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Preface

This volume highlights the mathematical research presented at the 2017 Association
for Women in Mathematics (AWM) Research Symposium. This event, fourth in the
biennial series of AWM Research Symposia, was held at the University of California
Los Angeles (UCLA) on April 8-9, 2017. The objective of the AWM Research
Symposia Series is to increase awareness of the mathematical achievements of
women in academia, industry, and government, as well as to provide a supportive
environment for female mathematicians, at all stages of their careers, to share
their research. Additionally, these symposia promote research collaboration, as
they facilitate the creation of new networks of women researchers and support the
research collaboration networks already existing in several areas of mathematics.
The symposia also include social events to enable networking among women in
different career paths, or at different career stages, while promoting the discussion
of prospects, visibility, and recognition.

About the 2017 AWM Research Symposium

The 2017 AWM Research Symposium was organized by Raegan Higgins, Kristin
Lauter, Magnhild Lien, Ami Radunskaya, Tatiana Toro, Luminita Vese, and Carol
Woodward. The Department of Mathematics at UCLA and the Institute for Pure
and Applied Mathematics (IPAM) hosted the event that featured 4 plenary talks
by distinguished women mathematicians (Table 1), 19 special sessions on a broad
range of areas in mathematics (Table 2), a poster sessions for graduate students and
recent Ph.D.s, a job panel, a reception, a banquet, and a student chapter event.
Eight of the 19 special sessions were organized by research networks supported
by the AWM ADVANCE grant: Women in Numbers (WIN), Women in Math
Biology (WIMB), Women in Noncommutative Algebra and Representation Theory
(WINART), Women in Numerical Analysis and Scientific Computing (WINASC),
Women in Computational Topology (WinCompTop), Women in Topology (WIT),

vii
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Table 1 2017 AWM Research Symposium: plenary talks

Speaker Title

Ruth Charney Searching for hyperbolicity

Svitlana Marboroda The hidden landscape of localization of eigenfunctions

Linda Petzold Inference of the functional network controlling circadian rhythm
Mariel Vazquez Understanding DNA topology

Women in Shape (WiSh), and Algebraic Combinatorixx (ACxx). For more details
about these and other Research Collaboration Networks for Women visit: https://
awmadvance.org/research-networks/.

The keynote speaker at the banquet was Maria Helena Noronha, who in a very
inspirational address described her journey from Brazil to Southern California, as
a researcher and as a mentor. During the banquet, the second AWM Presidential
Award was presented to Deanna Haunsperger, in recognition of her contribution to
advance the goals of AWM through her work in the Summer Math Program (SMP)
at Carleton College.

The symposium also included a full-day session titled Wikipedia edit-a-thon,
during which participants at the 2017 AWM Research Symposium took turns
writing Wikipedia entries to enhance the visibility of women in mathematics and
their contributions.

About This Volume

The first chapter in this volume corresponds to the opening plenary talk at the
symposium, Searching for Hyperbolicity by Ruth Charney. Her chapter is an
excellent introduction to geometric group theory, by a renowned expert in the field,
whose research contributed to the consolidation of geometric group theory as a
mathematical area.

The following three chapters comprise mathematical results presented at the
WINART Special Session: Representations of Algebras. Mee Seong Im and Angela
Wau present their work on representation theory of the generalized iterated wreath
product of cyclic groups (chapter “Generalized Iterated Wreath Products of Cyclic
Groups and Rooted Trees Correspondence”) and symmetric groups (chapter “Gen-
eralized Iterated Wreath Products of Symmetric Groups and Generalized Rooted
Trees Correspondence”). Chapter “Conway—Coxeter Friezes and Mutation: A Sur-
vey” consists of a survey on Conway-Coxeter friezes and mutation, in which Karin
Baur, Eleonore Faber, Sira Gratz, Khrystyna Serhiyenko, and Gordana Todorov
connect Conway-Coxeter friezes, introduced in combinatorics in the 1970s, and
cluster combinatorics, arising from the introduction of cluster algebras in the early
2000s.
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Table 2 2017 AWM Research Symposium: special sessions

Title

WIN—Work from Women in Numbers
WinCompTop: Applications of Topology
and Geometry

WIMB—From Cells to Landscapes:
Modeling Health and Disease

ACxx: Algebraic Combinatorics

WINASC: Recent Research Development
on Numerical Partial Differential Equations
and Scientific Computing

WINART: Representations of Algebras
WiSh: Shape Modeling and Applications
WIT—Topics in Homotopy Theory
Women in Sage Math

Women in Government Labs

EDGE-y Mathematics: A Tribute to Dr.
Sylvia Bozeman and Dr. Rhonda Hughes

SMPosium: A Celebration of the Summer

Organizers
Beth Malmskog, Katherine Stange

Emilie Purvine, Radmila, Sazdanovic,
Shirley Yap

Erica Graham, Carrie Manore

Héleéne Barcelo, Gizem Karaali
Chiu-Yen Kao, Yekaterina Epshteyn

Susan Montgomery, Maria Vega
Asli Genctav, Kathryn Leonard
Julie Bergner, Angelica Osorno
Alyson Deines, Anna Haensch
Cindy Phillips, Carol Woodward
Alejandra Alvarado, Candice Price

