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Preface

In many problems arising in engineering and science one requires approxima-
tion methods to reproduce physical reality as well as possible. Very schemati-
cally, if the input data represents a complicated discrete/continuous quantity
of information, of “shape” S (S could mean, for example, that we have a
“monotone/convex” collection of data), then one desires to represent it by
the less-complicated output information, that “approximates well” the input
data and, in addition, has the same “shape” S.

This kind of approximation is called “shape-preserving approximation”
and arises in computer-aided geometric design, robotics, chemistry, etc.

Typically, the input data is represented by a real or complex function (of
one or several variables), and the output data is chosen to be in one of the
classes polynomial, spline, or rational functions.

The present monograph deals in Chapters 1–4 with shape-preserving ap-
proximation by real or complex polynomials in one or several variables.
Chapter 5 is an exception and is devoted to some related important but non-
polynomial and nonspline approximations preserving shape. The spline case is
completely excluded in the present book, since on the one hand, many details
concerning shape-preserving properties of splines can be found, for example,
in the books of de Boor [49], Schumaker [344], Chui [69], DeVore–Lorentz [91],
Kvasov [218] and in the surveys of Leviatan [229], Kocić–Milovanović [196],
while on the other hand, we consider that shape-preserving approximation by
splines deserves a complete study in a separate book.

The topic of shape-preserving approximation by real polynomials has a
long history and probably begins with an earlier result of Pál [295] in 1925,
which states that any convex function on an interval [a, b] can be uniformly
approximated on that interval by a sequence of convex polynomials.

The first constructive answer to the Pál’s result seems to have been given
by T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex)
of order k on [0, 1] (in the sense defined in Section 1.1), then the Bernstein
polynomial Bn(f)(x) =

∑n
k=0

(
n
k

)
xk(1−x)n−kf( k

n ) is convex (strictly convex,
respectively) of order k on [0, 1], for all n ∈ N.
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Over time, much effort has been expended by many mathematicians to
contribute to this topic. As good examples of surveys concerning shape-
preserving approximation of univariate real functions by real polynomials, we
can mention those of Leviatan [229], [230] in 1996 and 2000, that of Kocić–
Milovanović [197] in 1997, and that of Hu–Yu [178] in 2000.

Also, a few aspects in the univariate real case are presented in the following
books:

Lorentz–v. Golitschek–Makozov [249] in 1996, see Chapter 2, Section 3,
titled Monotone Approximation (pp. 43–49), and page 82, with Problem 9.4
and Notes 10.1, 10.2,

Shevchuk [349] in 1992, referring to some results in monotone and convex
approximation of univariate real functions by real polynomials,

Lorentz [247](see p. 23) in 1986, DeVore–Lorentz [91] in 1993, (see Chapter
10, Section 3, from page 307 to page 309), concerning some shape-preserving
properties of real Bernstein polynomials, and

Gal [123] in 2005, concerning shape-preserving properties of classical
Hermite–Fejér and Grünwald interpolation polynomials.

For the situation in the case of one complex variable, it is worth noting
that two books concerning the study of complex polynomials have recently
been published. The first is that of Sheil–Small [346] in 2002, which studies
many geometric properties of complex polynomials and rational functions.
But except for two small sections on the complex convolution polynomials
through Cesàro and de la Vallée-Poussin trigonometric kernels (Sections 4.5
and 4.6, from page 156 to page 166), in fact that book does not deal with the
preservation of geometric properties of analytic functions by approximating
complex polynomials. The second book mentioned above is that of Rahman–
Schmeisser [320] in 2002, which refers to the critical points, zeros, and extremal
properties of complex polynomials, which are regarded as analytic functions
of a special kind. Although some of its results improve classical inequalities of
great importance in approximation theory (of Nikolskii, Bernstein, Markov,
etc.), this book again does not deal with the preservation of geometric prop-
erties of analytic functions by approximating complex polynomials.

In the cases of two/several real or complex variables, there are no books
at all treating the subject of shape-preserving approximation.

Therefore, we may conclude that despite the very large numbers of papers
in the literature, at present, none of the books has been dedicated entirely to
shape-preserving approximation by real and complex polynomials.

The present monograph seeks to fill this gap in the mathematical literature
and is, to the best of our knowledge, the first book entirely dedicated to this
topic. It attempts to assemble the main results from the great variety of
contributions spread across a large number of journals all over the world.

This monograph contains the work of the main researchers in this area,
as well as the research of the author over the past five years in these subjects
and many new contributions that have not previously been published.



Preface ix

Chapter 1 mainly studies shape-preserving approximation and interpola-
tion of real functions of one real variable by real polynomials. The “shapes”
taken into consideration are convexity of order k (which includes the usual
positivity, monotonicity, and convexity), some variations of positivity as al-
most positivity, strongly/weakly almost positivity, copositivity (with its vari-
ations almost copositivity, strongly/weakly copositivity), comonotonicity, and
coconvexity. A variation of copositive approximation, called intertwining ap-
proximation (with its two variations almost and nearly intertwining), also is
presented.

Chapter 2 deals with shape-preserving approximation of real functions of
two/several real variables by bivariate/multivariate real polynomials. A main
characteristic of this chapter is that to one concept of shape in univariate case,
several concepts of shapes of a bivariate/multivariate function may be asso-
ciated. For example, monotonicity has as variations bivariate monotonicity,
axial monotonicity, strong monotonicity; convexity has the variations axial-
convexity, polyhedral convexity, strong convexity, and subharmonicity, and
so on.

In Chapter 3 we consider shape-preserving approximation of analytic func-
tions of one complex variable by complex polynomials in the unit disk. The
concepts of “shapes” preserved through approximation by polynomials are
those in geometric function theory: univalence, starlikeness, convexity, close-
to-convexity, spiralikeness, growth of coefficients, etc. The construction of such
polynomials is mainly based on the Shisha-type method and on the convolu-
tion method.

Chapter 4 contains extensions of some results in Chapter 3 to shape-
preserving approximation of analytic functions of several complex variables
on the unit ball or the unit polydisk by polynomials of several complex vari-
ables.

It is worth noting that three constructive methods are “red lines” of
the book, that is, they work for real univariate variables, real multivariate
variables, complex univariate variables, and complex multivariate variables.
These are the methods of Bernstein, producing Bernstein-type polynomials;
the Shisha-type method; and the convolution-type method. As a consequence,
Chapters 1–4 use these three methods. Also, although the error estimates pro-
duced by the tensor product method are not always the best possible, because
of its simplicity we use it intensively in order to extend the results from the
univariate to the bivariate/multivariate case.

Chapters 1–5 begin with an introductory section, in which we describe in
detail the corresponding chapter and introduce the main concepts.

The book ends with Chapter 5, which is an appendix containing some
related topics of great interest in shape-preserving approximation. Shape-
preserving approximation by splines is not included in this chapter for the
reasons mentioned at the beginning of this preface.

