data revolution has started the quest of a 

 

A MULTIDISC IPL INARY APPROACH TO  EP IDEMIC  ANALYSIS 

01
MODELING
Elaborate stochastic infectious disease models to  
support a wide range of epidemiological studies, 
covering different types of infections and intervention 
scenarios. 

02
REAL-WORLD DATA
Real-world data on population and mobility networks 
are integrated in structured spatial epidemic models 
to generate data-driven simulations of the worldwide 

spread of infectious diseases.         
 

03
COMPUTATIONAL THINKING
The computer is the laboratory. Models run on high- 
performance computers to create in silico experiments 
that would be hardly feasible in real systems, to guide 
our understanding of typical non-linear behavior and 

tipping points of epidemic phenomena.

 04
TOOLS DEVELOPMENT
Computational tools help in modeling the spread of a 
disease, understanding observed epidemic patterns, 
and studying the effectiveness of different intervention 
strategies. These tools are available to researchers, 
healthcare professionals, and policy-makers. 

4 CHARTING THE NEXT PANDEMIC
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new mathematical and data-driven understanding of human networks and 

dynamics and finally ignited a transformative science cycle based on the 

following components:

• 

 

 

 

Collection, acquisition, and integration of human dynamics data from the 

individual to the societal scale

• Development of data infrastructures, collaborative information platforms, 

enabling the production of knowledge from data

• Identification of general principles and laws that characterize social 

complexity and capture the essence of human dynamics (data analysis 

and integration)

•

 

 
Development of mathematical and data-driven models endowed with a 

high level of realism, able to offer novel quantitative understanding and 

predictive power in the area of socio-technical systems

THE COMPUTER IS NOT JUST 
A NUMBER CRUNCHING TOOL: 
IT ALLOWS RESEARCHERS TO 
SIMULATE AND STUDY SYSTEMS 
THAT DO NOT FIT IN 
A LABORATORY.

The spreading of infectious diseases has been one of the first scientific 

areas where this research program has been put in motion. The scientific 

community is finally in the position to envision the development of large-

scale models that, by combining theory, data, and computational thinking, 

can deliver real-time or near-real-time situational awareness during infectious 

disease outbreaks.

COMPUTATIONAL MODELING OF INFECTIOUS DISEASE SPREADING
The development of data-driven models is rooted in the combination of 

large-scale data mining techniques, computational approaches, and the 

mathematical modeling of infectious diseases. Data-driven computational 

approaches have solid foundations on the wealth of data that can be integrated 

at different scales, from the biology of the pathogen and the behavior of the 

single individual to the “social aggregate,” where the “social aggregate” is a 

large-scale social system consisting of millions of individuals whose dynamics 

can be characterized in space (geographic and social) and time. Those data 

are integrated in mathematical epidemic models, which are adapted to deal 

with the multi-scale and complex nature of the real world. In this context, the 

mathematical and statistical modeling framework has evolved from simple 

compartmental models to structured approaches in which the heterogeneities 

and details of the population and system under study are becoming increas-

ingly important features (FIGURE 1.1). Modeling approaches explicitly include 

spatial structures consisting of multiple sub populations coupled by traveling 

fluxes, while the epidemic within each sub population is described accord-

ing to approximations depending on the specific case studied. This patch, 

or meta population modeling framework, has then grown into a multi-scale 

framework in which the various possible granularities of the system (country, 



inter city, and intra city) are considered through different approximations and 

combined with interaction networks describing the flows of people and/or 

animals. At the most detailed level, the introduction of agent-based models 

(ABMs) has enabled the usual modeling perspective to stretch even further 

by achieving a full description of the society and a complete characterization 

(household, workplace, etc.) of each individual. 