Alissa S. Crans, Pamela A. Richardson

ix

Mathematics Program for Women
The Many Facets of Statistics Applied, Pure | Monica Jackson, Jo Hardin

and BIG

History of Mathematics Janet Beery
Commutative Algebra Alexandra Seceleanu, Emily Witt
Biological Oscillations Across Time Scales Tanya Leise, Stephanie Taylor
Geometric Group Theory Pallavi Dani, Tullia Dymarz, Talia Fernos

Recent Progress in Several Complex
Variables

Purvi Gupta, Loredana Lanzani

Research in Collegiate Mathematics
Education

Shandy Hauk, Pao-sheng Hsu

Chapter “Orbit Decompositions of Unipotent Elements in the Generalized
Symmetric Spaces of SL,(IF,;)” features the work of Catherine Buell, Vicky
Klima, Jennifer Schaefer, Carmen Wright, and Ellen Ziliak, who jointly studied
the orbit decompositions of unipotent elements in the generalized symmetric
spaces of SL;(Fy). Their results were presented in the special session EDGE-y
Mathematics: A Tribute to Dr. Sylvia Bozeman and Dr. Rhonda Hughes. Chapter “A
Characterization of the U (€2, m) Sets of a Hyperelliptic Curve as 2 and m Vary” is
a paper on computational algebraic geometry by Christelle Vincent, and it was part
of the special session Women in Sage. In “A First Step Toward Higher Order Chain
Rules in Abelian Functor Calculus”, Christine Osborne and Amelia Tebbe take a
first step toward higher-order chain rules in abelian functor calculus, by proving
the second-order directional derivative chain rule using concrete computational
techniques. Their work was presented in the WIT-Topics in Homotopy Theory.
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In “DNA Topology Review” the volume transitions to mathematical biology,
as Garrett Jones and Candice Price survey how topology can be applied to
model biological processes, such as actions of proteins on DNA. Their work
introduces essential concepts together with a description of fundamental literature,
offering an excellent guide for undergraduate or graduate students, as well as for
scholars, interested in learning the basics of DNA topology. Chapter “Structural
Identifiability Analysis of a Labeled Oral Minimal Model for Quantifying Hepatic
Insulin Resistance” features a paper presented at the special session From Cells
to Landscapes: Modeling Health and Disease. Jacqueline Simens, Melanie Cree-
Green, Bryan Bergman, Kristen Nadeau, and Cecilia Diniz Behn present a structural
identifiability analysis of a labeled oral minimal model for quantifying hepatic
insulin resistance. Their research contributes to the understanding of aging, trauma,
and many diseases, such as obesity and type 2 diabetes.

The following two chapters correspond to the special session Biological Oscilla-
tions Across Time Scales. Chapter “Spike-Field Coherence and Firing Rate Profiles
of CAl Interneurons During an Associative Memory Task” features a study of
the spike-field coherence and firing rate profiles of CAl interneurons during an
associative memory task, by Pamela Riviere and Lara Rangel. Their work analyzes
whether inhibitory interneurons from the CA1 region of the hippocampus contain
information about task dimensions in their firing rates. Following this work is a
computational study of learning-induced sequence reactivation during sharp-wave
ripple activity, as observed during sleep states, by Paola Malerba, Katya Tsimring,
and Maxim Bazhenov. The authors use a model of spiking neuron networks of
excitatory and inhibitory neurons in the CA3 and CA1 regions of the hippocampus
to study the firing behavior of neurons during sharp-wave-ripple activity.

Chapter “Learning-Induced Sequence Reactivation During Sharp-Wave Ripples:
A Computational Study” corresponds to a presentation in the special session
WINASC: Recent Research Development on Numerical Partial Differential Equa-
tions and Scientific Computing. It consists of the work by Beatrice Riviere and Xin
Yang using a DG method for the simulation of CO, storage in a saline aquifer.
Their work has important practical applications, since porous media, such as saline
aquifers or oil and gas reservoirs, are a major cause of the excessive amount of
carbon dioxide in the atmosphere.

In “A DG Method for the Simulation of CO, Storage in Saline Aquifer”, Beth M.
Campbell Hetrick presents a study of regularization for an ill-posed inhomogeneous
Cauchy problem, extending previous results for the homogeneous problem to the
inhomogeneous case. While results and numerical experiments in Hilbert space are
plentiful, this chapter contains regularization results for inhomogenous ill-posed
problems for true Banach space, where little is known and many exciting problems
await solutions.

The 2017 AWM Research Symposium included a special session on mathematics
education comprising six presentations on various theoretical perspectives on the
nature of human cognition and knowledge structures. Research methods ranged
from individual interview and classroom observation to national survey and in-depth
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study of a particular instance or case. The span of topics covered calculus,
combinatorics, linear algebra, foundations of proof, application of mathematics to
teaching, and development of future teachers. This volume concludes with a chapter
in which Shandy Hauk, Chris Rasmussen, Nicole Engelke Infante, Elise Lockwood,
Michelle Zandieh, Stacy Brown, Yvonne Lai, and Pao-sheng Hsu offer highlights
of the six presentations in this session.
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Searching for Hyperbolicity )

Check for
updates

Ruth Charney

Abstract This paper is an expanded version of a talk given at the AWM Research
Symposium 2017. It is intended as a gentle introduction to geometric group theory
with a focus on the notion of hyperbolicity, a theme that has inspired the field from
its inception to current-day research. The last section includes a discussion of some
current approaches to extending techniques from hyperbolic groups to more general
classes of groups.

