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Preface

Plant biology is a rich, fascinating and rewarding playground for those with an
interest in modelling and simulation.

Plants are constantly processing information, computing and adapting to their
surroundings. This notion of information processing is becoming increasingly
important in biology as is the appreciation of physical and engineering approaches
for understanding these processes and how they are manifested in form and function.
Our basic premise is that whatever plants are doing, they are doing within the laws
of physics. Physical approaches using the established language of mathematics
and computation are therefore key research tools for unravelling the biology of
plants. For instance, plant growth can be viewed as a mechanical problem in
which plants exploit hydraulics and material properties to determine their shape.
Photosynthesis can be treated as a quantum mechanical problem, whereby photons
are captured and their energy used to catalyse chemical processes that convert
carbon dioxide to sugar. Plants use diffusible particles and electrical waves for
transmitting information. Plants generate pressure gradients that drive fluid flow
through small elastic tubes to transport nutrients. The list goes on.

Perhaps with the exception of the theory of evolution, biology may seem to
currently lack the unifying laws of physics, the axiomatic nature of mathematics
or the abstractions of computer science, thus giving rise to the usual clichés.
The ‘hard’ sciences are typically viewed as abstract, reductionist, mathematical
and quantitative. For some theories, such as quantum electrodynamics or special
relativity, astonishing levels of precision have been reported, achieving better than
ten significant digits. Such precision (and accuracy) can induce the idea of these
theories being ‘exact’. On the other hand, ‘soft’ sciences have a reputation of being
more descriptive and qualitative. Biological systems perform tasks such as self-
repair and reproduction that fit less readily within existing physical and engineering
frameworks. The science of living systems can appear ‘messy’ and therein lies
the challenge. It is ‘easy’ to achieve robust computation using well-characterised,
virtually error-free components, but how does biology with its noisy, fluctuating
systems manage to carry out tasks such as reproducing cells and whole organisms
so robustly? Biology is full of such ‘hard’ problems.
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vi Preface

More important than this artificial division into disciplines is the approach.
Unlike in physics where the question of ‘function’ or ‘utility’ of something (why
questions) makes little sense, in biology thinking about function can help place
observations in an evolutionary context and enhance our understanding. Thinking
about problems in terms of cause and effect (how questions) is what leads to
mechanistic insights which in turn helps understand evolutionary innovation, and
this is the spirit of the chapters presented in this book. Modelling and simulation
have a key role to play in unravelling mechanism and trying to discern cause
and effect but also in making sense of evolutionary changes. Efficient models can
compress a lot of data and knowledge into a few rules or equations. Despite all
models being wrong at some level, they offer powerful tools to synthesise data and
ideas, to generate and evaluate hypotheses and to make predictions. Importantly,
useful models are falsifiable (which is when we learn the most about a system).
Predictions can be used to guide new experiments and to validate, falsify or define
the application boundaries of a model.

This book aims to provide a mix of introductory chapters and latest state-
of-the-art research overviews that place key questions in plant biology within a
cause-and-effect framework, thereby drawing on relevant physical, mathematical
and computational approaches. Modern plant biology requires an increasing and
diverse set of skills and seamlessly blends them into an integrative, interdisciplinary
approach. All chapters are written by leading experts who are driving such
interdisciplinary developments. The chapters are not meant to be exhaustive but to
give a flavour of some of the current problems and to provide some background upon
which can be built to develop a solid foundation for research in the area. The book
is aimed at physicists, mathematicians, computer scientists and engineers, whom
we hope to excite with the challenges and opportunities in plant biology but also the
increasing number of mathematically skilled biologists with an interest in modelling
and simulation as a means to understand biology. For others there are likely better
and more suitable introductions.

For those without much biology background, there are many truly excellent
text books. A fantastic and stimulating up-to-date classic is Molecular Biology of
the Cell by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts and Peter Walter. Some basic understanding of DNA, genes and proteins can
readily be developed from online resources. For the current book, the prerequisites
in terms of plant biology are limited, many of which are explained in the individual
chapters. Important concepts include the following: plants consist of cells that
are surrounded by a cell wall and are therefore not mobile; plant cells can build
substantial pressures within them through osmosis, which is the exchange of water
driven by the chemical potential that arises from the concentration difference on
solutes; plant cells have various components (proteins) that can transport ions
across membranes, giving rise to concentration differences and therefore voltages
which can be exploited for signalling. Personal favourites for more in-depth studies
include Plant Biomechanics by Karl Niklas, An Introduction to Systems Biology
by Uri Alon and Information Theory, Inference and Learning Algorithms by David
MacKay.