HOMOGENEOUS MIXING SOCIAL STRUCTURE CONTACT- NETWORK MODELS MULTI-SCALE MODELS AGENT-BASED MODELS

Figure 1.1 | Different scale  
structures used in epidemic 
modeling

Circles represent individuals and 
each color corresponds to a different 
stage of the disease. From left to right: 
homogeneous mixing, in which individ-
uals are assumed to homogeneously 
interact with each other at random; 
social structure, where people are 
classified according to demograph-
ic information (age, gender, etc.); 
contact-network models, in which the 
detailed network of social interactions 
between individuals provides the 
possible disease propagation paths; 
multi-scale models, which consider 
sub population coupled by movements 
of individuals, while homogeneous 
mixing is assumed on the lower scale; 
agent-based models, which recreate 
the characteristic movements and 
interactions of any single individual 
on a very detailed scale (a schematic 
representation of a city is shown).

Adapted from V. Colizza et al., C. R.  
Biologies 330 (2007)

The advances in data-model integration have highlighted complex properties 

and heterogeneities, which cannot be neglected in the description of epidem-

ics. Although these characteristics have long been acknowledged as relevant 

factors in determining the properties of dynamical processes, it is clear now 

that the large-scale epidemics often elude the straightforward linear thinking 

we are used to and surprise us with tipping points, emergent behaviors, and 

unexpected shifts in dynamical regime that characterize complex phenomena. 

In this context, the computer plays a fundamental role; on the one hand, it 

allows the creation of in silico experiments hardly feasible in real systems, 

and on the other hand, it can access and compare quantities and observables 

across many different models. This computational approach is the guide for 

understanding typical non-linear behaviors and tipping points not accessible 

by analytical means. In this way, the computer is not just a number crunching 

tool: it allows researchers to simulate and study systems that do not fit in a 

laboratory, such as the traffic patterns in a big city or the spreading of a new 

pandemic. In this perspective, it has been crucial to introduce computational 

algorithms that rely on the repeated computation of stochastic processes. These 

techniques, generally named Monte Carlo methods or stochastic algorithms, are 

especially useful in studying systems with a large number of coupled degrees 

of freedom and where stochastic effects are a fundamental component of the 

system.  While these algorithms have been first used in physical sciences, 

their use in the area of human systems, economics, and social sciences has 

become increasingly popular. The possibility of handling significant uncertainty 

in inputs and occurrences allows us to finally study large-scale systems where 

stochasticity is an intrinsic element of the system. 

6 CHARTING THE NEXT PANDEMIC 



1.1
I N F O B O X

DATA-INTENSIVE COMPUTATIONAL TOOL FOR THE ANALYSIS OF INFECTIOUS DISEASES

The Global Epidemic and Mobility (GLEAM) model is 
a publicly available computational framework based 
on a metapopulation approach in which the popula-
tion of the world is spatially structured into geolocal-
ized patches or subpopulations (e.g.,  cities) where 
individuals mix. These patches are connected by the 
mobility patterns of individuals. GLEAM is capable 
of generating stochastic simulations of epidemic 
spread worldwide, yielding (among other measures) 
the incidence and seeding events at a daily reso-
lution for 3,253 subpopulations in 232 countries and 
dependent territories (www.gleamviz.org). 

Other high-performance computational tools are 
also available to the public for the spatial analysis 
and modeling of epidemics. These tools differ in 
their underlying modeling approaches and in the 
implementation, flexibility, and accessibility of the 
software itself.

The Spatiotemporal Epidemiological Modeler 
(STEM) is a modeling system for simulating the 
spread of an infectious disease in a spatially struc-
tured population. Contrary to other approaches, 
STEM is based on an extensible software platform, 
which promotes the contribution of data and algo-
rithms by users (www.eclipse.org/stem). 

Agent-based models describe the stochastic 
propagation of a disease at the individual level, thus 
taking into account the explicit social and spatial 
structure of the population under consideration. In 
this respect, CommunityFlu is a software tool that 
simulates the spread of influenza in a structured 
population of approximately 1,000 households with 
2,500 persons (www.cdc.gov/flu/tools/communityflu). 