Let us mention that systematic results in Chapters 2–5 have been obtained
by the author of this monograph in a series of papers, singly or jointly written
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with other researchers (as can be seen in the bibliography), and many new
results appear for the first time here. Also, many open questions suggested at
the end of Chapters 1–5 might be of interest for future research.

The book is intended for use in the fields of approximation of functions,
mathematical analysis, numerical analysis, computer-aided geometric design,
data fitting, fluid mechanics, and engineering, robotics, and chemistry. It is
also suitable for graduate courses in the above domains.

Acknowledgments. I would like to thank Professor George Anastas-
siou, of the Department of Mathematical Sciences, University of Memphis,
TN, U.S.A., for support, Professor Michael Gan -zburg from the Department
of Mathematics, Hampton University, VA, U.S.A. and Professor Costică
Mustăţa, of the “Tiberiu Popoviciu” Institute of Numerical Analysis of the
Romanian Academy, Cluj-Napoca, Romania, for several useful discussions and
bibliographical references.

Also, I would like to thank Ann Kostant, executive editor at Birkhäuser,
for support, and my wife, Rodica, for typing most of the manuscript.

The research in this book was supported by the Romanian Ministry of
Education and Research, under CEEX grant, code 2-CEx 06-11-96.

Sorin G. Gal
Department of Mathematics
University of Oradea
Romania
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1

Shape-Preserving Approximation by Real
Univariate Polynomials

In this chapter we present the main results concerning shape-preserving
approximation by polynomials for real functions of one real variable, defined
on compact subintervals of the real axis. There is a very rich literature dedi-
cated to this topic that would suffice to write a separate book. Due to this fact,
it was impossible for me to avoid the more pronounced survey-like character of
this chapter. Also, for the proofs of some main results that are very technical
and long, we will present here only their most important ideas and steps.

1.1 Introduction

In this section we will introduce the history of the subject, followed by very
brief descriptions of the next sections in the chapter.

Probably one of the first results on the topic is an earlier result of Pál
[295] in 1925, which states that any convex function on an interval [a, b] can be
uniformly approximated on that interval by a sequence of convex polynomials.

The first constructive solution to Pál’s result seems to have been given by
T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex) of
order k on [0, 1] (in the sense defined below in this section), then the Bernstein
polynomial Bn(f)(x) =

∑n
k=0

(
n
k

)
xk(1−x)n−kf( k

n ) is convex (strictly convex,
respectively) of order k on [0, 1], for all n ∈ N.

In the intervening years, a great deal of work has been done on this topic
by many mathematicians. The aim of this chapter is to present this great
effort in detail.

The topic of Chapter 1 might be divided into five main directions.
The first direction deals with the shape-preserving properties of inter-

polation polynomials, and this is the subject of Section 1.2. We mention here
the contributions of (in alphabetical order) Deutch, Gal, Ivan, Kammerer,
Kopotun, Lorentz, Morris, Nikolcheva, Passow, Popoviciu, Raymon, Roulier,
Rubinstein, Szabados, Wolibner, Young, Zeller, and others.

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, 1
DOI: 10.1007/978-0-8176-4703-2 1,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008
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The second direction deals with the shape-preserving properties of the
so-called Bernstein-type polynomial operators, (thus called because their con-
structions were suggested by the form of Bernstein’s polynomials), represent-
ing the subjects of Section 1.3. We can mention here the contributions of
(in alphabetical order) Berens, Butzer, Carnicer, Dahmen, Derrienic, DeVore,
Gadzijev, Goodman, Ibikli, Ibragimov, Kocić, Lacković, Lupaş, Mastroianni,
Micchelli, Munoz-Delgado, Müller, Nessel, Păltănea, Peña, Phillips, Ramirez-
Gonzalez, Raşa, Sabloniére, Sauer, Stancu, Wood, and others.

Because of its close connection with the shape-preserving properties (see
Section 5.1), the variation-diminishing property too is presented in Section 1.3.

The third direction deals with the so-called Shisha-type results, and it
began with Shisha’s paper of 1965. The method is, in general, based on poly-
nomials of simultaneous approximation of a function and its derivatives, to
which are added suitable polynomials (uniformly convergent to zero) in such a
way that the new sum preserves some signs of the derivatives of the function.
We mention here the contributions of (in chronological order) Shisha, Roulier,
and Anastassiou–Shisha. It is contained in Section 1.4.

It is worth noting here the importance of Shisha’s method, taking into
account that because of its simplicity, it was extended to real functions of two
real variables in Chapter 2, to complex functions of one complex variable in
Chapter 3, and to complex functions of several complex variables in Chapter 4.

Note that the second direction of research produces rather weak degrees
of approximation in terms of ωk(f ; 1√

n
), k = 1, 2, while the third direction of

research, although essentially improving the estimates of the second direction,
has, however, the shortcoming that these estimates are given in terms of the
moduli of smoothness of the derivatives of the function.

In order to obtain better estimates, that is, with respect to the moduli of
smoothness (of various orders) of a function, one of the most used techniques
(introduced for the first time in DeVore-Yu [86]) can be described as follows:
first one approximates f by piecewise polynomials (splines) with the same
shape as f , and then one replaces the piecewise polynomials by polynomials
of the same shape. Estimates in terms of first- or higher-order moduli of
smoothness in all the Lp-spaces, 0 < p ≤ +∞, were found by (in alphabetical
order) Beatson, DeVore, Ditzian, Dzyubenko, Hu, Iliev, Ivanov, Kopotun,
Leviatan, Lorentz, Mhaskar, Newman, Operstein, Popov, Prymak, Shevchuk,
Shvedov, Szabados, Wu, Yu, Zeller, Zhou, and others.

The main results are included in Sections 1.5, 1.6, 1.7 and are represented
by the so-called positive and copositive (with their variations like, almost,
strongly/weakly, intertwining) approximation, monotone and comonotone
approximation (with the variation nearly comonotone approximation), and
convex and coconvex approximation (with the variation nearly coconvex ap-
proximation), respectively. The above-mentioned variations of classical pos-
itive/copositive, comonotone, and coconvex approximations were introduced
by the authors in order to improve the estimates, by requiring that the poly-
nomials preserve the corresponding “shapes” in a major part of the interval,
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except for small neighborhoods of the endpoints and of the points where the
approximated function changes the “shapes”.

The shape-preserving approximation results in Sections 1.5, 1.6, and 1.7
can also be classified with respect to the type of error estimate, as follows:

(i) approximation results with respect to the Lp-norm and in terms of best
approximation quantities En(f (i))p, i = 0, 1, 2, and 0 < p ≤ +∞.

(ii) approximation results with respect to the Lp-norm and in terms of the
Lp-Ditzian–Totik moduli of smoothness, 0 < p ≤ +∞.
Note that in both cases (i) and (ii), the uniform cases (i.e., p = +∞)
are richer in results than the cases 0 < p < +∞ and will be separately
treated.