Preface vii

Given that human life is sustained by plants in that they influence our atmospheric
composition, providing us with oxygen to breath, form important ecosystems,
contribute a substantial part of our diet and calorific intake and provide natural
products and medicines, understanding the biology, physics and computation of
plants is perhaps one of the most relevant challenges of our time.

As I hope will become apparent from this book, plant biology is a ‘hard’
science. It extensively uses quantitative data, physical theories and mathematical
and computational modelling and is becoming increasingly predictive. Furthermore,
plant biology is great fun.

Chapter 1 introduces physical models of plant morphogenesis. The theory
of forces, stress and strain is explained with selected case studies. Chapter 2
summarises the basic mathematical approaches to fluid transport in plants. Fluid
dynamics plays an important role in the transport of nutrients, growth and long-
distance signalling. Chapter 3 describes how we can use physical models to
understand ion channels. Much of the information processing carried out by plants
uses changes in ionic concentrations to transmit signals that activate responses to
environmental challenges. Chapter 4 introduces plant microtubules and mathemat-
ical and computational techniques for modelling their behaviour. Microtubules are
dynamic entities that play a key role in determining plant cell shape and function.
From here onwards we are exposed to problems of organisation over multiple
spatial and temporal scales—a reoccurring theme and challenge in approaches to
modelling in biology. Chapter 5 takes a closer look at how cell shape changes as a
function of ion channel activity on the example of guard cells, thereby integrating
transport processes with macroscopic function. In Chap. 6, an overview is provided
of the most recent developments in single-cell approaches for understanding
morphogenesis, particularly in terms of image processing, quantitative data analysis
and computational modelling techniques. Chapter 7 goes beyond single cells and
tackles approaches for describing collections of cells, tissues, their interactions,
growth and division. Chapter 8 takes an abstract computational approach to plant
development with the development of L-systems. L-systems offer powerful tools
for studying plant development at different levels from reactions to whole plant
behaviour. Chapter 9 describes recent results on the important trait of flowering
time to move up further in scales of synthesising knowledge. This chapter considers
gene networks, phenology and evolution. Chapter 10 takes the scale of modelling
one important step further and investigates the lifestyle strategy of plants in natural
environment on the example of seed banks. Together these chapters are exemplars
of how plant science is developing and the inherent challenges of bridging scales
between micro-mechanisms through cells to whole plant behaviour and populations
of plants in a changing environment. There is clearly no shortage of really exciting
and highly relevant challenges ahead for which computational approaches will have
a key role to play.

http://dx.doi.org/10.1007/978-3-319-99070-5_1
http://dx.doi.org/10.1007/978-3-319-99070-5_2
http://dx.doi.org/10.1007/978-3-319-99070-5_3
http://dx.doi.org/10.1007/978-3-319-99070-5_4
http://dx.doi.org/10.1007/978-3-319-99070-5_5
http://dx.doi.org/10.1007/978-3-319-99070-5_6
http://dx.doi.org/10.1007/978-3-319-99070-5_7
http://dx.doi.org/10.1007/978-3-319-99070-5_8
http://dx.doi.org/10.1007/978-3-319-99070-5_9
http://dx.doi.org/10.1007/978-3-319-99070-5_10
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There are many exciting computational developments in plant biology, and
hopefully future editions of this book can be extended to include further chapters
that display the power of interdisciplinary journeys into the processes and
mechanisms of plants.

Norwich, UK Richard J. Morris
April 2018
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Chapter 1
Physical Models of Plant Morphogenesis

Mathilde Dumond and Arezki Boudaoud

Abstract Biological form is closely associated with function. Yet, despite much
progress in developmental biology, we are still far from understanding how organs
grow and reach their final size and shape, through a process known as morpho-
genesis. Morphogenesis is associated with a variety of cellular scale phenomena
such as cell expansion, cell proliferation, and cell differentiation. These processes
occur within the thousands to billions of cells that yield a well-defined organ. How
these phenomena are coordinated over time and space to shape a consistent and
reproducible organ or organism is still an open question. In this chapter, we focus
on physical models of morphogenesis. We first introduce quantitative descriptions
of growth. We then expand on mechanical models of growth; we review types of
models and we discuss case studies where such models were used.