1 Introduction

This paper is an expanded version of a talk given at the AWM Research Symposium
2017. It is intended as a gentle introduction to geometric group theory for the non-
expert, with a focus on the notion of hyperbolicity. Geometric group theory came
into its own in the 1990s, in large part due to a seminal paper of Mikhail Gromov
[14]. While the field has grown considerably since that time, hyperbolicity remains
a central theme and continues to drive much current research in the field.

As the name suggests, geometric group theory provides a bridge between groups
viewed as algebraic objects and geometry. Groups arise in all areas of mathematics
and can be described in many different ways. Some arise purely algebraically (such
as certain matrix groups), others have combinatorial descriptions (via presentations),
and still others are defined topologically (such as fundamental groups of topological
spaces). Geometric group theory is based on the principle that if a group acts
as symmetries of some geometric object, then one can use geometry to better
understand the group.

For many groups, it is easy to find such an action. The symmetric group on n-
letters acts by symmetries on an n-simplex and the dihedral group of order 2n is the
symmetry group of a regular n-gon. This is also the case for some infinite groups.

R. Charney (P<)
Brandeis University, Waltham, MA, USA
e-mail: charney @brandeis.edu
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The free abelian group Z" acts by translation on R” (preserving the Euclidean
metric), and the free group on n-generators acts by translation on a regular tree
of valence 2n with edges of length one.

So the first question one might ask is, when can one find such an action?
Given an abstract group G, can we always realize G as a group of symmetries of
some geometric object? As we will see below, the answer is yes. However, some
geometric objects are more useful than others for this purpose. In the early 1900s,
Max Dehn was interested in groups arising as fundamental groups of hyperbolic
surfaces. These groups act by isometries on the hyperbolic plane HZ?. Dehn used
the geometry of the hyperbolic plane to prove some amazing properties of these
groups. We will discuss one of these results in Sect. 3 below. Decades later, these
ideas motivated Gromov, who introduced the notion of a hyperbolic metric space.
He showed that the properties that Dehn deduced held more generally for any group
acting nicely on such a space.

Gromov’s notion of hyperbolic spaces and hyperbolic groups have been much
studied since that time. Many well-known groups, such as mapping class groups
and fundamental groups of surfaces with cusps, do not meet Gromov’s criteria, but
nonetheless display some hyperbolic behavior. In recent years, there has been much
interest in capturing and using this hyperbolic behavior wherever and however it
occurs.

In this paper, I will review some basic notions in geometric group theory, discuss
Dehn’s work and Gromov’s notion of hyperbolicity, then introduce the reader
to some recent developments in the search for hyperbolicity. My goal is to be
comprehensible, not comprehensive. For those interested in learning more about
the subject, I recommend [1] and [6] for a general introduction to geometric group
theory and [7] and [13] for more detail about hyperbolic groups.

2 Geodesic Metric Spaces, Isometries and Quasi-Isometries

We begin with some basic definitions. Let X be a metric space with distance function
d: X x X - R. A geodesic in X is a distance preserving map from an interval
I C Rinto X, thatis,amap « : I — X such that forall #1,1, € I,

d(a(ty), a(r)) = |t — 1.

The interval / may be finite or infinite. This definition is analogous to the notion of
a geodesic in a Riemannian manifold. In particular, a geodesic between two points
in X is a length-minimizing path.

A geodesic metric space is a metric space X in which any two points are
connected by a geodesic. For such metric spaces, the distance is intrinsic to the
space; the distance between any two points is equal to the minimal length of a path
connecting them. Often, we also require that our metric space be proper, that is,
closed balls in X are compact.
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Example I Consider the unit circle S! in the plane. There are two natural metrics
we could put on S'. The first is the induced Euclidean metric: the distance between
two points is the length of the straight line in R? between them. The other is the arc
length metric: the distance between two points is the length of the (shortest) circular
arc between them. The first of these is not a geodesic metric (since, for example,
there is no path in S' of length 2 connecting a pair of antipodal points) whereas the
second one is geodesic.

Example 2 Suppose I is a connected graph. There is a natural geodesic metric
on I" obtained by identifying each edge with a copy of the unit interval [0, 1] and
defining the distance between any two points in I” to be the length of the shortest
path between them. This metric is proper if and only if each vertex has finite valence.

Example 3 Let M be a complete Riemannian manifold. Then the usual distance
function given by minimizing path lengths is a proper, geodesic metric on M.

A map between two metric spaces f : X — Y is an isometry if it is bijective and
preserves distances. In lay terms, an isometry of X to itself is a “symmetry” of X.
These symmetries form a group under composition.

Now suppose we are given a group G. Our first goal is to find a nice metric
space on which G acts as a group of symmetries. Sometimes, such an action
arises naturally. For example, suppose G is the fundamental group of a Riemannian
manifold M. Then passing to the universal cover M, we get an action of G by deck
transformations on M. This action is distance preserving since it takes geodesic
paths to geodesic paths.

More generally, the same works for the fundamental group of any geodesic
metric space X that admits a universal cover. The universal cover X inherits a
geodesic metric such that the projection to X is a local isometry, and the deck
transformations act isometrically on X.