(iii) pointwise approximation on [−1, 1] with DeVore-Telyakokovskii-
Gopengauz-type estimates, in terms of the usual moduli of smoothness
and with respect to the increments 1

n2 + 1
n (1 − x2)1/2 and 1

n (1 − x2)1/2.
(iv) approximation in terms of higher moduli of smoothness of higher deriv-

atives of functions.

Notice that while in monotone and convex approximation, the methods that
produces estimates in terms of second-order moduli of smoothness are linear,
the methods in convex approximation that produce the best possible order,
i.e., in terms of the third-order moduli of smoothness, together with those in
copositive, comonotone, and coconvex approximations, are nonlinear. It is not
known whether there exist corresponding linear methods of approximation for
these last three cases too.

Section 1.8 deals with the fifth direction of research, based on convolution-
type polynomials and on the Boolean-sum method. This method produces
good approximation errors of DeVore–Gopengauz type, but with respect to
the previous ones has the advantage that the constructed polynomials pre-
serve even higher-order convexities too. We mention here the contributions of
Jia-Ding Cao and Gonska.

Section 1.9 presents a constructive example of a nonconvolution, posi-
tive linear polynomial operator that reproduces the linear functions, gives an
error estimate of DeVore–Gopengauz-type in terms of second-order modulus
of smoothness and preserves convexities of higher-order of the approximated
function. The contributions belong to Jia-Ding Cao, Cottin, Gavrea, Gonska,
Kacsó, Lupaş and Zhou.

In what follows, we introduce well-known concepts of shapes (monotonici-
ties, convexities, etc.) necessary for the next sections of Chapter 1. Denote by
C[a, b] the space of all real functions defined and continuous on [a, b].

Definition 1.1.1. (i) f : [a, b] → R is called j-convex on [a, b] (or con-
vex of order j), if all the jth forward differences ∆j

hf(t), 0 ≤ h ≤
(b − a)/j, t ∈ [a, b − jh] are non-negative (i.e., ≥ 0). Here ∆j

hf(t) =
∑j

k=0(−1)j−k
(

j
k

)
f(t + kh), for all j = 0, 1, . . . . If there exists f (j) on

[a, b], a simple application of the mean value theorem shows that the
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condition f (j)(x) ≥ 0, for all x [a, b], implies that f is j-convex on [a, b].
Recall that the usual convexity (2-convexity in the above sense) can also
be defined by the inequality f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), for
all λ ∈ [0, 1] and x, y ∈ [a, b].
Also, f is called j-concave on [a, b] if all the jth forward differences
∆j

hf(t), 0 ≤ h ≤ (b − a)/j, t ∈ [a, b − jh] are nonpositive (i.e., ≤ 0).
(ii) A function f : [0, 1] → R is called starshaped on [0, 1] if f(λx) ≤ λf(x),

for all λ ∈ [0, 1], x ∈ [0, 1]. If the above inequality is strict for all λ ∈ (0, 1)
then f is called strictly starshaped. Also, if there exists f ′(x) on [0, 1],
f(0) = 0, f(x) ≥ 0, x ∈ [0, 1], then the starshapedness (it is equivalent
to) can be expressed by the differential inequality xf ′(x) − f(x) ≥ 0, for
all x ∈ (0, 1] (see, e.g., L. Lupaş [254]);
A function f : [0, 1] → R is called α-star-convex on [0, 1], where α ∈ [0, 1],
if f(λx+(1−λ)αy) ≤ λf(x)+ (1−λ)αf(y), for all x, y ∈ [0, 1], λ ∈ [0, 1]
(see Toader [386]).

(iii) A function f : [a, b] → R, f(x) > 0, for all x ∈ [a, b], is called logarithmic-
convex on [a, b], if log[f(x)] is a 2-convex function on [a, b];

(iv) A function f : [a, b] → R is called quasiconvex on [a, b] if it satisfies the
inequality f(λx + (1 − λ)y) ≤ max{f(x), f(y)}, for all x, y ∈ [a, b] and
λ ∈ [0, 1]. It is known that f is quasiconvex on [a, b] if and only if for any
c ∈ R, {x ∈ [a, b]; f(x) ≤ c} is a convex set;
More generally, a function f : [a, b] → R is called j-quasiconvex on [a, b],
j ∈ N, if it satisfies the inequality

[x2, . . . , xj+1; f ] ≤ max{[x1, . . . , xj ; f ], [x3, . . . , xj+2; f ]},

for every system of distinct points x1 < · · · < xj+2 in [a, b]. Here

[x1, . . . , xj ; f ] =
j∑

k=1

f(xk)
uk(xk)

(
with uk(x) = Πj

i=1(x−xi)

x−xk

)
denotes the divided difference of f on the

points x1, . . . , xj , and j = 1, 2, . . . . Note that for j = 1 we obtain again
the usual quasi-convexity.

(v) Let f, u ∈ C[a, b], u(x) > 0, for all x ∈ [a, b]. We say that f is u-monotone
if u(x1)f(x2) − u(x2)f(x1) ≥ 0, for all a ≤ x1 < x2 ≤ b.

(vi) For (xk)n
k=0, 0 ≤ x0 < x1 < · · · < xn ≤ 1, let us denote by S[0,1][f ;

(xk)k] the number of changes of sign in the finite sequence
f(x0), f(x1), . . . , f(xn), where zeros are disregarded. Also, define
the number of changes of sign for f on [0, 1] by S[0,1][f ] =
sup{S[0,1][f ; (xk)k]; (xk)n

k=0, n ∈ N}. One says that the linear opera-
tor L : C[0, 1] → C[0, 1] is strongly variation-diminishing on [0, 1], if
S[0,1][L(f)] ≤ S[0,1][f ], for all f ∈ C[0, 1].
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Remarks. (1) The concept of j-quasiconvexity belongs to E. Popoviciu (see,
e.g., [311]) and the concept of u-monotonicity was introduced by Kocić–
Lacković [195].

(2) The j-convexity introduced in Definition 1.1.1 (i) is sometimes called
Jensen convexity of order j. A slightly more general concept of convexity,
called Popoviciu convexity of order j, was introduced by Popoviciu [315] (in
a slightly different denomination), as follows: one says that f : [a, b] → R is
Popoviciu convex of order j, if for all systems of distinct points (not necessarily
equidistant) a ≤ x0 < · · · < xj ≤ b, we have [x0, . . . , xj ; f ] ≥ 0. But, according
to a result stated without proof by Popoviciu [318] in 1959, and completely
proved in 1997 in, e.g., Ivan–Raşa [184], if f is continuous on [a, b], then for
any system of distinct points a ≤ x0 < · · · < xj ≤ b, there are the points
c, c + h, . . . , c + jh ∈ [a, b], h ≥ 0, such that [x0, . . . , xj ; f ] = 1

j!hj ∆j
hf(c).

