Bariatric Endocrinology

Evaluation and Management of Adiposity, Adiposopathy and Related Diseases

J. Michael Gonzalez-Campoy Daniel L. Hurley W. Timothy Garvey Editors

Bariatric Endocrinology

J. Michael Gonzalez-Campoy
Daniel L. Hurley • W. Timothy Garvey
Editors

Bariatric Endocrinology

Evaluation and Management of Adiposity, Adiposopathy and Related Diseases

Editors
J. Michael Gonzalez-Campoy
MNCOME
Eagan, MN
USA

Daniel L. Hurley Mayo Clinic Rochester, MN USA

W. Timothy Garvey University of Alabama - Birmingham Birmingham, AL USA

The Birmingham VA Medical Center Birmingham, AL USA

ISBN 978-3-319-95653-4 ISBN 978-3-319-95655-8 (eBook) https://doi.org/10.1007/978-3-319-95655-8

Library of Congress Control Number: 2018957471

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our colleagues, especially our predecessors, whose inquisitive minds, work, and dedication to the advancement of science have led to the publication of this textbook.

To our patients with overweight, obesity, and adiposopathy, for whom we continue this work – they inspire and motivate us.

And to our families, for their unwavering love and support – they allow us to pursue our scientific and medical endeavors, for the common good.

Preface

At its annual meeting in 2017 the United Nations Educational, Scientific and Cultural Organization (UNESCO) inscribed the Caves and Ice Age Art in Swabian Jura, Germany on the World Heritage List. The caves have Aurignacian layers which date from 43,000 to 33,000 years ago. Among the items found in these ancient layers is a 6 cm tall statuette of a woman, carved out of mammoth ivory. This is the oldest known statue depicting a human being, and the woman clearly has obesity. Known as the Venus of Hohle Fels, the statuette helps us understand that for as long as there has been humanity, there have been individuals who can accumulate adipose tissue. Ancient civilizations, including the Egyptians and the Greek, came to regard obesity as a disease, a concept which was forgotten and which up until recently was still the subject of intense debate.

Over the years the condition of having excess adipose tissue has been named obesity, fatness, adiposity, overweight, corpulence, plumpness, chubbiness, stoutness, portliness, heaviness, tubbiness, flabbiness, largeness, chunkiness, heftiness, and bulkiness. Obesity was considered a reflection of success and wealth – those with the means could afford the regular ingestion of excess calories, and perhaps the service of others, leading to the accumulation of fat mass. Historical figures like King Henry VIII of England exemplified obesity as a disease – he was known to be ill from his obesity, and his gout attacks are chronicled for posterity.

With wars and worldwide famine, with infectious diseases that limited longevity, with limitations of the food supply, and with lifestyles that demanded physical activity, the historical prevalence of obesity had been limited. Individuals with obesity were featured attractions in traveling circuses, including Jack "The Happy Fat Man" Eckert and the "Humongous Circus Fat Man 'Tom Ton'", both of whom achieved notoriety at the turn of the nineteenth century.

With the industrialization of the world, humanity changed. Over the second half of the twentieth century, the food supplies of industrialized nations started to provide a steady stream of nutrients. There also developed myriads of disincentives for physical activity. With the advent of public health interventions, including waste disposal and water purification, the burden of infectious diseases significantly abated. And with the implementation of pasteurization, sterile techniques, and

viii Preface

antibiotic treatments, the lifespan of human beings has been significantly prolonged. This all has allowed for the development of chronic diseases, including overweight and obesity, over the extended years of life for modern day humans.

We now understand that overweight and obesity represent a continuum of a complex, multifactorial disease that leads to the loss of health for most individuals who have it. Further, we now also realize that adiposity (the accumulation of fat mass) is but one aspect of the disease. The discovery that adipose tissue is an endocrine organ, and that the adipocyte is an endocrine cell, established that there are changes in anatomy and function that are at the genesis of metabolic diseases. Adiposopathy and "sick fat" are terms that are now engrained in the literature which encompass these pathophysiological changes. For some of our colleagues, these terms are not acceptable (they cannot take ownership of what they did not conceive), and this has led to scientific discordance. We respectfully agree to disagree. Yet, for a new generation of physicians and scientists, familiarity with these terms has opened a new frontier in medicine.

This textbook has been written with an adipocentric perspective. Not only is it a thorough review of obesity medicine, it also helps the reader understand the importance of adipose tissue dysfunction in the genesis of the metabolic complications of overweight and obesity. Bariatric endocrinology is thus born, paving the way for a new generation of physicians to diagnose and treat adiposopathy.