1.1 Describing Morphogenesis

To better understand morphogenesis and reliably compare models to experiments,
qualitative observations are not sufficient and quantitative measurements are nec-
essary. From an analytical viewpoint, morphogenesis can be dissected as the
combination of a small set of elementary transformations. The final shape of
an organ results from the integration throughout time of growth. Growth can be
decomposed into three parameters: growth rate (differential of area over time),
growth anisotropy (ratio between the maximal and the minimal principal directions
of growth), and maximal growth direction (see Fig. 1.1) [12, 18, 27, 65]. Formally,
growth is a tensor that can be defined similarly to the strain tensor in continuum
mechanics. Consider a generic material point of coordinates (x1, x2, x3); it is dis-
placed by growth to (x1 +u1, x2 +u2, x3 +u3), (u1, u2, u3) being the displacement
field. The growth tensor is then:

M. Dumond · A. Boudaoud (�)
Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1,
CNRS, INRA, Lyon, France
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2 M. Dumond and A. Boudaoud

Fig. 1.1 Quantifying morphogenesis. (a) Growth can be assessed by monitoring a circle drawn on
the tissue (a sphere in 3D): (i) if the circle remains a circle, growth is isotropic; (ii) if the circle
becomes an ellipse, growth is anisotropic (growth rate can be deduced from the ratio of surfaces
between the two time points; growth anisotropy derives from the ratio in length of the ellipse axes);
(iii) growth direction corresponds to the direction of the great axis of the ellipse. (b) Example of
a software package developed to quantify growth: (i) image of an Arabidopsis thaliana sepal with
the membrane tagged with a fluorescent molecule; (ii) growth rates quantified over each cell for a
24h interval using MorphoGraphX [5] (the color scale corresponds to the ratio in cell area between
the two time points)

gij = 1

2

(
∂ui

∂xj

+ ∂ui

∂xj

+
∑
m

∂ui

∂xm

∂uj

∂xm

)
. (1.1)

Note that this definition implicitly assumes that the elastic strain tensor (due to
internal or external forces exerted on the growing body) is negligible. Other slightly
different definitions, or sometimes rates (time derivatives), are also used. Such quan-
tifications enable the conversion of successive images of organs into quantitative
data to perform statistical analyses and to compare models to experiments in a
systematic manner.

1.1.1 Quantifying Cell Growth

The starting point is two- or three-dimensional images of tissues or organs showing
cell contours, for instance tagged with a fluorescent protein when using confocal
microscopy. Quantitative measurements have been facilitated by the development of
software that segment cells from such images and measure their growth parameters
semi-automatically, in 2D [5], or in 3D [29]. Such software has been used to extract
and characterize cell shapes [47, 53, 64], cell growth [15, 37, 42, 66], and to compare
mutants to wild-type growth [40, 69]. These cell-based quantifications have been
performed so far for rather small organs (less than a thousand of cells). The growth
patterns of bigger organs such as older leafs and flowers are often measured at the
supracellular level using a continuous description.
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1.1.2 Quantifying Organ Growth

The growth patterns of large organs are measured with methods such as landmark
analysis and clonal analysis. It is possible to use landmarks on an organ, and
measure the relative displacements of the landmarks over time. Early studies
considered either natural landmarks such as the vein intersections in leaves [48]
or ink-drawn landmarks—grids [3] or set of points [33, 55]—restricting these
approaches to relatively older leaves. More recent studies used fluorescent micropar-
ticles deposited on leaves [57, 60].

It is also possible to perform clonal analysis, which consists in labelling groups
of cells or single cells by expressing a specific heritable marker, and observing
their descendants. When a notable fraction of the cells is labelled without any
neighbor marked, this enables to define growth rate, anisotropy, and direction at the
supracellular level [56]. Because the tissue deforms during growth, the interpretation
of clonal analysis requires the use of a model to account for the advection of material
points by growth [59].