This immediately implies that for continuous functions, the Jensen and
Popoviciu convexities coincide and because in approximation, most of the
time the functions considered are at least continuous, in those cases we will
simply refer to j-convexity.

(3) The concept of an α-star-convex function α ∈ [0, 1] is an intermediate
concept between the concept of usual convex and that of starshaped function.
Indeed, in Definition 1.1.1 (ii), for α = 1 we get the concept of usual convex
function, while for α = 0 we get the concept of starshaped function.

It is worthwhile to point out here the following main properties of an
α-star-convex function f : [0, 1] → R, with α ∈ (0, 1] (see Mocanu–Şerb–
Toader [274]): f is starshaped on [0, 1] (for f(0) ≤ 0), continuous on (0, α),
bounded on [0, 1], and Lipschitz in each compact subinterval of (0, α).

Also, we need the following.

Definition 1.1.2. (i) (see e.g. DeVore–Lorentz [91], p. 44) The modulus of
smoothness of f ∈ Lp[−1, 1], 0 < p ≤ +∞, denoted by ωk(f, t)p, k ∈
{0, 1, . . . , } is defined by ω0(f, t)p := ‖f‖Lp[a,b] := ‖f‖p and for k ≥ 1 by

ωk(f, t)p = sup
0≤h≤t

{‖∆k

hf(·)‖p},

where ∆
k

hf(x) = ∆k
hf(x) if x, x + kh ∈ [−1, 1], ∆

k

hf(x) = 0; otherwise,
∆k

hf(x) =
∑k

i=0(−1)k−i
(
k
i

)
f(x + ih). Here L∞[−1, 1] = C[−1, 1], the

space of all continuous functions on [−1, 1].
(ii) (see Ditzian–Totik [98]) Set ϕ(x) :=

√
1 − x2 and define the kth symmet-

ric difference

∆k
hϕf(x) :=

⎧
⎨

⎩

k∑

i=0

(−1)i
(
k
i

)
f(x + (i − k

2 )hϕ(x)), x ± k
2hϕ(x) ∈ [−1, 1],

0 otherwise,
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where ∆0
hϕf(x) := f(x). Then the Ditzian–Totik modulus of smoothness

of order k is given by

ωϕ
k (f, t)p := sup

0<h≤t
‖∆k

hϕf‖p.

(iii) (Sendov–Popov [345]) The kth averaged modulus of smoothness (called
τ -modulus too) defined for a measurable bounded real function defined
on [a, b] is given by

τk(f, t, [a, b])p = ‖ωk(f, ·, t)‖Lp[a,b],

where 1 ≤ p ≤ ∞, ∆k
h is the kth symmetric difference from the above

point (ii), and

ωk(f, x, t) = sup{|∆k
h|; y ± mh/2 ∈ [x − mt/2, x + mt/2] ∩ [a, b]}.

Remark. For p = ∞ one can modify these moduli by taking into account
not only the position of x in the interval when setting ∆k

hϕf , but also how far
the endpoints of the interval [x− k

2hϕ(x), x+ k
2hϕ(x)] are from the endpoints

of [−1, 1]. Thus, one can introduce the following.

Definition 1.1.3. (Shevchuk [349]) Let us define

ϕδ(x) :=

√

(1 − x − δ

2
ϕ(x))(1 + x − δ

2
ϕ(x)), x ± δ

2
ϕ(x) ∈ [−1, 1],

and by Cr
ϕ the set of functions f ∈ Cr(−1, 1) ∩ C[−1, 1], such that

limx→±1 ϕr(x)f (r)(x) = 0.
The modified Ditzian–Totik modulus of smoothness of order (k, r) is

given by

ωϕ
k,r(f

(r), t) := sup
0≤h≤t

sup
x

|ϕr
kh(x)∆k

hϕ(x)f
(r)(x)|, t ≥ 0,

where ∆k
hf(x) denotes the kth symmetric difference and the inner supremum

is taken over all x such that

x ± k

2
hϕ(x) ∈ (−1, 1).

Remarks. (1) For k = 0 we have

ωϕ
0,r(f

(r), t) = ‖ϕrf (r)‖∞,

while for r = 0 we have

ωϕ
k,0(f

(0), t) := ωϕ
k (f, t).
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The above condition guarantees that for k ≥ 1, it follows that
ωϕ

k,r(f
(r), t) → 0, as t → 0. Also, if f ∈ Cr

ϕ and 0 ≤ m < r, then

ωϕ
k+r−m,m(f (m), t) ≤ C(k, r)tr−mωϕ

k,r(f
(r), t), t ≥ 0.

Conversely, if f ∈ C[−1, 1], m < α < k, and ωϕ
k (f, t) ≤ tα, then f ∈ Cm

ϕ

and
ωϕ

k−m,m(f (m), t) ≤ C(α, k)tα−m, t ≥ 0.

(2) If f ∈ Cm
ϕ and ωϕ

r−m,m(f (m), t) ≤ tr−m, then

‖ϕrf (r)‖∞ ≤ C(r).

If we denote the class of all functions satisfying this last inequality by B
r,

then the converse is valid too, that is, if f ∈ B
r and 0 ≤ m < r, then

f ∈ Cm
ϕ and

ωϕ
r−m,m(f (m), t) ≤ C(r)tr−m‖ϕrf (r)‖∞, t ≥ 0.

1.2 Shape-Preserving Interpolation by Polynomials

The existence of interpolating polynomials that are monotone with the in-
terpolated data was established by Wolibner [399] and independently by
Kammerer [189] and Young [404], as follows.

Theorem 1.2.1. (see Wolibner [399], Young [404], Kammerer [189]) Let
(xi, yi), i = 1, . . . , n be a set of data such that x1 < x2 < · · · < xn and
yi 	= yi+1, i = 1, . . . , n − 1, then there exists an algebraic polynomial p with
the following properties:

p(xi) = yi, i = 1, . . . , n, sgn[p′(x)] = sgn[∆yi], x ∈ [xi, xi+1], i = 1, . . . , n−1,

where ∆yi = yi+1 − yi.

Proof. We follow here the ideas in the proof of Wolibner [399]. Denote by
φ(x) the continuous piecewise linear function defined on [x1, xn] and passing
through all the points (xk, yk). It is evident that we can define a twice dif-
ferentiable function f : [x1, xn] → R such that f(xk) = yk, k = 1, . . . , n, f is
comonotone with φ, (i.e., f(x) is of the same monotonicity with φ(x) on each
subinterval [xk, xk+1]), the monotonicity is given by the sign of the difference
f(xk+1)− f(xk)), and, in addition f is strictly monotonic on each subinterval
[xk, xk+1].