Eagan, MN, USA Rochester, MN, USA Birmingham, AL, USA J. Michael Gonzalez-Campoy Daniel L. Hurley W. Timothy Garvey

Contents

1	Bariatric Endocrinology	1
2	The Adipocyte	19
3	Hormonal Regulation of Energy Balance and Energy Stores J. Michael Gonzalez-Campoy	37
4	Central Nervous System Regulation of Energy Balance and Energy Stores. J. Michael Gonzalez-Campoy	59
5	Role of the Gut in the Regulation of Energy Balance and Energy Stores	77
6	Adiposopathy. Elena A. Christofides and J. Michael Gonzalez-Campoy	99
7	Clinical Definition of Overweight and Obesity	121
8	Evaluation and Management of the Patient with Obesity or Overweight	145
9	Primary Causes of Adipose Tissue Weight Gain Yi-Hao Yu and Jila Kaberi-Otarod	157
10	Secondary Causes of Adipose Tissue Weight Gain	173
11	Physical Manifestations of Obesity	195

x Contents

12	Evaluation and Treatment of Atherogenic Dyslipidemia J. Michael Gonzalez-Campoy and Caroline M. Houston	211
13	Evaluation and Treatment of Insulin Resistance and Hyperglycemic States Daniel L. Hurley and Farhad Zangeneh	235
14	Evaluation and Treatment of Hypertension	251
15	Gonadal Dysfunction in Males with Overweight or Obesity, and Adiposopathy	271
16	Gonadal Dysfunction and Infertility in Women with Obesity J. Michael Gonzalez-Campoy	283
17	Neoplasia in Patients with Excess Fat Mass	293
18	Biopsychosocial Modifiers of Obesity	325
19	Medical Nutrition Therapy for Weight Management Scott D. Isaacs	361
20	Physical Activity for Weight Management	379
21	Pharmacotherapy for Weight Management	395
22	Bariatric Procedures. J. Michael Gonzalez-Campoy	413
Ind	ex	443

Editors and Contributors

Editors

J. Michael Gonzalez-Campoy, MD, PhD Minnesota Center for Obesity, Metabolism and Endocrinology, PA (MNCOME), Eagan, MN, USA

W. Timothy Garvey, MD, FACE Department of Nutrition Sciences, The University of Alabama at Birmingham, University of Alabama Hospital, Birmingham, AL, USA

The Birmingham VA Medical Center, Birmingham, AL, USA

Daniel L. Hurley, MD Mayo Graduate School of Medicine, Mayo Clinic, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA

Contributors

Elise M. Brett, MD, FACE, CNSC, ECNU Icahn School of Medicine at Mount Sinai, Division of Endocrinology, Diabetes, and Bone Disease, New York, NY, USA

Elena A. Christofides, MD Endocrinology Associates, Inc., Columbus, OH, USA

Israel Hartman, MD, FACE University of Texas Southwestern Medical School, Department of Endocrinology, Dallas, TX, USA

Caroline M. Houston, MD The Brody School of Medicine at East Carolina University, Division of Endocrinology, Diabetes, and Metabolism, Greenville, NC, USA

Scott D. Isaacs, MD, FACP, FACE Atlanta Endocrine Associates, Atlanta, GA, USA

Jila Kaberi-Otarod, MD, CNSC Geisinger System – North East, Department of Nutrition and Weight Management, Scranton, PA, USA

xii Editors and Contributors

Quang T. Nguyen, DO, FACE, FACP, FTOS Las Vegas Endocrinology, Clinical Education, AZCOM, TUNCOM, Henderson, NV, USA

Raymond A. Plodkowski, MD University of California San Diego, Division of Endocrinology and Metabolism, Scripps Clinic, San Diego, CA, USA

Domenica M. Rubino, MD Washington Center for Weight Management and Research, Arlington, VA, USA

Jeffrey Sicat, MD, FACE Virginia Weight and Wellness, Glen Allen, VA, USA

Yi-Hao Yu, MD, PhD Weight Loss and Diabetes Center, Department of Endocrinology, Stamford, CT, USA

Greenwich Hospital and Endocrinology Associates of Greenwich, Northeast Medical Group, Yale-New Haven Health, Greenwich, CT, USA