A larger population is considered in FluTe, a 
publicly available tool for the stochastic simulation 
of an epidemic in the United States at the individual 
level (www.cs.unm.edu/~dlchao/flute). The model is 
based on a synthetic population, structured in a hier-
archy of mixing social groups, such as households, 
household clusters, neighborhoods, and nation-wide 
communities. 

The Bruno Kessler Foundation hosts the most 
detailed European-wide agent-based model for 
infectious diseases (dpcs.fbk.eu). The model 
is informed by routine socio demographic data 
collected throughout all European countries (e.g., 
school and workplace attendance, household struc-
ture, etc.). 

EpiFast involves a parallel algorithm implemented 
using a master-slave approach, which provides for 
scalability on distributed memory systems. This  tool 
allows for the detailed representation and simulation 
of a disease in social contact networks among indi-
viduals that dynamically evolve over time and adapt 
to actions taken by individuals and public health 
interventions (www.vbi.vt.edu). 

FRED (A Framework for Reconstructing Epide-
miological Dynamics) is an open source modeling 
system developed by the University of Pittsburgh 
Public Health Dynamics Laboratory. The system uses 
agent-based modeling derived from census-based 
synthetic populations that capture the demographic 
and geographic distributions of the population, as well 
as detailed household, school, and workplace social 
networks (www.phdl.pitt.edu/index.php/research/ 
software18).
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http://www.gleamviz.org
http://www.cs.unm.edu/~dlchao/flute
http://www.eclipse.org/stem
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http://www.phdl.pitt.edu/index.php/research/software18
http://www.cdc.gov/flu/tools/communityflu
http://www.vbi.vt.edu


Computational modeling has led to a qualitative change in the ways we 

model epidemic and social contagion processes. Visualization and analysis 

tools that are able to cope with multiple levels of representation are being 

developed along with computer simulations that provide experiments not fea-

sible in the real world. For the first time, epidemic processes can be studied 

in a comprehensive fashion that addresses the complexity inherent to real-

world health problems. Whereas data availability is pointing out the limits of 

our conceptual and modeling frameworks, it is also allowing the validation of 

results across different modeling approaches, mathematical techniques, and 

approximation schemes. 

GLOBAL EPIDEMIC AND MOBIL ITY MODEL
In this book, we want to illustrate the methodology described earlier and 

convince you that this approach is mature enough to be encapsulated in 

actionable tools for the simulation of case studies, the analysis of risk through 

model scenarios, and the forecasts of newly emerging infectious diseases 

(INFOBOX 1.1). 

In order to tell this story, we use the Global Epidemic and Mobility (GLEAM) 

framework. GLEAM combines real-world data on populations and human 

mobility with complex stochastic models of disease transmission. This com-

putational model is the product of the multidisciplinary work of a 10-year 

collaboration among several teams across the world. The model has been 

integrated in a computational platform that can model the world wide spread 

of epidemics for human transmissible diseases, offering extensive flexibility 

in the design of the compartmental model and scenario setup, including 

computationally optimized numerical simulations based on high-resolution 

global demographic and mobility data. 

 COMPUTER SIMULATIONS 
PROVIDE EXPERIMENTS NOT  
FEASIBLE IN THE REAL WORLD 
AND ADDRESS THE COMPLEXITY 
INHERENT TO REAL-WORLD 
HEALTH PROBLEMS.

In the following chapters, we show the reader the what, how, and why of 

the computational approaches to modeling infectious diseases. First, we present 

what data we can leverage in informing state-of-the-art modeling approaches. 

Next, we show how the data-model integration is made; in other words, we 

take a look under the hood of the computational modeling approach. Finally, 

and most importantly, we make the case for why computational modeling is 

important to support public health decisions and intervention plans. Indeed, 

computational modeling does more than forecast and provides rationales and 

quantitative analysis in a number of areas that we briefly summarize here.

Preparation and contingency planning
The decision-making process in the fight against diseases relies on a multitude 

of options such as vaccination, contact tracing, quarantine, administration of 

drugs, and social distancing, which must be implemented in a manner that 

addresses the complexity inherent to the biological, social, and behavioral 
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