Finally, two studies have shown that measuring the leaf contour change over time
was sufficient to use conformal maps to roughly predict the displacement field of all
points inside the leaf [1, 52], because the leaf remains flat all over its development,
and because its growth is roughly isotropic at later stages of leaf morphogenesis.

1.2 Forces in Plants

Plant cells are surrounded by a stiff extracellular matrix called the cell wall, put
under tension by the internal hydrostatic pressure known as turgor that typically
ranges from 0.1 to 1 MPa [8]. Growth is achieved by modulating turgor pressure and
cell wall mechanical properties. How can we relate growth to cell mechanics? What
is the mechanical status of plant tissues? We here focus on the evidence for forces,
as measurements of mechanical properties were reviewed elsewhere [8, 51, 62, 68].

1.2.1 Forces in Tissues and Cells

It has been observed that when peeling a stem, the outer tissue shrinks whereas the
internal tissue expands, suggesting that internal cell layers are in compression while
the outer layers are under tension [67]. Similarly, cutting a plant tissue leads to a
deformation—the cut opens or remains closed according to whether the tissue is in
tension or not. Measuring such deformations thus yields information on mechanical
stress patterns. For instance, the epidermis of the early sunflower capitulum is under
tension in its center and under circumferential compression in the concave region
that surrounds the center [23].
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Turgor pressure results from osmotic pressure, and so is determined by the
difference in osmolyte concentration between the cell and the outer medium. Hence,
it is possible to plasmolyze cells by increasing the outer concentration of osmolytes,
removing turgor pressure and the tension in the cell wall. Comparing plasmolyzed
and turgid cells yields the elastic strain in turgid cell walls and gives information on
the stress pattern in cell walls [63].

1.2.2 Forces and Growth

The interplay between turgor pressure and cell wall mechanical properties is at the
core of our current understanding of plant cell growth. The growth of the plant cell
is due to the yielding of the cell wall under the tension generated by turgor pressure,
in addition to the synthesis and export of new wall materials by the cell. From the
mechanical point of view, cell wall tension induces deformations that depend on cell
wall rheology.

In the simplest rheological model, the cell wall is considered purely elastic: it
behaves like a spring. In this case, the deformation, or strain ε, depends only on the
stress σ applied on the spring, or the cell wall:

ε = σ/E (1.2)

where E the stiffness modulus of the cell wall. The principal limitation of this model
is that the spring reverts to its rest shape when the force is released: such a cell wall
does not grow. This issue is dealt with within the framework of incremental growth:
The spring is loaded and the equilibrium length is taken as the next rest length of the
spring. This new rest length initiates the next loading step. Thus growth is modeled
as a succession of steps of loading and updating of the rest length.

A more realistic representation of the cell wall is a viscoelastic material. In this
case, it behaves like the association of a spring and a damper (see Fig. 1.2):

dε

dt
= σ/μ + dσ

dt
/E (1.3)

where μ is the dynamic viscosity. In a few models of growth [16], elasticity is fully
neglected and only the damper is accounted for. Note that the incremental approach
to growth is equivalent to a viscoelastic model if a timescale is associated with step
increments [11]. Here, when the force is released, the material does not revert to its
original configuration: this rheology allows cell wall growth.

One of the most elaborate rheological models of the cell wall behavior was
introduced in [54], and proposes that the cell wall behaves as a visco-elasto-plastic
material (see Fig. 1.2): the cell wall behaves as an elastic material when the stress
is lower than a threshold σ0, but as a viscoelastic material if the stress is larger
(|f |(+) = 0 if f < 0 and else |f |(+) = f ):



1 Physical Models of Plant Morphogenesis 5

Fig. 1.2 Simple rheological behaviors and plant growth. (a) A purely elastic material behaves like
a spring: it returns to its original state when applied stress is released. (b) A viscoelastic material
(of Maxwell type) behaves like the association of a spring and a damper; rate of damper elongation
depends on the applied stress. (c) The behavior of a visco-elasto-plastic material depends on the
value of the force applied: if the stress is smaller than the material-specific threshold σ0, it behaves
elastically, otherwise it behaves viscoelastically. The bottom plots show strain as a function of time,
with force applied during the period highlighted in yellow

dε

dt
= |σ − σ0|(+) /μ + dσ

dt
/E (1.4)

Cell wall rheological parameters can be measured, using techniques reviewed in [51,
63, 68]. Depending on the question addressed, one can use one or the other of these
rheological models. Note that the rheological parameters of the cell wall can be
heterogeneous and/or anisotropic. Full models require the generalization of these
simple rheological models to 2 or 3 dimensions and the assembly of simple bricks
to account for cell and/or tissue geometry and for links between cellular processes
and cell wall mechanics.