Farhad Zangeneh, MD Endocrinology, Diabetes and Osteoporosis Clinic, Sterling, VA, USA

Abbreviations

11ß-HSD 11-beta-hydroxysteroid dehydrogenase 2-AG Endocannabinoid 2-arachidonoylglycerol

5-HT 5-hydroxytryptamine, serotonin

A1C Hemoglobin A1c AA Amino acid

AACE American Association of Clinical Endocrinologists

ACC American College of Cardiology
ACE American College of Endocrinology
ACEi Angiotensin-converting enzyme inhibitor

ACTH Adrenocorticotropic hormone

AD Adiposis dolorosa

ADA American Diabetes Association
ADA Americans with Disabilities Act
ADHD Attention deficit hyperactivity disorder

AG Acylated ghrelin

AGB Adjustable gastric band

AGPAT Acylglycerophosphate acyltransferase

AgRP Agouti-related protein
AHA American Heart Association
AHI Apnea-hypopnea index;

AHSD α-hydroxysteroid dehydrogenase
AICR American Institute for Cancer Research

ALA Alpha-linolenic acid

ALLHAT Antihypertension and Lipid-Lowering treatment to prevent

Heart Attack Trial

AMA American Medical Association AMP Adenosine monophosphate

AMPK Adenosine monophosphate-activated protein kinase

AN Anterior nucleus of the hypothalamus

AP Area postrema Apo E Apolipoprotein E xiv Abbreviations

apo Apolipoprotein

ARB Angiotensin receptor blocker

ARC Arcuate nucleus of the hypothalamus
ART Assisted reproductive technologies
ASBP American Society of Bariatric Physicians
ASBS American Society for Bariatric Surgery

ASMBS American Society for Metabolic and Bariatric Surgery

ASP Acylation-stimulating protein

ASSIST Appetite Suppression Induced by Stimulation Trial

ATP Adenosine triphosphate
ATP Adult Treatment Panel
AUD Alcohol use disorder

BA Bile acids

BAT Brown adipose tissue
BBB Blood-brain barrier
BDI Beck Depression Inventory
BDNF Brain-derived neurotrophic factor

BE Barrett's esophagus
BED Binge eating disorder

BHSD β-hydroxysteroid dehydrogenase BIA Bioelectrical impedance analysis

BID Twice daily
BMI Body mass index
BMOD Behavior modification

BP Blood pressure (S = systolic and D = diastolic)

BPD Biliopancreatic diversion

BPD-DS Biliopancreatic diversion with duodenal switch BRFSS Behavioral Risk Factor Surveillance System

bT Bioavailable testosterone BWL Behavioral weight loss

CABG Coronary artery bypass grafting cAMP Cyclic adenosine monophosphate

CARDIA Coronary Artery Risk Development in Young Adults study

CART Cocaine- and amphetamine-related transcript

CB Cannabinoid receptor

CBT Cognitive behavioral treatment

CBTgsh Cognitive behavioral therapy with guided self-help

CCB Calcium channel blocker

CCK Cholecystokinin

CDC Centers for Disease Control and Prevention

CETP Cholesteryl ester transfer protein

CI Confidence interval CKD Chronic kidney disease

cm Centimeters

CNPS Cardiac natriuretic peptide system

Abbreviations xv

CNS Central nervous system

CO Cardiac output

COR Contrave Obesity Research

CPAP Continuous positive airway pressure therapy

CRC Colorectal cancer

CRH Corticotropin-releasing hormone

CRP C-reactive protein
CS Cushing's syndrome
CT Computerized tomography

CTR Calcitonin receptor
CV Cardiovascular

CVA Cerebrovascular accident; CVD Cardiovascular disease CVO Circumventricular organs

CY Cytochrome DA Dopamine

DASH The Dietary Approaches to Stop Hypertension

DBP Diastolic blood pressure

DEXA Dual-energy X-ray absorptiometry
DGAT Diacylglycerol acyltransferase

DHA Docosahexaenoic acid
DHEA Dehydroepiandrosterone
DJB Duodenojejunal bypass

dL Deciliter

DM Diabetes mellitus

DMN Dorsomedial nucleus of the hypothalamus DMPA Depot medroxyprogesterone acetate