It follows that f ′ can have only simple zeros. Denote by cj , j = 1, . . . , m,
m ≤ n, the xj that are simple zeros. Then F (x) = f ′(x)

Πm
k=1(x−xk) cannot be zero

on [x1, xn], i.e., by the continuity of F (x), we get that F (x) > 0,∀x ∈ [x1, xn]
or F (x) < 0,∀x ∈ [x1, xn]. In both cases, for any positive ε > 0, there exists
an approximation polynomial P attached to F such that ‖F − P‖∞ < ε and



8 1 Shape-Preserving Approximation by Real Univariate Polynomials

P is strictly positive or strictly negative on [x1, xn], as is F . Here ‖·‖∞ denotes
the uniform norm on [x1, xn].

Defining Q(x) = f(x1)+
∫ x

x1
P (t)Πm

k=1(t−xk)dt, it is easily seen that Q(x)
imitates the monotonicity of f on each subinterval [xk, xk+1]. Also, we get

|Q(x) − f(x)| =
∣
∣
∣
∣

∫ x

x1

P (t)Πm
k=1(t − xk)dt − [f(x) − f(x1)]

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

x1

P (t)Πm
k=1(t − xk)dt −

∫ x

x1

f ′(t)dt

∣
∣
∣
∣

≤ ε

∫ xn

x1

|Πm
k=1(t − xk)|dt ≤ (xn − x1)m+1ε,

for all x ∈ [x1, xn]. So for sufficiently small ε, we have that the Q(xk) are
sufficiently close to yk = f(xk), k = 1, . . . , n.

Now, for any ε > 0 and s = 2, 3, . . . , n, choose y
(s)
k−1,ε 	= y

(s)
k,ε, k = 1, . . . , n,

such that |y(s)
k,ε| < ε, k = 1, . . . , s − 1, |y(s)

k,ε − 1| < ε, k = s, . . . , n, the points
x1 < · · · < xn remaining the same. Also, the corresponding linear piecewise
function passing through all the points (xk, y

(s)
k,ε) is denoted by φ(s)(x).

According to the above reasonings there exist the polynomials Q
(s)
ε (x), s =

2, . . . , n, such that they are comonotone with φ(s)(x) and satisfy

|Q(s)
ε (xk)| < ε, k = 1, . . . , s − 1,

and
|Q(s)

ε (xk) − 1| < ε, k = s, . . . , n.

Also, by convention define Q
(1)
ε (x) = 1.

Denote by Aε the value of the determinant Q
(s)
ε (xk), k, s = 1, . . . , n, and

by B
(s)
ε the value of the determinant obtained from the above one by replacing

the sth column with y
(s)
k,ε, s = 1, . . . , n. Obviously, we have limε→0 Aε = 1 and

limε→0 B
(s)
ε = ys − ys−1, s = 2, . . . , n. Therefore, for an ε0 sufficiently small,

we have Aε0 > 0 and sign(B(s)
ε0 ) = sign(ys − ys−1), s = 2, . . . , n.

Then the polynomial W (x) =
∑n

s=1

B(s)
ε0

Aε0
Q

(s)
ε0 (x) will satisfy the conditions

in the statement. �

Remarks. (1) For generalizations of Wolibner’s result see, e.g., Ivan [183].
(2) A direct consequence of the above theorem is the following result in

Deutch–Morris [80], called SAIN (i.e., simultaneous approximation and
interpolation-preserving norm)-type result: if f ∈ C[a, b] and x0 < · · ·< xn

are distinct points in [a, b], then for any ε > 0, there exists a polynomial
p such that

p(xi) = f(xi), i = 0, . . . , n, ‖f − p‖∞ < ε, ‖p‖∞ = ‖f‖∞
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(here ‖·‖∞ denotes the uniform norm on C[a, b]). In some particular cases,
this result can also be considered to belong to the topic of approximation
and interpolation by polynomials preserving positivity or positive bounds.
Indeed, suppose 0 < f(x) ≤ ‖f‖∞, for all x ∈ [a, b] (obviously, the second
inequality is always valid). From the continuity of f , there exists c > 0
such that f(x) ≥ c > 0, for all x ∈ [a, b], and therefore for any sufficiently
small ε (more exactly for 0 < ε < c), the approximating and interpolating
polynomial p also satisfies 0 < p(x) ≤ ‖f‖∞, for all x ∈ [a, b].

(3) The Wolibner’s theorem does not provide any information about the de-
gree of the polynomial p. If we denote by s the smallest degree of p that still
satisfies Theorem 1.2.1, then the first result concerning s was obtained by
Rubinstein [330], but only for the particular case n = 2 and y0 < y1 < y2.
In Nikolcheva [285], for equidistant nodes in [0, 1] and for the hypothesis
∆yi ≥ cmα, one obtains the best estimate, s = O(α · log(n)). Similar
results were obtained in Passow–Raymon [300] and Passow [299].
Another direction of research concerning the shape–preserving interpo-

lation by polynomials was discovered by T. Popoviciu in a series of papers
published between 1960 and 1962, see [312], [313], [314], and can be described
as follows. First let us consider the following simple definition.

Definition 1.2.2. Let f ∈ C[a, b] and a ≤ x1 < x2 < · · · < xn ≤ b be fixed
nodes. A linear operator U : C[a, b] → C[a, b] is said to be of interpolation
type (on the nodes xi, i = 1, . . . , n) if for any f ∈ C[a, b] we have

U(f)(xi) = f(xi), ∀ i = 1, . . . , n.

Remark. Important particular cases of U are of the form

Un(f)(x) =
n∑

k=1

f(xk)Pk(x), n ∈ N,

where Pk ∈ C[a, b] satisfy Pk(xi) = 0 if k 	= i and Pk(xi) = 1 if k = i, and
contain the classical Lagrange interpolation polynomials and Hermite–Fejér
interpolation polynomials.

Now, if f ∈ C[a, b] is, for example, monotone (or convex) on [a, b], it is easy
to note that because of the interpolation conditions, in general U(f) cannot
be monotone (or convex) on [a, b].

However, it is a natural question whether U(f) remains monotone (or con-
vex) on neighborhoods of some points in [a, b]. In this sense, we can introduce
the following definition.

Definition 1.2.3. Let U : C[a, b] → C[a, b] be a linear operator of interpola-
tion type on the nodes a ≤ x1 < · · · < xn ≤ b.

Let y0 ∈ (a, b). If for any f ∈ C[a, b], nondecreasing on [a, b], there exists a
neighborhood of y0, Vf (y0) = (y0−εf , y0 +εf ) ⊂ [a, b], εf > 0 (i.e., depending
on f) such that U(f) is nondecreasing on Vf (y0), then y0 is called a point of
weak preservation of partial monotonicity and correspondingly, U is said to
have the property of weak preservation of partial monotonicity (about y0).
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If the above neighborhood V (y0) does not depend on f , then y0 is called
a point of strong preservation.

Similar definitions hold if monotonicity is replaced by, e.g., convexity (of
any order).