Example 4 Consider the free group on two generators F». This group is the
fundamental group of a wedge of two circles, st v sl so it acts by isometries
on the universal cover, namely the regular 4-valent tree.

In general, a group G can act by isometries on a variety of different geodesic
metric spaces. Some of these actions, however, are not helpful in studying the group.
For example, any group acts on a single point! To have any hope that the geometry
of the space will produce information about the group, we will need some extra
conditions on the action.

Definition 1 A group G is said to act geometrically on a metric space X if the
action satisfies the following three properties.

* isometric: Each g € G acts as an isometry on X.

* proper: For all x € X, there exits r > Osuchthat{g € G | B(x,r)NgB(x,r) #
#} is finite, where B(x, r) denotes the ball of radius r centered at x.

* cocompact: There exists a compact set K C X whose translates by G cover X
(or equivalently, X/ G is compact).
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In particular, the fundamental group of a compact metric space X acts geo-
metrically on the universal covering space X. But now suppose that our group G
arises purely algebraically. How can we find a metric space X on which G acts
geometrically? The following is a construction that works for any finitely generated
group.

Choose a finite generating set S for G. Define the Cayley graph for G with
respect to S to be the graph I's(G) whose vertices are in one-to-one correspondence
with the elements of G and for each s € §, g € G, there is an edge (labelled by )
connecting the vertex g to the vertex gs.

G acts on ['5(G) by left multiplication on the vertices. That is, 7 € G maps the
vertex labelled g to the vertex labelled hg. Note that / takes edges to edges, the
edge connecting g to gs maps to the edge connecting hg to hgs. Thus, if we put
the path-length metric on I's(G) as described above, then this action preserves the
metric and is easily seen to be geometric.

Example 5 Consider the free abelian group Z* with generating set § =
{(1,0), (0, 1)}. Viewing Z? as the set of integer points in the plane R?, we can
identify the Cayley graph of Z? with the square grid connecting these points.
Distances are measured by path lengths in this grid, so the distance from (0, 0) to
(n,m) is |n| 4+ |m|. Note that there are, in general, many geodesic paths between
any two points. See Fig. 1.

Example 6 Let F> be the free group with generating set S = {a, b}. View F; as the
fundamental group of the wedge of two circles labelled a and b. Lifting these labels
to the universal covering space, we get a 4-valent tree, as in Fig. 2, with every red
edge labelled a and every blue edge labelled b (Metrically, you should picture every
edge as having the same length.) This tree is precisely the Cayley graph I's(F>). To

Fig. 1 Geodesics from x to y ¥
in the Cayley graph of Z?

Fig. 2 Cayley graph of F» 4
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see this, choose a base vertex v and identify each vertex with the element of F, that
translates v to that vertex.

Clearly, the Cayley graph depends on the choice of generating set. For example,
were we to add a third generator (1, 1) to our generating set for Z2, the Cayley graph
would get additional edges which cross the grid diagonally and would hence change
the distance between vertices.

This could be a cause for concern; we seek geometric properties of the Cayley
graph that are intrinsic to the group, so they should not be dependent on a choice
of generating set. Luckily, in the case of a finitely generated group, replacing one
finite generating set by another does not distort distances too badly. This leads to a
fundamental concept in geometric group theory.

Definition 2 A map f : X — Y between two metric spaces is a quasi-isometric
embedding if there exists constants K, C such that for all x, z € X

1
?dx(x, ) —C =dy(f(x), f(z)) = Kdx(x,2) +C.

If in addition, every point in Y lies within C of some point in f(X), then f is a
quasi-isometry. In this case we write X ~p; Y.

It can be shown that any quasi-isometry has a “quasi-inverse,” so the relation
X ~@r Y is an equivalence relation. We remark that quasi-isometries need not be
continuous maps.

Example 7 Consider the inclusion of the integer grid into the plane R2. This is a
quasi-isometry. The quasi-inverse is a discontinuous map sending the interior of
each square to its boundary.

Example 8 Consider the graph in Fig. 3. Collapsing each of the triangles to a point
gives a quasi-isometry of this graph onto the 3-valent tree. We call such a graph a
quasi-tree.

It is an easy exercise to show that if G is a finitely generated group, then the
Cayley graphs with respect to different finite generating sets are all quasi-isometric.
(In fact, they are bi-Lipschitz, i.e., we can take the maps to be continuous and the
constant C to be zero.) Thus, identifying G with the vertex set in its Cayley graph,
we can view G itself as a metric space and this metric is well-defined up to quasi-
isometry. In fact, we have the following more general statement.

Ql

Fig. 3 A graph quasi-isometric to a tree
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Proposition 1 (Milnor-Svarc Lemma) Suppose G acts geometrically on a
geodesic metric space X. Then G is finitely generated and for any choice of
basepoint xg € X, the map G — X taking g — gxo is a quasi-isometry.

As a result, the notion of quasi-isometry is a fundamental concept in geometric
group theory. The properties of a group that one can hope to glean from its action
on a metric space are generally properties preserved by quasi-isometries. Moreover,
since any finite index subgroup H < G is quasi-isometric to G, often the strongest
statement we can make regarding a property (P) is that our group G is virtually (P),
meaning that some finite index subgroup of G satisfies property (P).