DNA Deoxyribonucleic acid DPP Dipeptidyl peptidase DPP-4 Dipeptidyl peptidase 4

DPP-4l Dipeptidyl-peptidase-4 inhibitors
DXA Dual Energy X-ray absorptiometry

E₂ Estradiol

EAC Esophageal adenocarcinoma

EASO European Association for the Study of Obesity

ECG Electrocardiogram
ED Erectile dysfunction
EEC Enteroendocrine cells

eGFR Estimated glomerular filtration rate

EH Energy homeostasis
EKG Electrocardiogram

eNOS Endothelial nitric oxide synthase

ENS Enteric nervous system
EPA Eicosapentaenoic acid
ER Estrogen receptor

xvi Abbreviations

ES Endoluminal sleeve(s)
EWL Excess weight loss
FA Food addiction

FBG Fasting blood glucose

FDA Food and Drug Administration

FFA Free fatty acids FFM Fat-free mass

FGF15/FGF19 Fibroblast growth factor 15/19 FH Familial hypercholesterolemia

FM Fibromyalgia FMI Fat mass index

FML Familial multiple lipomatosis

fMRI Functional magnetic resonance imaging

FOURIER Further Cardiovascular Outcomes Research with PCSK9

Inhibition in Subjects with Elevated Risk

FPG Fasting plasma glucose

FSH Follitropin or follicle-stimulating hormone

fT Free testosterone

FTO Fat mass and obesity associated (gene)

FXR Farnesoid X receptor
G6P Glucose-6-phosphate
GABA Gamma-aminobutyric acid
GBS Gastric bypass surgery

GC Glucocorticoid

GCGR G-protein-coupled glucagon receptor
GERD Gastroesophageal reflux disease
GES Gastric electrical stimulation

GH Growth hormone

GHRL Growth hormone secretagogue receptor ligand
GHSR Ghrelin/growth hormone secretagogue receptor
GIP Glucose-dependent insulinotropic peptide

GK Glucokinase

GLP-1 Glucagon-like peptide-1

GLP-1R Glucagon-like peptide-1 receptor

GLUT Glucose transporter
GLUT4 Glucose transporter 4
GM Gut microbiota
Gn Gonadotropin

GnRH Gonadotropin-releasing hormone

GOAT Ghrelin O-acyltransferase

GPAT Glycerol-3-phosphate acyltransferase

GPCR G-protein-coupled receptor

GRPP Glicentin-related pancreatic peptide
GWAS Genome-wide association studies

H&E History and examination

H&P History and physical examination

Abbreviations xvii

HbA_{1c} Hemoglobin A1C HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCFA Healthcare Financing Administration HCG Human chorionic gonadotropin

HCV Hepatitis C virus

HDL High-density lipoprotein

HDL-C High-density lipoprotein cholesterol

HFD High-fat diet

HIF1 Hypoxia-inducible factor 1

HMG-CoA 3-Hydroxy-3-methyl-glutaryl-coenzyme A

HMGCR 3 Hydroxy-3-methyl-glutaryl-coenzyme A reductase

HOMA Homeostasis model assessment

HOMA-IR Homeostasis model assessment of insulin resistance

HP Highly palatable

HPA Hypothalamic-pituitary-adrenal HPAA Hypothalamic-pituitary-adrenal axis

HR Hazard ratio

HRT Hormone replacement therapy
HS-CRP Highly sensitive C-reactive protein

HSL Hormone-sensitive lipase

HTN Hypertension

IAP Intra-abdominal pressure

ICD International Classification of Diseases

IFG Impaired fasting glucose
IGB Intragastric balloons
IGF Insulin-like growth factor

IGF-1R Insulin-like growth factor-1 receptor IGS Implantable gastric stimulator IGT Impaired glucose tolerance

IIEF-5 International Index of Erectile Function 5

IL Interleukin

IMPROVE-IT Improved Reduction of Outcomes: Vytorin Efficacy

International Trial

INS Insulin

IPT Individual psychotherapy

IR Insulin receptor

ISH Isolated systolic hypertension

ITT Intention to treat
IU International units
IWB Internalized weight bias
JIB Jejunoileal bypass

JNC Joint National Committee

JUPITER Justification for the Use of Statins in Prevention: an

Intervention Trial Evaluating Rosuvastatin

Kcal Kilocalories

xviii Abbreviations

kg Kilogram

kg/m² kilograms/meter²

LAR Leptin-to-adiponectin ratio

lbs Pounds

LCFA Long-chain fatty acids

LDJB-SG Loop duodenojejunal bypass with sleeve gastrectomy

LDL Low-density lipoprotein

LDL-C Low-density lipoprotein cholesterol

LEARN Lifestyle, Exercise, Attitude, Relationships and Nutrition

LEP Leptin

LEPR Leptin receptor
LGA Left gastric artery

LGAE Left gastric artery embolization
LH Lutropin or luteinizing hormone
LHA Lateral hypothalamic area
LOCF Last observation carried forward
LOFI Lean-on-the-outside-fat-on-the-inside