For example, we present the following two results below concerning the
Hermite–Fejér polynomials based on some special Jacobi nodes.

Theorem 1.2.4. (Gal–Szabados [139], Theorem 2.2; see also Gal [123], p. 46,
Theorem 2.2.2) For n ∈ N, let Hn(f)(x) =

∑n
i=1 hi,n(x)f(xi,n) be the classical

Hermite–Fejér polynomial based on the roots −1 < xn,n < xn−1,n < · · · <

x1,n < 1 of the Jacobi polynomials P
(α,β)
n (x), where α, β ∈ (−1, 0] and

hi,n(x) = l2i (x)
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

,

li(x) = l(x)/[(x − xi,n)l′(xi,n)], l(x) =
n∏

i=1

(x − xi,n).

If f : [−1, 1] → R is monotone on [−1, 1], then for any root ξ of the poly-
nomial l′(x), there is a constant c > 0 (independent of n and of f) such that
Hn(f)(x) is of the same monotonicity with f in

(
ξ − cξ

n7+2γ
, ξ +

cξ

n7+2γ

)
⊂

(−1, 1), where cξ =
c

(1 − ξ2)5/2+δ
, γ = max{α, β}, and

δ =
{

α, if 0 ≤ ξ < 1,
β, if −1 < ξ ≤ 0.

Proof. Let us denote Hn(f)(x) =
n∑

i=1

hi,n(x)f(xi,n), where

hi,n(x) = l2i (x)
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

,

li(x) = l(x)/[(x − xi,n)l′(xi,n)], l(x) =
n∏

i=1

(x − xi,n).

By, e.g., Popoviciu [312] we have

hi,n(0) = l2(0)[2 − (1 − λ)x2
i,n]/[l′(xi,n)2(1 − x2

i,n)x3
i,n],

for all i = 1, . . . , n, and

H ′
n(f)(x) =

n−1∑

i=1

[Qi(x)][f(xi,n) − f(xi+1,n)],

where Qi(x) =
i∑

j=1

h′
j,n(x), i = 1, . . . , n − 1.

Reasoning as in the proof of Lemma 3 in Popoviciu [314], we get

Qi(ξ) > min{h′
1,n(ξ),−h′

n,n(ξ)} > 0, for all i = 1, . . . , n − 1.
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Let an, bn ∈ (0, 1), an, bn ↘ 0 (when n → +∞) be such that |h′
1,n(ξ)| ≥

c1an, |h′
n,n(ξ)| ≥ c2bn, and sn = min{an, bn}.

It easily follows that Qi(ξ) ≥ c3sn, i = 1, . . . , n − 1. By Szegö [383],
Theorem 14.5, we have

n∑

j=1

hj,n(x) = 1, ∀ x ∈ [−1, 1],

where hj,n(x) ≥ 0, ∀ x ∈ [−1, 1], j = 1, . . . , n.
Applying the Bernstein’s inequality twice we obtain

Qi(ξ) ≤ c1|di − ξ|n2/(1 − ξ2), i = 1, . . . , n − 1,

where di is the nearest root of Qi(x) to ξ, and therefore

max
|x−ξ|≤aξ

sn
n2

Qi(x) > 0, i = 1, . . . , n − 1

with aξ = c2(1 − ξ2).
It remains to find a (lower) estimate for sn. First we have

|P (α,β)
n (ξ)| ≥ c3n

−1/2

(1 − ξ)δ/2+1/4
,

(see Theorem 8.21.8 in Szegö [383]).
By Popoviciu [314], p. 79, relation (27),

h′
1,n(ξ) =

l2(ξ)
(x1,n − ξ)3[l′x1,n)]2

[

2 + (x1,n − ξ)
l′′(x1,n)
l′(x1,n)

]

> 0,

h′
n,n(ξ) =

l2(ξ)
(xn,n − ξ)3[l′xn,n)]2

[

2 + (xn,n − ξ)
l′′(xn,n)
l′(xn,n)

]

< 0.

By Szegö [383], Theorem 14.5, 2+(xi,n−ξ)
l′′(xi,n)
l′(xi,n)

≥ 1 and by Szegö [383],

(7.32.11),

h′
1,n(ξ) ≥ l2(ξ)

(x1,n − ξ)3[l′(x1,n)]2
=

[P (α,β)
n (ξ)]2

(x1,n − ξ)3[P (α,β)′
n (x1,n)]2

≥ c4[P
(α,β)
n (ξ)]2

n2q(1 − ξ)3
,

(where q = max{2 + α, 2 + β}).
Also,

−h′
n,n(ξ) = |h′

n,n(ξ)| ≥ c5[P
(α,β)
n (ξ)]2

n2q(1 + ξ)3
.
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Thus we obtain

Qi(ξ) ≥
c8

n5+2γ(1 − ξ2)7/2+δ
, i = 1, . . . , n − 1.

Finally, taking sn =
c8

n5+2γ(1 − ξ2)7/2+δ
we easily obtain the theorem. �

For n ≥ 3 odd, let Hn(f)(x) be the Hermite–Fejér interpolation polynomial
based on the roots xi,n ∈ (−1, 1), i = 1, . . . , n, of λ-ultraspherical polynomials
of degree n, λ > −1, λ 	= 0. Also, consider the Côtes–Christoffel numbers of
the Gauss–Jacobi quadrature given by

λi,n := 22−λπ

[

Γ

(
λ

2

)]−2
Γ (n + λ)
Γ (n + 1)

(1−x2
i,n)−1[P (λ)′

n (xi,n)]−2, i = 1, . . . , n,

and define
∆2

hf(0) = f(h) − 2f(0) + f(−h).

We also have the following result:

Theorem 1.2.5. (Gal–Szabados [139], Theorem 2.3; see also Gal [123], p. 49,
Theorem 2.2.3) Let f ∈ C[−1, 1] satisfy

n∑

i=1

[λi,n∆2
xi,n

f(0)]/x2
i,n > 0

(if f is strictly convex on [−1, 1] then obviously it satisfies this condition).
Then Hn(f)(x) is strictly convex in [−|dn|, |dn|], with

|dn| ≥
c(λ)

n−1
2∑

i=1

[λi,n∆2
xi,n

f(0)]/x2
i,n

n2

[

ω1

(

f ;
1
n

)

+ ‖f − Hn(f)‖
]

I

,

where c(λ) > 0 is independent of f and n, I =
[
− 1

2 , 1
2

]
, ω1

(
f ; 1

n

)

[− 1
2 , 1

2 ]
is the

first-order modulus of continuity on
[
− 1

2 , 1
2

]
, and ‖ · ‖[− 1

2 , 1
2 ] is the uniform

norm on
[
− 1

2 , 1
2

]
.