The classification of finitely generated groups up to quasi-isometry is a meta-
problem in the field. It is easy to see that any two groups that are commensurable
(i.e., they contain subgroups of finite index that are isomorphic) are quasi-isometric.
So arelated problem is the question of rigidity: for a given group G, is every group
quasi-isometric to G also commensurable to G?

3 Hyperbolic Groups

Once we have our group acting geometrically on a metric space, we can ask
how geometric properties of the space are reflected in algebraic or combinatorial
properties of the group. The classical example of this comes from the work of
Max Dehn [12]. Dehn was interested in fundamental groups of surfaces. A closed
orientable surface of genus g > 2 (i.e. a torus with g holes) can be given a
Riemannian metric of constant curvature —1 and its universal covering space can
be identified with the hyperbolic plane H?2. This gives a geometric action of the
fundamental group on H?. Using geometric properties of the hyperbolic plane, Dehn
proved some very strong combinatorial properties for these groups. I will describe
two of his results here.

One way to describe a group is by means of a presentation. Given a set of
generators S for a group G, there is a natural surjection from the free group F(S)
onto G. The kernel K of this map is a normal subgroup of F(S). Formally, a
presentation of G consists of a generating set S, together with a set R C F(S)
such that R generates K as a normal subgroup, or in other words, G is the quotient
of F(S) by the normal closure of R. The elements of R are called relators. We
denote such a presentation for G by writing

G=(S|R).

In practice, we usually indicate R by a set of equations that hold in G. Viewing
elements of F(S) as “words” in the alphabet S U S~ the elements in R are words
that are equal to the identity in G. However, many other words, such as products
and conjugates of those in R, are also equal to the identity in G. The idea is that all
relations among the generators that hold in G should be consequences of the ones
listed in the presentation.
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Here are some examples. The cyclic group of order n has presentation
Z/nZ = (s|s"=1)
while the free abelian group on two generators has presentation
7Z* = (a,b | ab = ba).
Can you recognize the following group?
G = (u,v|u4= 1,u2=v3).

It turns out that this group is isomorphic to the special linear group SL(2, Z). The
isomorphism is given by identifying

0-1 0-1
u = V=
10 11
Every group can be described by a presentation, though in general S and R need
not be finite. Presentations can be extremely useful, and are the starting point for
combinatorial group theory. On the other hand, presentations can sometimes be

very mysterious and frustratingly difficult to decipher. For example, consider the
following questions.

1. The Word Problem: Given a finite presentation (S | R) and a word w in F(S), is
there an algorithm to decide whether w represents the identity element in G?

2. The Isomorphism Problem: Given two finite presentations (S | R) and (S’ | R'),
is there an algorithm to decide whether the groups they represent are isomorphic?

It turns out that there are groups for which no such algorithms exist. In this case
we say the Word Problem (or the Isomorphism Problem) is unsolvable. What Dehn
showed, using the geometry of hyperbolic space, was that for fundamental groups
of hyperbolic surfaces, both of these problems are solvable. Moreover, he showed
that for an appropriate choice of presentation, the word problem has a particularly
nice solution. Namely, any word w € F(S) that represents the identity element in G
must contain more than half of a relator r, and hence can be shortened by applying
the equation » = 1. It follows that the word problem is solvable in linear time, that
is, the time it takes to decide whether w € F(S) represents the identity element in
G, is linear in the length of w. An algorithm of this type is now known as a Dehn’s
algorithm.

Some 75 years later, Mikhail Gromov made a startling observation: the only
property of the hyperbolic plane that Dehn really needed to derive his results was the
fact that triangles in H?, no matter how far apart their vertices may be, are always
“thin.” And from this observation, the modern field of hyperbolic geometry (and
more generally geometric group theory) was born.
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What do we mean by “thin”? Let X be any geodesic metric space. A triangle
T(a,b,c) in X consists of three vertices a,b,c € X together with a choice of
geodesics connecting them.

Definition 3 Let X be a geodesic metric space and let 6 > 0. We say a triangle
T(a, b, c) in X is §-thin if each side of T lies in the union of the §-neighborhoods
of the other two sides. (See Fig. 4.)

One can show that in HZ, every triangle, even those with vertices at infinity (ideal
triangles) are §-thin for § = In(1 + V/2). This fact was crucial to Dehn’s work.
This brings us finally to Gromov’s notion of hyperbolicity.

Definition 4 A geodesic metric space X is 8-hyperbolic if every triangle in X is
8-thin. We say X is hyperbolic if it is 6-hyperbolic for some §. A finitely generated
group G is hyperbolic if it acts geometrically on a hyperbolic metric space.

One can show that if two spaces are quasi-isometric and one of them is
hyperbolic, then so is the other (though the constant 6 may change). In particular,
a finitely generated group G is hyperbolic if and only if some (hence any) Cayley
graph of G is hyperbolic.

Example 9 We begin with a trivial example. Any bounded metric space X is §-
hyperbolic where § is the diameter of X, and hence any finite group is hyperbolic.

Example 10 Let X be an infinite tree. Then for any three points a, b, ¢ in X, the
triangle connecting them degenerates into a tripod and is hence 0-hyperbolic! (See
Fig.5.) Since the Cayley graph of a free group is a tree, it follows that finitely
generated free groups are hyperbolic.