LP(a) Lipoprotein (a) LPL Lipoprotein lipase

LRYGB Laparoscopic Roux-en-Y gastric bypass

LUTS Lower urinary tract symptoms

LVSG Laparoscopic vertical sleeve gastrectomy

m Meter

MAOI Monoamine oxidase inhibitor MAP kinase Mitogen-activated protein kinase

MC Melanocortin

MC4R Melanocortin 4 receptor MCFA Medium-chain fatty acid

MCH Melanin-concentrating hormone MCP Monocyte chemoattractive protein

MCR4 Melanocortin receptor 4
MDD Major depressive disorder
METs Metabolic equivalents

mg Milligram

MGB mini gastric bypass
MI Myocardial infarction
mITT Modified intention-to-treat
mmHg Millimeters of mercury

MN Mammillary nucleus of the hypothalamus

MNT Medical nutrition therapy

MRFIT Multiple Risk Factor Intervention Trial

MRI Magnetic resonance imaging
mRNA Messenger ribonucleic acid
MSH Melanocyte-stimulating hormone
mTOR Mammalian target of rapamycin

Abbreviations xix

MTTP Microsomal triglyceride transfer protein

MUFA Monounsaturated fatty acids

Myf5 Myogenic factor 5 NA Nucleus accumbens

NAASO North American Association for the Study of Obesity

NAFLD Nonalcoholic fatty liver disease NASH Nonalcoholic steatohepatitis NB Naltrexone-bupropion

NCEP ATP National Cholesterol Education Program Adult Treatment

Panel

NCEP National Cholesterol Education Program NCHS National Center for Health Statistics

NEFA Non-esterified fatty acid NES Night-eating syndrome

NHANES National Health and Nutrition Examination Survey

NHLBI National Heart, Lung and Blood Institute

NIH National Institutes of Health

non-SHBG-bound T Non-sex hormone-binding globulin-bound testosterone

NPC1L1 Niemann-Pick C1-Like 1

NPY Neuropeptide Y

NTS Nucleus tractus solitarius

OA Osteoarthritis

OAGB One anastomosis gastric bypass
OGTT Oral glucose tolerance test
OMA Obesity Medical Association

OR Odds ratio

OSA Obstructive sleep apnea
OVRD Oral volume restricting device

 $egin{array}{lll} OX & Orexin receptor \\ OXM & Oxyntomodulin \\ P_4 & Progesterone \\ \end{array}$

PAI-1 Plasminogen activator inhibitor-1
PAP Phosphatidic acid phosphorylase
PCI Percutaneous coronary intervention

PCOS Polycystic ovary syndrome PCS Pain Catastrophizing Scale

PCSK9 Proprotein convertase subtilisin/kexin type 9

PE Pulmonary embolus; PFC Prefrontal cortex

PG Percutaneous gastrostomy

PGC-1α PPAR gamma coactivator 1-alpha

PHEN/TPM Phentermine-topiramate
PI3K Phosphatidylinositol 3-kinase

PKA Protein kinase A

PN Posterior nucleus of the hypothalamus

xx Abbreviations

POMC Pro-opiomelanocortin

PON Preoptic nucleus of the hypothalamus

PP Pancreatic polypeptide

PPAR Peroxisome proliferator-activated receptor

PPG Postprandial glucose

PPNAD Primary pigmented nodular adrenocortical disease

PR Peripheral resistance

PRL Prolactin

PSA Prostate-specific antigen PSCK1 Prohormone convertase 1

PTCA Percutaneous transluminal coronary angioplasty

PTSD Post-traumatic stress disorder PUFA Polyunsaturated fatty acid

PVN Paraventricular nucleus of the hypothalamus

PYY Peptide YY OD Daily

QOL Quality of Life RA Retinoic acid

RAAS Renin-angiotensin-aldosterone system
RAMPs Receptor activity-modifying proteins

RBP Retinol-binding protein
REE Resting energy expenditure

REMS Risk evaluation and mitigation strategies

RNS Reactive nitrogen species
ROS Reactive oxygen species
ROS Review of systems
RR Relative risk
RR Risk ratio