Proof. Denote Hn(f)(x) =
n∑

i=1

hi,n(x)f(xi,n), where

h′′
i,n(x) = −4

l′′(xi,n)
l′(xi,n)

li(x)l′i(x) + 2[(l′i(x))2 + li(x)l′′i (x)]
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

.
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But li(0) = 0 and l′i(0) = − l′(0)
xi,nl′(xi,n)

, for i 	= (n + 1)/2 and

1 + xi,n
l′′(xi,n)
l′(xi,n)

=
1 + λx2

i,n

1 − x2
i,n

, i = 1, . . . , n (see, e.g., Popoviciu [312]).

We obtain

h′′
i,n(0) =

2(l′(0))2

(l′(xi,n))2
· 1
x2

i,n

(
1 + λx2

i,n

1 − x2
i,n

)

> 0, ∀ i 	= (n + 1)/2.

Also, because xi,n = −xn+1−i,n, i = 1, . . . , n, l′(xi,n) = l′(xn+1−i,n) (since
n is odd) we easily get

h′′
i,n(0) = h′′

n+1−i,n(0).

But λi,n =
c1λΓ (n + λ)

Γ (n + 1)
· 1

(l′(xi,n))2
· 1

1 − x2
i,n

and (l′(0))2 ∼ nλ, which

together with the above inequality implies

h′′
i,n(0) ≥ c2λnλi,n/x2

i,n, for all i 	= (n + 1)/2.

Therefore

H ′′
n(f)(0) =

(n−1)/(2)∑

i=1

h′′
i,n(0)∆2

xi,n
f(0) ≥ c3λn

n∑

i=1

λi,n∆2
xi,n

f(0)/x2
i,n > 0.

By this last relationship it follows that Hn(f) is strictly convex in a neigh-
borhood of 0. Let dn be the nearest root of H ′′

n(f) to 0. We may assume that
|dn| ≤

c

n
(since otherwise there is nothing to prove, the interval of convexity

cannot be larger than
[
− c

n , c
n

]
). Then by the mean value theorem, Bernstein’s

inequality and Stechkin’s inequality (see, e.g., Szabados–Vértesi [381], p. 284)
we get

H ′′
n(f)(0) = |H ′′

n(f)(0) − H ′′
n(f)(dn)| = |dn| · |H ′′′

n (f)(y)|

≤ |dn|c4n
2‖H ′

n(f)‖J ≤ c5|dn|n3ω1

(

Hn(f);
1
n

)

I

≤ c5|dn|n3

[

ω1

(

f ;
1
n

)

+ ω1

(

Hn(f) − f ;
1
n

)]

I

≤ c5|dn|n3

[

ω1

(

f ;
1
n

)

+ ‖f − Hn(f)‖
]

I

,

where J =
[
− 1

4 , 1
4

]
, I =

[
− 1

2 , 1
2

]
.
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Combining the last inequality with the previous inequality satisfied by
H ′′

n(f)(0), the proof of the theorem is immediate. �

Remark. All the details concerning this direction of research can be found
in Chapter 2 of the recent monograph Gal [123], where a deep and exten-
sive study concerning shape-preserving interpolation by classical univariate
interpolation polynomials (of Lagrange, Grünwald, or Hermite–Fejér type)
is made.

For the error estimate in shape-preserving interpolation, we mention here
the following four results.

The first two results show the existence of such polynomials with good
approximation properties and can be stated as follows.

Theorem 1.2.6. (Ford–Roulier [120]) Let p ∈ N, 1 ≤ r1 < r2 < · · · < rs ≤ p
with ri, i = 1, . . . , s, natural numbers, εj = ±1, j = 1, . . . , s, and a ≤ x0 <
· · ·xm ≤ b interpolation nodes. For any f ∈ Cp[a, b] satisfying

εif
(ri)(x) > 0,∀x ∈ [a, b], i = 1, . . . , s,

there exists a sequence of polynomials (Pn(x))n, degree(Pn) ≤ n, such that
for sufficiently large n we have

εiP
(ri)
n (x) > 0,∀x ∈ [a, b], i = 1, . . . , s, with Pn(xj) = f(xj), j = 0, . . . ,m,

and the estimate

‖f − Pn‖∞ ≤ Cn−pω1(f (p); 1/n)∞

holds, where C > 0 is independent of f and n. Here ‖·‖∞ denotes the uniform
norm on C[a, b].

Proof. Let us sketch the proof. According to a result in the doctoral thesis
of Roulier [325], f can be extended to a function F ∈ Cp[a − 1, b + 1] such
that ω1(F (p);h)∞ ≤ ω1(f (p);h)∞, for all h ∈ [0, b − a]. Denote by Qn the
polynomial of best approximation of degree ≤ n attached to F on [a−1, b+1].
Jackson’s theorem implies

‖Qn − F‖C[a−1,b+1] ≤ Cn−pω1(F (p); 1/n)∞,

where ω1 is the uniform modulus of continuity on [a − 1, b + 1].
Now let Lm be the Lagrange’s interpolation polynomial of degree ≤ m

satisfying Lm(xi) = δi = F (xi) − Qn(xi), i = 0, . . . ,m.
Since |δi| ≤ Cn−pω1(F (p); 1/n)∞, for all i = 0, . . . , m, it is easy to derive

that |Lm(x)| ≤ C1n
−pω1(F (p); 1/n)∞ for all x ∈ [a − 1, b + 1], where C1

depends only on m and the points xi, i = 0, . . . , m.
Setting Pn(x) = Qn(x) + Lm(x), it is easy to see that Pn(xi) = F (xi) =

f(xi), i = 0, . . . ,m, and ‖Pn − f‖C[a−1,b+1] ≤ C2n
−pω1(f (p); 1/n)∞, by the
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above mentioned result in Roulier [325] (here ω1(f (p), 1/n)∞ denotes the uni-
form modulus of continuity on [a, b]).

Also, according to another result in Roulier [325], ‖Pn − f‖C[a−1,b+1] ≤
C2n

−pω1(f (p); 1/n)∞ implies ‖P (i)
n − f (i)‖C[a,b] ≤ C3n

i−pω1(f (p); 1/n)∞, i =
0, . . . , p.

This means that P
(ri)
n → f (ri), uniformly on [a, b], for all i = 1, . . . , s,

which because of the strict inequalities

εif
(ri)(x) > 0,∀x ∈ [a, b], i = 1, . . . , s,

immediately implies the conclusion in the statement. �

Remark. A similar result to that of Theorem 1.2.6, but in the more general
setting of nondifferentiable functions, has been considered by Szabados [379],
who obtained estimates in terms of ω1(f ; log n

n )∞.
Theorem 1.2.6 can be slightly refined by combining it with approximation

by monotone sequences of polynomials, as follows. For simplicity, we consider
the problem on [0, 1].