1.3 Modeling Morphogenesis

1.3.1 Different Types of Models

Models of morphogenesis fall into two main categories: models considering a
continuous growing medium and models individualizing each cell.

Continuous models are usually used for large organs, comprising thousands of
cells, where cell size is very small compared to organ size. Most studies considered
flat organs such as leaves, petals, or sepals (see, e.g., [40, 41]). The surface of the
organ is modeled as a 2D surface embedded in 3D space, assuming the thickness is
small with respect to other dimensions. 3D models are less common, one example
being the morphogenesis of fruits [17]. A widespread assumption for other organs
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Fig. 1.3 Main types of models: Examples in two dimensions. (a) Continuous model: the surface of
the organ is continuous, for instance represented by a triangulated mesh. (b) Cellular Potts model,
where cells are defined on a non-deformable grid. (c) Vertex-based model, the cells are defined by
vertices (circles) and their edges with the neighboring cells

such as stems is that the epidermis is dominant in the control of growth, because
the surface cell wall is thicker and stiffer than internal walls (see, e.g., [9] for a
discussion). This enables modeling the dynamics of the surface of the organ [39].
Formally, these models come in the form of partial differential equations, often
obtained by accounting for cell wall rheology and mechanical equilibrium. The
finite element method is often used to solve them because the triangular meshes
are well-suited to domains of arbitrary geometry.

Cells are individualized in other types of models, such as cellular Potts models
or vertex-based models (see Fig. 1.3). In the cellular Potts model, cells are defined
on a discrete fine grid, and the status of each point of the grid is updated depending
on a set of rules, leading to the movement of the edges of the cells. This framework
was originally developed for physical systems such as foams. It is widely used in
the animal field, and can have a finer subcellular resolution than the vertex-based
models discussed hereafter. Nevertheless, the cellular Potts model seems to have
been used only once for plants, in the context of auxin concentration dynamics in a
growing root [35]. Indeed, this framework is not well-suited for an elastic material
and is commonly used to model purely viscous materials such as animal cells.

Vertex models are broadly used to investigate plant development [25, 49]. Cells
are often assumed to be polygonal, so that cell shape is defined by the position of
vertices and their dynamics in space. Sometimes, edges are allowed to be curved,
for instance assumed to be arc of circles [20]. The mechanical elements can be
placed at cell edges (e.g. spring-damper systems) accounting for anticlinal cell
walls [20, 25], or on the whole surface of the cell accounting for periclinal cell
walls [22, 49, 61]. Such models can also incorporate gene regulatory networks, cell–
cell communication, or cell division [25].

More recently, 2D models started to combine vertex-based and continuous
approaches, with cells individualized and their cell walls represented as continuous
structures [14, 30]. This enables to simultaneously model cell scale behavior (cell
division, cell shape) and consider the mechanical properties of the periclinal cell
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wall at a subcellular resolution. This approach was extended to 3D, enabling for
the first time to model morphogenesis a 3D tissue at cellular resolution [12]: by
accounting for epidermis and for internal layers, the authors investigated the relative
role of cell layers in the outgrowth of organ primordia in the shoot apical meristem.

1.3.2 Implementation of Growth

So far, growth has been modeled using two different approaches. In the first type
of description, growth rate, direction, and anisotropy are specified or inferred from
a gene regulatory network at each point in time and space of the simulation. The
tissue is assumed to be elastic and the equilibrium state is computed from force
balance [41]. This amounts to prescribing the rest length of an assembly of springs
and computing their equilibrium lengths.

In the second type of description, the cell wall’s mechanical properties such as
elastic modulus or viscosity (these properties may be anisotropic) are specified or
inferred from regulatory networks, and the mechanical equilibrium under loading
by turgor pressure defines the current growth rate. In this framework, the tissue
deformation depends on the tissue rheology, which can be one of the types
previously presented: elastic, viscoelastic, or visco-elasto-plastic.