Fig. 4 A §-thin triangle

Fig. 5 A triangle in a tree is
0-thin
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Example 11 Recall the presentation of SL(2,Z) given above. The center of
SL(2,7) is the order two subgroup generated by u?> = v3. Modding out by this
subgroup gives the group PSL(2, Z) with presentation

PSL2,Z) = (u,v | u>=v>=1).

The Cayley graph of PSL(2, Z) with respect to this generating set is the quasi-tree
drawn in Fig. 3 (continued out to infinity), with the edges of triangles labelled v and
the remaining edges labeled u. SL(2, Z) also acts geometrically on this quasi-tree
(with the center acting trivially), so SL(2,7Z) and PSL(2, Z) are both hyperbolic
groups.

Example 12 Here is a non-example. Let R?> be the plane with the standard
Euclidean metric. Taking larger and larger isosceles right triangles, we can see that
there is no bound on “thinness.” Since the Cayley graph of Z? is quasi-isometric
to R?, Z? is not hyperbolic. Indeed, it is a theorem that a hyperbolic group cannot
contain a copy of Z?.

Now suppose that we are given a hyperbolic group G. What does the geometry
tell us about the group? Here is a list of some consequences of hyperbolicity. We
refer the reader to [3] and [7] for proofs and additional references.

. G has a finite presentation.

. G has a Dehn’s algorithm, hence a linear time solution to the Word Problem.

. The Isomorphism Problem is solvable for the class of hyperbolic groups.

. The centralizer of every element of G is virtually cyclic.

. G has at most finitely many conjugacy classes of torsion elements.

. For any finite set of elements gy, ... gx in G, there exists n > 0 such that the set
{g] ... gL} generates a free subgroup of rank at most k.

. For n sufficiently large, H" (G; Q) = 0.

8. If G is torsion-free, it has a finite K (G, 1)-space (i.e., a finite CW-complex with

fundamental group G and contractible universal covering space).

AN B WND =

~

The proofs of these properties are beyond the scope of this paper, but the
conclusion should be clear: geometry can have strong implications for algebraic
and combinatorial properties of a group.

4 Beyond Hyperbolicity

Classical hyperbolic geometry and Gromov’s generalization to §-hyperbolic spaces
have provided powerful tools for studying hyperbolic groups. But this class of
groups is very special. For example, any group containing a subgroup isomorphic
to Z? cannot be hyperbolic (see property (4) above). In recent years, there has been
much interest in generalizing some of these techniques to broader classes of groups.
Gromov himself introduced a notion of “non-positive curvature” for geodesic metric
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spaces, called CAT(0) spaces, and groups acting on these spaces have also been
extensively studied. CAT(0) geometry, for example, played a major role in the recent
work of Agol, Wise, and others leading to a proof of the Virtual Haken Conjecture,
the last remaining piece in Thurston’s program to classify three-manifolds. But this
is a topic for another day.

Other approaches to generalizing the theory of hyperbolic groups involve looking
at groups that act on hyperbolic spaces, but where the actions are not geometric;
instead, they satisfy some weaker conditions. This includes, for example, “relatively
hyperbolic groups,” “acylindrically hyperbolic groups,” and “hierarchically hyper-
bolic groups.” The first of these is modeled on fundamental groups of hyperbolic
manifolds with cusps; the others are inspired by mapping class groups and their
actions on curve complexes. Some very nice introductions to these topics can be
found in [2, 16, 17].

My own work in this area has focused on a somewhat different approach to
capturing hyperbolic behavior in more general spaces and groups. Let’s begin with
an example.

Example 13 Let Z be the space obtained by gluing a circle and a torus together at
a single point,

Z=S8"vT2

Let Z be its universal cover. In Z, the inverse image of the torus consists of infinitely
many copies of the Euclidean plane (which we refer to as “flats”) and emanating
from each lattice point in each of these planes is a line segment which projects to
the circle. The result is a tree-like configuration of planes and lines (see Fig. 6),
which we will refer to as the “tree of flats.” Triangles lying in a single flat can

Fig. 6 Tree of flats
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be arbitrarily “fat” whereas triangles whose sides lie mostly along the vertical
lines are “thin.” Thus, in Z, we have hyperbolic-like directions, and non-hyperbolic
directions. Intuitively, the more we travel vertically, the more hyperbolic it feels.

We are interested in identifying geodesics in a metric space X that behave like
geodesics in a hyperbolic space. A good way to encode such geodesics is by means
of a boundary. In general, unbounded metric spaces do not come equipped with a
boundary. For example, in the hyperbolic plane (or the Euclidean plane) one can
travel forever in any direction. To create a boundary for such a space, we need to
add a point for each “direction to infinity.” In the case of the hyperbolic or Euclidean
plane, this space of directions forms a circle. Adding this circle to the plane “at
infinity” compactifies the space.

It turns out that this idea generalizes nicely to any hyperbolic metric space. For a
8-hyperbolic space X, we define the boundary as follows. A ray in X is an isometric
embedding « : [0, 0c0) — X. As a set, the boundary of X is defined to be

0X ={o | «a:[0,00) - X isaray}/ ~

where @ ~ B if « and § remain bounded distance from each other. In the Euclidean
plane, for example, two rays are equivalent if and only if they are parallel.