RXR Retinoid X receptors
RYGB Roux-en-Y gastric bypass

SADI Single anastomosis duodenoileostomy
SAGI Single anastomosis gastroileostomy
SASI Single anastomosis sleeve ileostomy

SBP Systolic blood pressure

SCALE Satiety and Clinical Adiposity-Liraglutide Evidence

SCFA Short-chain fatty acid

SCN Suprachiasmatic nucleus of the hypothalamus

Sct Secretin

SctR Secretin receptor SD Standard deviation

SGLT-1 Sodium-dependent glucose transporter 1 SGLT-2 Sodium-dependent glucose transporter-2 SH2B1 Src homology 2B adaptor protein 1

SHAPE Screened Health Assessment and Pacer Evaluation trial

SHBG Sex hormone-binding globulin

Abbreviations xxi

SIPS Stomach intestinal pylorus sparing surgery

SL Symmetrical lipomatosis
SMC Smooth muscle cell

SNP Single nucleotide polymorphism

SNRI Serotonin norepinephrine reuptake inhibitor
SON Supraoptic nucleus of the hypothalamus
SSRI Selective serotonin reuptake inhibitor

SVR Systemic vascular resistance

T Testosterone

T2DM Type 2 diabetes mellitus

T3 Triiodothyronine

T4 Tetraiodothyronine or thyroxine

TC Total cholesterol

TEE Total energy expenditure
TES The Endocrine Society
TFA Trans-fatty acids
TG Triacylglycerol
TG Triglycerides

TGR5 The G-protein coupled receptor 5

TID Three times daily
TKA Total knee arthroplasty;
TNF Tumor necrosis factor
TOGA Transoral gastroplasty
TOS The Obesity Society

TRH Thyrotropin-releasing hormone
TRT Testosterone replacement therapy

TRUS Transrectal ultrasound

TSH Thyroid-stimulating hormone

Total testosterone TT **TWIST** Twist-related protein **TZDs** Thiazolidinediones UAG Unacylated ghrelin **UCP** Uncoupling protein Ursodeoxycholic acid; UDCA UK United Kingdom US United States

USA United States of America

USDA United States Department of Agriculture

UTI Urinary tract infection;
VAN Vagal afferent neurons
VBG Vertical banded gastroplasty
VEGF Vascular endothelial growth factor

VLC Very low-calorie

VLCMP Very low-calorie meal plan VLDL Very low-density lipoprotein xxii Abbreviations

VLDL-C Very low-density lipoprotein cholesterol VMN Ventromedial nucleus of the hypothalamus

VSG Vertical sleeve gastrectomy
VTA Ventral tegmental area
WAT White adipose tissue
WC Waist circumference

WCRF World Cancer Research Fund WHI Women's Health Initiative WHO World Health Organization

WHR Waist-to-hip ratio
WHtR Waist-to-height ratio
YFAS Yale Food Addiction Scale

Chapter 1 Bariatric Endocrinology

1

J. Michael Gonzalez-Campoy

Pearls of Wisdom

- Bariatric endocrinology developed from the knowledge that adipose tissue
 is an endocrine organ that actively participates in the regulation of metabolism and that it may become diseased (adiposopathy), thus contributing to
 the development of metabolic diseases.
- Adipose tissue may develop both anatomical and pathophysiological changes which lead to derangements of structure and function, collectively termed adiposopathy.
- Adipocytes both produce hormones with varied end-organ targets, and have receptors for many circulating hormones, establishing an active cross talk that maintains metabolic homeostasis. Adiposopathy leads to dysregulation of metabolic homeostasis, forcing other tissues to compensate, and leading to metabolic diseases when compensation is inadequate.
- Overweight, obesity, and adiposopathy are caused by both a genetic predisposition and environmental factors, and must be treated like any other chronic disease.
- The goals of bariatric endocrinology are to help individual patients decrease the burden of increased fat mass (treatment of adiposity) and to return adipose tissue function to normal (treatment of adiposopathy).