1.4 Case Studies: The Use of Models to Understand
Plant Morphogenesis

We now illustrate the concepts outlined above by discussing representative physical
models of morphogenesis.

1.4.1 Morphogenesis of an Isolated Plant Cell

A first step towards understanding organ morphogenesis is to study cell morpho-
genesis. A classical system of interest is the pollen tube, which is one of the model
systems for tip growth: elongation of the tube by expansion of the cell wall localized
at the cap of the cylinder. During pollination, the pollen grain lands on the summit
of the carpel and germinates. The pollen tube emerges and subsequently grows into
the carpel reaching the ovule. How a cell can grow in such directional manner has
been extensively investigated.

Considering the cell wall as a hyperelastic (extension of linear elasticity to
large deformation) membrane and using an incremental approach to growth, [32]
showed that a lower elastic modulus at the tip of the tube was sufficient to produce
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self-similar tip growth. A fully viscous model led to similar conclusions [16]. In
the visco-elasto-plastic model developed in [24], the authors also needed a softer
tip; they found, however, that the cell wall anisotropy was required to retrieve
self-similar tip growth, except in very few specific cases. In these three studies,
the equations were numerically solved based on the circumferential symmetry
of the pollen tube, making this modeling framework difficult to extend to other
systems. The study in [28] released this assumption of axisymmetry and used the
finite element method for numerical solutions. They implemented an incremental
approach to growth, considering the cell wall as an elastic material. The influence of
anisotropy and of the steepness of the gradient of stiffness over the edges of the tube
were tested, and the interaction between these two quantities allowed self-similar
growth depending on the parameters: a steeper cell wall stiffness gradient was
associated with a more isotropic cell wall to produce self-similar growth. Finally,
[58] introduced a model coupling cell wall chemistry with mechanics, assuming a
viscoelastic rheology in which the viscosity depends on the concentration of cross-
links in the wall. In addition to self-similar tip growth, they retrieved the oscillations
in growth rate and tube diameter observed in fast growing tubes.

1.4.2 Growth Motion of an Elongated Organ

Plants cannot move, but they react to their environment: for instance, the main shoot
and the main root bend towards the gravity vector. The molecular mechanisms
involved are relatively well described, and the integration of these mechanisms
during growth has been investigated using models coupling biomechanical and
biochemical processes [31, 70]. The differential localization of auxin transporters
from the PIN-FORMED family leads to differential concentrations of auxin, which
in turn cause differential growth rates along the transverse axis of roots and
hypocotyl, ultimately inducing a bending of the organ. These studies focused on
the relationship between auxin, cell differential growth, and bending initiation, but
they did not fully investigate how the vertical orientation of the organ is reached.
Actually, when only gravity-sensing is taken into account, the shoot oscillates
around the axis of gravity whereas real shoots reach this orientation [6]. Sensing
the local curvature (proprioception) needs to be included to reproduce the observed
dynamics of stem curving, in the case of both gravitropism [6] and phototropism [7].

1.4.3 Shaping a Sheet-Like Organ

Volvox is a green algae in the form of a spherical sheet of cells with an aperture. One
major even in the morphogenesis of Volvox is its inversion: the organism turns inside
out. The inversion of the sheet of cells is associated with a sequence of deformations
where cells firstly circularly invaginate at the equator, accompanied by the posterior
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hemisphere which moves into the anterior and inverts as well [38]. Finally, the
aperture stretches out over the posterior hemisphere. The deformation of the sheet
is associated with cell shape changes, but their role in the sheet inversion remained
poorly understood. Modeling the sheet as an elastic material in which the rest state
is actively controlled (this is formally similar to the models prescribing growth),
the authors showed that the shift in the sheet curvature at the equator combined
with the contraction of the posterior hemisphere were sufficient to trigger this major
morphogenetic event [38].

In angiosperms, the main sheet-like organs are leaves and petals. The shapes of
such organs are very diverse and can change drastically from one species to another.
The underlying regulatory networks are very intricate and it is difficult to relate them
to final organ shapes. The Snapdragon corolla, in particular, has a very elaborated,
asymmetric shape. The wild-type and several morphogenetic mutants have been
successfully modeled using a continuous approach based on incremental elastic
growth [34]. This model removes mechanical stress at each step when using the
equilibrium configuration to define the following rest configuration. This stress is
induced by spatial gradients in growth rates (e.g. fast growing regions exert pressure
on other regions) and is called residual stress.