Theorem 1.2.7. (Gal [130]) Let p ∈ N, 1 ≤ r1 < r2 < · · · < rs ≤ p with
ri, i = 1, . . . , s natural numbers, εj = ±1, j = 1, . . . , s and 0 ≤ x1 < · · · <
xm ≤ 1 interpolation nodes. For any f ∈ Cp[0, 1] satisfying

εif
(ri)(x) > 0,∀x ∈ [0, 1], i = 1, . . . , s,

there exist sequences of polynomials (Pn(x))n, (Qn(x))n, degree(Pn) ≤ n,
degree(Qn) ≤ n, such that for sufficiently large n, we have

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s,

Pn(xj) = Qn(xj) = f(xj), j = 0, . . . ,m,

the estimate
‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞

holds, where C > 0 is independent of f and n, and in addition,

Qn(x) ≤ Qn+1(x) ≤ f(x) ≤ Pn+1(x) ≤ Pn(x), ∀x ∈ [0, 1], n ∈ N.

Proof. From the proofs of the Theorem and Corollary 1 in Gal–Szabados
[140], we distinguish two steps.

Step 1. We start with the polynomial sequence (pk)k, degree(pk) ≤ k,
satisfying Theorem 1.2.6, i.e., for sufficiently large n we have

εip
(ri)
k (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s, where pk(xj) = f(xj), j = 0, . . . ,m,

and the estimate
‖f − pk‖∞ ≤ Ck−pω1(f (p); 1/k)∞

holds.
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Step 2. With the aid of (pk)k, one construct the polynomials Pn and Qn

satisfying the relationships (5) and (8), respectively, in Gal–Szabados [140]
(where Pn and Qn are defined as special arithmetic means of pk), replacing
there Ek(f)∞ by the expression Ck−pω1(f (k); 1/k)∞.

By the mentioned proof, for all n ≥ 4 we get

Qn(x) ≤ Qn+1(x) ≤ f(x) ≤ Pn+1(x) ≤ Pn(x), ∀x ∈ [0, 1], n ∈ N,

and
‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞.

Since the polynomials Pn and Qn are arithmetic means of pk, it is imme-
diate that

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s.

Now, in order to get the interpolation conditions too, let us redefine Qn

and Pn by Qn := Qn + L
(1)
m , Pn := Pn + L

(2)
m , where L

(1)
m and L

(2)
m are the

Lagrange polynomials of degrees ≤ m satisfying the conditions L
(1)
m (xj) =

f(xj) − Qn(xj), L
(2)
m (xj) = f(xj) − Pn(xj), j = 0, . . . , m.

Reasoning as in the proof of Theorem 1.2.6, for the redefined Qn and Pn,
we get

Pn(xj) = Qn(xj) = f(xj), j = 0, . . . , m

and

‖Qn − f‖∞ ≤ Cn−pω1(f (p); 1/n)∞,

‖Pn − f‖∞ ≤ Cn−pω1(f (p); 1/n)∞,

which by ‖Qn − pn‖∞ ≤ ‖Qn − f‖∞ + ‖f − Pn‖∞, immediately implies

‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞.

Also, as in the proof of Theorem 1.2.6, we get the uniform convergence of
Q

(ri)
n and P

(ri)
n to f (ri), i = 0, . . . , s, which for sufficiently large n also implies

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s.

Obviously, the monotonicity properties of the redefined sequences (Qn)n

and (Pn)n (with respect to n) become non-strict, because of interpolation
conditions. The theorem is proved. �

Remark. Two recent results in Kopotun [202], Kopotun [203], give the ap-
proximation estimates necessarily verified by interpolation j-convex polyno-
mials (interpolating a function which is not necessarily j-convex), in the case
that the interpolation nodes are not close to the endpoints. These results re-
maining valid for j-convex functions too, it is clear that they can be considered
to belong to the shape-preserving interpolation topic.
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Now, since by the alternating Chebyshev theorem, the best approximation
polynomial of degree ≤ n interpolates the function on at least n + 1 points,
in this section we also present three results concerning the preservation of
j-convexity by the best approximation polynomials.

Theorem 1.2.8. (Roulier [327]) Let m ∈ N, f ∈ C2m−1[−1, 1], 1 ≤ i1 < i2 <
· · · < iq < m be fixed integers and εj , j = 1, . . . , q be fixed signs. For any
n ∈ {0, 1, . . . , }, denote by Qn the best approximation polynomial of degree
≤ n of f on [−1, 1]. If εjf

(ij)(x) > 0, for all x ∈ [−1, 1] and all j = 1, . . . , q

and if
∑+∞

k=1
1
kω1(f (2m−1); 1

k )∞ < +∞, then for sufficiently large n, we have
εjQ

(ij)
n (x) > 0, for all x ∈ [−1, 1] and all j = 1, . . . , q.

Proof. We sketch here the proof using the ideas in Roulier [327]. In fact, it
is based on two lemmas. The first one is well known (see, e.g., G.G. Lorentz’s
monograph [248]) and can be stated as follows.

Lemma (A). (Lorentz [248], p. 74)There exist constants Mp > 0,
p = 1, 2, . . . , such that if w is any modulus of continuity for which∑+∞

k=1
1
kw(1/k) < +∞ and if for f ∈ C[−1, 1] and polynomials qn(x) of degree

≤ n we have the estimate

|f(x) − qn(x)| ≤ C[∆n(x)]pw(∆n(x)),

then f has continuous derivative f (p) and

|f (p)(x) − q(p)
n (x)| ≤ Mp

∑

k≥[(∆n(x))−1]

1
k

w(1/k),∀x ∈ [−1, 1].

Here ∆n(x) = max{n−1(1 − x2)1/2, n1/2}, ∆0(x) = 1.

Proof of Lemma A. Because of its importance in approximation theory,
let us sketch its proof below. It is easy to see that we can write f(x) =
qn(x) +

∑∞
j=1(q2jn(x) − q2j−1n(x)), where by the hypothesis it follows that

|q2jn(x) − q2j−1n(x)| ≤ 2[∆2j−1n(x)]pw(∆2j−1n(x)).

This implies the uniform convergence of the series (on [−1, 1]), that is, the
differentiated series (of any order) is also uniformly convergent and we get

f (p)(x) = q(p)
n (x) +

∞∑

j=1

(q(p)
2jn(x) − q

(p)
2j−1n(x)).

Taking into account the elementary inequalities 1
4∆n(y) ≤ ∆2n(y) ≤ 1

2∆n(y),
valid for all y ∈ [−1, 1] and applying a well known Markov-type inequality in
terms of the modulus of continuity (i.e., |qn(x)| ≤ [∆n(x)]rw(∆n(x)), |x| ≤ 1,
implies |q′n(x)| ≤ Mr[∆n(x)]r−1w(∆n(x)), |x| ≤ 1, for its proof see, e.g.,
Theorem 3 in Lorentz [248], p. 71) p-times, we obtain

|q(p)
2jn(x) − q

(p)
2j−1n(x)| ≤ Mpw(∆2jn(x)).