Minnesota Center for Obesity, Metabolism and Endocrinology, PA (MNCOME),

Eagan, MN, USA

e-mail: drmike@mncome.com

J. M. Gonzalez-Campoy

1.1 Introduction

Bariatric endocrinology first became a subject at the 2014 meeting of the American Association of Clinical Endocrinologists (AACE) in Las Vegas, Nevada. The coeditors of this textbook held a scientific session that defined obesity as an endocrine disease, adipose tissue as an endocrine organ, and the adipocyte as an endocrine cell. As such, obesity became not just a disease of excessive fat mass but rather a treatment target for clinical endocrinologists, a major goal of treatment becoming the correction of underlying adipose tissue dysfunction. This emerging position has been difficult to understand and accept by the vast majority of physicians who still think of success in the treatment of obesity as merely a reduction in poundage. This textbook of bariatric endocrinology was conceived after the 2014 AACE meeting to set the stage for future generations of clinicians who will have learned that adipose tissue dysfunction is a viable target of medical interventions, in addition to the traditional goal of decreasing fat mass. A brief history of how we got here is important.

In 1903, Dr. Perry published a paper entitled "The Nature and Treatment of Obesity" in the *California State Journal of Medicine*. He described obesity as "20 per cent to 40 per cent excess of weight over the normal of 2.05 pounds per inch of height, or 300 grammes per centimeter." In his paper, he explained that corpulence must be due to excessive muscular development, excessive fatty tissue, excessive water, myxedema, or pseudo-muscular hypertrophy. Prior to his publication, there are no indexed papers with obesity in the title in the National Library of Medicine. For the next half century, the view of adipose tissue became one of a storage organ. Yet the concept that obesity is a risk to health dates back to the writings of Hippocrates. And over this half century, progress was made identifying obesity as a disease.

In 1963, the emerging field of lipidology defined the role that adipose tissue had to play in lipid metabolism. Dr. Martha Vaughan and colleagues at the National Institutes of Health (NIH) documented that there is a hormone-sensitive triglyceride-splitting enzyme activity in adipose tissue. Hormone-sensitive lipase was shown to respond to epinephrine, leading to increased lipolysis and defining adipose tissue as a target of circulating hormones. Insulin was subsequently shown to inhibit this same enzyme, being strongly antilipolytic. In 1976, Dr. Lewis Williams and colleagues identified beta-adrenergic receptors in adipocytes, confirming that the adipocyte was indeed under hormonal control.

The first hints of a circulating factor that could affect fat mass came earlier. In 1959, parabiosis experiments done by Dr. Hervey at the University of Cambridge, in which paired rats were made to exchange blood and plasma by being surgically conjoined at the hip, provided an important clue to the presence of a circulating factor that could regulate energy stores. Damage to the ventromedial hypothalamus leads to obesity caused by overeating in rats. The damage prevents the ventromedial

hypothalamus from responding to physiological signals that suppress appetite. When a rat with a ventromedial hypothalamus lesion is conjoined to a normal rat, the rat with the lesion overeats and gains weight. The normal rat without a lesion, on the other hand, significantly decreases its caloric intake, losing weight and declining food even when made available. When both paired rats have damage to the ventromedial hypothalamus, both overfeed and gain weight. This was strong evidence of a circulating factor that decreases caloric intake by stimulating a hypothalamic target, thus decreasing fat mass. And it was also evidence that there is central regulation of energy balance.

In the late 1980s, adipose tissue was found to produce estrogen. Aromatase, the enzyme responsible for the synthesis of estrogen from testosterone, was identified in adipose tissue. This established the adipocyte as an endocrine cell capable of synthesizing estrogen. The degree of adiposity was subsequently related to the amount of estrogen in the circulation of patients with obesity and reproductive tract cancer. But aromatase and estrogen were not exclusive to adipose tissue.

In 1949, mice homozygous for the ob mutation (ob/ob mice) were first identified at the Jackson Laboratory. These mice exhibit uncontrolled feeding and develop obesity. In 1990, the ob gene was mapped. Subsequently, the gene product of the ob gene was identified as a hormone. When the gene product was given to ob/ob mice, it suppressed excessive feeding and promoted weight loss. Accordingly, this protein was named leptin, a derivative of the Greek root for "thin," *lepto*. Leptin was the first adipocyte-derived hormone (adipokine) to be discovered. A search of the Medi-Span database as of 2016 includes over 13,000 references with the word leptin in the title.

When leptin was characterized as a hormone made exclusively in adipose tissue, the search for other adipocyte products intensified. Adipocytes were also shown to produce adiponectin (which improves insulin sensitivity), adipsin (which is deficient in obesity), resistin (which causes insulin resistance), and visfatin (which has plasma glucose-lowering effects). Additionally, adipose tissue was shown to produce inflammatory cytokines including interleukin-6, tumor necrosis factor-alpha, and macrophage and monocyte chemoattractant protein-1, documenting its potential for macrophage infiltration and the development of inflammation.