To topologize 0 X, think of two rays as representing nearby points in the boundary
if they remain close to each other for a long time. More precisely, define a
neighborhood N (o, R) of aray « to be the set of rays § such that 8(¢) lies within 2§
of a(t) for 0 <t < R. As R increases, these neighborhood get smaller and smaller,
and together, they form a neighborhood basis for a topology on 0X.

For example, the boundary of the hyperbolic plane H? is a circle while the
boundary of an infinite tree is a Cantor set.

From the geometric group theory viewpoint, a key property of the boundary of a
hyperbolic space is quasi-isometry invariance.

Theorem 1 Let f : X — Y be a quasi-isometry between two hyperbolic metric
spaces. Then f induces a homeomorphism of : 0X = 9Y. In particular, a
hyperbolic group G has a well-defined boundary, namely the boundary of a Cayley
graph of G.

These boundaries have many nice properties and applications. The boundary
gives rise to a compactification of X, X = X U 9X, and it provides a powerful
tool for studying the dynamics of groups actions, rigidity theorems, geodesic flows,
etc.

In the quest to extend the techniques of hyperbolic geometry to more general
spaces and groups, it is natural to ask whether analogous boundaries can be defined
in more general contexts. Certainly we can consider equivalence classes of geodesic
rays in any geodesic metric space X. However, if X is not hyperbolic, many things
can go wrong. In some cases, it is not even clear how to define a topology on this
set as the neighborhoods described above need not satisfy the requirements for a
neighborhood basis.
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Moreover, even when there is a nice topology on 90X, other fundamental
properties of hyperbolic boundaries can fail to hold. Consider, for example, the
boundary of the Euclidean plane. This boundary is a circle and each point on the
boundary can be represented by a unique ray based at the origin. As observed above,
it provides a compactification of the plane. That’s the good news. Here is some bad
news.

* Many isometries (in particular all translations) act trivially on the boundary.

e The only pairs of points on the boundary that can be joined by a bi-infinite
geodesic are pairs of antipodal points.

* A quasi-isometry of the plane to itself need not extend to a map on the boundary.
For example, the map f : R*> — R? taking re’?  re!@tn0) s a quasi-
isometry which twists each ray emanating from the origin into a spiral.

In short, many of the properties of hyperbolic boundaries that permit applications to
dynamics, rigidity, etc. fail to hold for this boundary.

Most significantly from the point of view of geometric group theory, quasi-
isometry invariance fails miserably for non-hyperbolic boundaries. There are
examples of groups that act geometrically on two CAT(0) spaces (spaces of non-
positive curvature) whose boundaries are not homeomorphic [11]. Thus, we don’t
have a well-defined notion of a boundary for these groups.

What goes wrong is the failure of the Morse property. A quasi-isometry f : X —
Y of hyperbolic spaces takes a geodesic ray in X to a quasi-geodesic ray in Y, that
is, a quasi-isometric embedding of the half-line R* = [0, co) into Y. The Morse
property guarantees that this quasi-geodesic ray lies close to some geodesic ray and
hence determines a well-defined point at infinity.

Definition 5 A ray (or bi-infinite geodesic) « in X is Morse if there exists a function
N : RT x Rt — R™ such that for any (K, C)-quasi-geodesic 8 with endpoints on
o, B lies in the N(K, C)-neighborhood of «. The function N is called a Morse
gauge for o and we say that o is N-Morse.

If X is hyperbolic, then there exists a Morse gauge N such that every ray in
X is N-Morse. This property is the key to proving quasi-isometry invariance for
boundaries of hyperbolic spaces, and it plays a key role in the proofs of many
other properties of hyperbolic spaces as well. If X is not hyperbolic, the Morse
property may fail for some (or perhaps all) rays in X. On the other hand, many non-
hyperbolic spaces contain a large number of Morse rays. Consider, for example, our
“tree of flats” described above. It can be shown that a ray that spends a uniformly
bounded amount of time in any flat is Morse. We view Morse rays as “hyperbolic-
like” directions in X. Indeed, it can be shown that these rays share many other
nice properties with rays in hyperbolic space [4, 10]. For example, if two sides of a
triangle are N-Morse, then the triangle is §-thin where § depends only on the Morse
gauge N.



Searching for Hyperbolicity 13

This brings us to the Morse boundary. The Morse boundary, 0y X can be defined
for any proper geodesic metric space X. As a set, it consists of equivalence classes
of Morse rays,

InX ={a|a:[0,00) - X isaMorseray}/ ~

where the equivalence ~ is defined as before. The topology is more subtle. For a
sequence of rays {«;} to converge to « in this topology, they must not only converge
pointwise, they must also be uniformly Morse, that is, there exists a Morse gauge N
such that all of the «; are N-Morse.

This boundary was first introduced for CAT(0) spaces by myself and Harold
Sultan in [4] and shown to be quasi-isometry invariant. This was then generalized
to arbitrary proper geodesic metric spaces by Matt Cordes in [8].

Theorem 2 Let f : X — Y be a quasi-isometry between two proper geodesic
metric spaces. Then f induces a homeomorphism of : 9y X — 9y Y. In particular,
om G is well-defined for any finitely generated group.