Models prescribing mechanical properties instead of growth rates generally
account for residual stress [12]. Such residual stress may have significant effect
on morphogenesis, for instance in the case of thin organs. Larger growth rates at the
edge of these organs induces compressive stress there, which leads to the buckling
of the edges of the organ into a wavy shape [2]. Such waviness of edges is observed
in leaves and petals of many species, such as in Lily [44, 45]. Based on this, it is
likely that a specific regulation of growth rates is required for leaves or petals to
remain flat [1, 52].

1.4.4 Feedback Through Mechanical Signals

Mechanics are at the core of morphogenesis: growing cells interact mechanically
during morphogenesis, relaxing and generating residual stress. Can this mechanical
stress have an impact on cell behavior? It has been shown that plant cells can
sense and react to mechanical stress by orientating cortical microtubule networks
in the direction of maximal principal stress [36], leading to the synthesis of
cellulose microfibrils in this direction and to the mechanical reinforcement of the
cell wall along mechanical stress. The consequences on organ morphogenesis were
investigated in Arabidopsis thaliana sepals [37]. The authors used an incremental
model, with a prescribed elastic modulus, and a mechanical anisotropy imposed by
the anisotropy of stress and following the same orientation. They obtained a gradient
in growth rates with a slowly growing tip and a fast growing base, leading to a
transverse tension in the tip and a mechanical reinforcement there. By comparing
simulations with mutants affected in sensing mechanical stress, they showed that
this mechanical feedback enabled the modulation of organ shape. Similarly, a vertex
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model accounting for cell divisions and viscoelastic periclinal cell walls helped
showing that cell divisions follow the direction of maximal stress in the shoot apical
meristem [46]. In all these studies, it was assumed that cells sensed mechanical
stress.

However, cells could sense either stress or strain. The two are usually correlated,
but the direction of maximal strain and maximal stress may differ when the material
is mechanically anisotropic. [13] investigated which of the two sensing mechanisms
was more plausible in the case of microtubule orientation and cellulose synthesis.
They modeled the plant epidermis as an elastic 2D surface embedded in 3D and
pressurized from inside by turgor, increasing elastic modulus along the direction
of the maximal stress or along maximal strain, and they examined the subsequent
elastic strain, considered as a proxy for growth. Simulations where the cellulose
orientation followed stress were in accordance with experimental observations,
whereas simulations where cellulose oriented depending on strain were less stable
and disagreed with observations.

Mechanical cues can also guide differentiation [26]. Models have started address-
ing how this may pattern growing organs. For instance, the epidermis of leaves is
stiffer than internal tissues, so that the effect of turgor is tension in the epidermis
and compression in internal tissues. Models assumed that such compression, when
above a threshold, leads to the differentiation of ground cells into pro-vascular
cells [21, 43]. This mechanism is sufficient to produce venation patterns that are
similar to the patterns observed in dicotyledon leaves [21, 43]. However, it also
established that biochemical patterning by auxin flow is crucial for venation [10]. It
may well be that the combination chemical signals and mechanical signals provides
robustness to vascular patterning.

1.4.5 Variability and Morphogenesis

All the models discussed so far are deterministic: They describe the expected
average behavior of the system. However, cells in an organ are variable [50]. We
here consider three examples of mechanical variability in flat organs.

Modeling the wheat leaf using a cell-based model which takes turgor pressure
and water movements into account, [71] showed that turgor pressure was variable
between the cells of the wheat leaf, and that this variability correlated with cell
identity.

In Arabidopsis sepals, a mutant showing more variability of shape was less
heterogenous spatially than wild-type concerning growth rates and mechanical
properties [40]. An incremental organ growth model with random mechanical
properties showed that increasing the correlation length of elastic modulus allowed
to retrieve the observed changes from wild type to mutant [40].

The growth of a leaf depends on its venation pattern, because veins are stiffer
than ground tissue. Areas surrounded by veins (areoles) grow at different rates,
depending on their geometry and on the thickness of neighboring veins, which