Example 14

(1) If X is hyperbolic, then all rays are N-Morse for some fixed N. So in this case,
3y X = 08X, the usual hyperbolic boundary. For example, 9,H? is a circle.

(2) For X = RR? the Euclidean plane, there are no Morse rays at all, so 9y X = .

(3) Let Z be the “tree of flats” from Example 13. Then the Morse geodesics in Z
are those that spend a uniformly bounded amount of time in any flat and the
maximum time spent in a flat is determined by the Morse gauge. Thus, for a
given Morse gauge N, the N-Morse rays emanating from a fixed basepoint zg
lie in a subspace quasi-isometric to a tree. It follows that these rays determine
a Cantor set in the boundary and the Morse boundary of Z is the direct limit
of these Cantor sets. Note that since Z is the universal cover of S! Vv T2, the
fundamental group Z % Z? = m1(S' v T?) acts geometrically on Z. Hence by
the theorem above, the Morse boundary of the group Z s Z? is homeomorphic
to the Morse boundary of Z.

The Morse boundary was designed to capture hyperbolic-like behavior in non-
hyperbolic metric spaces and to give a well-defined notion of a boundary for a
finitely generated group G. When the Morse boundary is non-trivial, it provides
a new tool for studying these spaces and groups. It can be used, for example, to
study the dynamics of isometries [15] and to determine when two groups are quasi-
isometric [5]. It can also be used to study geometric properties of subgroups H < G
[10]. For a survey of recent results on Morse boundaries, see [9].

Geometric group theory is a broad and growing area of mathematics. This article
is intended only as a snapshot of some themes that run through the field. I invite you
to investigate further!

Acknowledgements R. Charney was partially supported by NSF grant DMS-1607616.



14

R

1

2.

10.

11.

12.

13.

14.

15.

16
17

R. Charney

eferences

. B. Bowditch, A Course on Geometric Group Theory. MS] Memoirs, vol. 16 (Mathematical
Society of Japan, Tokyo, 2006)
B. Bowditch, Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016 [66 pp.]
(2012)

. M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der Mathe-
matischen Wissenschaften, vol. 319 (Springer, Berlin, 1999)

. R. Charney, H. Sultan, Contracting boundaries of CAT(0) spaces. J. Topol. 8, 93-117 (2013)

. R. Charney, M. Cordes, D. Murray, Quasi-mobius homeomorphisms of Morse boundaries (Jan
2018). arXiv:1801.05315

.M. Clay, D. Margalit (eds.), Office Hours with a Geometric Group Theorist (Princeton
University Press, Princeton, 2017)

. M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes: Les groupes
hyperboliques de Gromov. Lecture Notes in Mathematics, vol. 1441 (Springer, Berlin, 1990)

. M. Cordes, Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn. 11(4),
1281-1306 (2017)

. M. Cordes, A survey on Morse boundaries and stability, in Beyond Hyperbolicity. LMS Lecture
Notes. arXiv:1704.07598 (to appear)
M. Cordes, D. Hume, Stability and the Morse boundary. J. Lond. Math. Soc. (2) 95(3), 963-988
(2017)
C. Croke, B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries. Topology
39, 549-556 (2000)
M. Dehn, Papers on Group Theory and Topology. Translated from the German and with
introductions and an appendix by J. Stillwell (Springer, New York, 1987)
E. Ghys, P. de la Harpe, Sur les groupes hyperboliques d’aprés Mikhael Gromov (Bern, 1988).
Progress in Mathematics, vol. 83 (Birkhduser, Boston, 1990)
M. Gromov, Hyperbolic groups, in Essays in Group Theory. Mathematical Sciences Research
Institute Publications, vol. 8 (Springer, New York, 1987), pp. 75-263
D. Murray, Topology and dynamics of the contracting boundary of cocompact CAT(0) spaces.
Pac. J. Math. arXiv:1509.09314 (to appear)

. D. Osin, Acylindrically hyperbolic groups. Trans. Am. Math. Soc. 368(2), 851-888 (2016)

. A. Sisto, What is a hierarchically hyperbolic space? (July 2017). arXiv:1707.00053



Generalized Iterated Wreath Products )
of Cyclic Groups and Rooted Trees e
Correspondence

Mee Seong Im and Angela Wu

Abstract Consider the generalized iterated wreath product Z,, 2 Z;, 2. . .2 Z,, where
ri € N. We prove that the irreducible representations for this class of groups are
indexed by a certain type of rooted trees. This provides a Bratteli diagram for the
generalized iterated wreath product, a simple recursion formula for the number
of irreducible representations, and a strategy to calculate the dimension of each
irreducible representation. We calculate explicitly fast Fourier transforms (FFT) for
this class of groups, giving the literature’s fastest FFT upper bound estimate.
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1 Introduction

Representations of groups appear naturally in nature, more often than groups
themselves. They appear in the form of a linear representation, a permutation
representation, and automorphisms of an algebra, a group, a variety or scheme, or
a manifold. For example, one can study functions on the circle S 1 which could
be thought of as a group under addition, which form representations of S'. Such
functions could also be thought of as periodic functions on the set R of real numbers,
and the decomposition of the space of functions on S' is known as the theory of
Fourier series. One can also study the additive group R of real numbers acting on
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