By the late 1990s, the view of adipose tissue as a mere storage organ had been replaced by the contemporary perspective that it actively participates in the signaling that regulates the body's energy needs. The concept that adipose tissue may become diseased, or that adiposopathy may develop, was introduced into the medical literature by Dr. Harold Bays in 2004. Adiposopathy is now a treatment target in clinical endocrinology.

With a recognized worldwide obesity epidemic, there were over 64,000 publications on the subject by the end of 2015 (Fig. 1.1). This chapter reviews the epidemiology of obesity, its economic impact, its differential effect in different ethnic groups, the public health efforts to address it, and the principles of bariatric endocrinology that will help treat this disease.

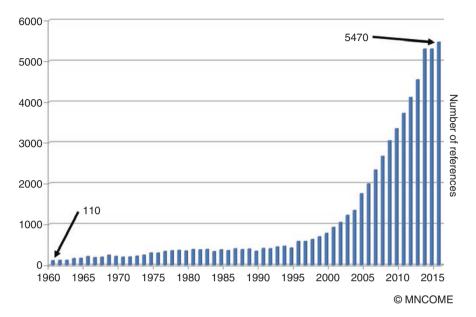


Fig. 1.1 Number of publications with "obesity" in the title by year (1960–2015); Copyright MNCOME

1.2 The Obesity Epidemic in the United States of America (USA)

1.2.1 Adult USA Population

The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. It is funded by the Centers for Disease Control (CDC), through the National Center for Health Statistics (NCHS). The survey is unique in that it combines interviews and physical examinations. All counties in the United States are divided into 15 groups based on their characteristics. One county is selected from each large group, and together, they form the 15 counties in the NHANES surveys for each year. Within each of these 15 counties, smaller groups, with a large number of households in each group, are formed. Between 20 and 24 of these small groups are then selected. In each small group, all the houses and apartments are identified, and a sample of about 30 households is selected for interviewers to visit. A computer algorithm randomly selects some, all, or none of the household members.

NHANES data for USA adults ages 20 or higher from 1962 documented that 30.5% of the population had a body mass index (BMI) in the range of 25-29.9 kg/m², and 12.8% had a BMI of 30 kg/m² or more. By 2012, these numbers had risen to 33.9% and 35.1%, respectively. For this period, there was a 1.7-fold increase in the prevalence of people with a BMI of 30 kg/m² or more.

Fig. 1.2 Prevalence of self-reported obesity among USA adults by state and territory, BRFSS, 2015. (From Centers for Disease Control. https://www.cdc.gov/obesity/data/prevalence-maps.html (accessed 9/5/2016))

The Behavioral Risk Factor Surveillance System (BRFSS) is a system of health-related telephone surveys that collect state data about USA residents regarding their health-related risk behaviors, chronic health conditions, and the use of preventive services. It also is funded by the CDC. BRFSS was established in 1984 with 15 states and has expanded to collect data in all 50 states, the District of Columbia, and three USA territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world.

Figure 1.2 shows the 2015 BRFSS data on the prevalence of self-reported obesity among adults in the USA by state and territory. BRFSS USA data show that in 2015:

- No state had a prevalence of obesity less than 20%.
- In six states (California, Colorado, Hawaii, Massachusetts, Montana, and Utah) and the District of Columbia, obesity ranged from 20% to less than 25%.
- Nineteen states and Puerto Rico had a prevalence of obesity between 25% and less than 30%.
- Obesity prevalence in 21 states and Guam was from 30% to less than 35%.
- Four states (Alabama, Louisiana, Mississippi, and West Virginia) had an obesity prevalence of 35% or greater.
- The south had the highest prevalence of obesity (31.2%), followed by the Midwest (30.7%), the northeast (26.4%), and the west (25.2%).

Using the NHANES 2011–2012 database, the prevalence of obesity is higher among middle-age adults age 40–59 years (40.2%) and older adults age 60 and over (37.0%) than among younger adults age 20–39 (32.3%).

1.2.2 Children and Adolescent USA Population

The prevalence of obesity in 2011–2014 was 17.0%, and extreme obesity (defined as a BMI at or above 120% of the sex-specific 95th percentile on the CDC BMI-forage growth charts) was 5.8%. Childhood obesity has also been documented to become more prevalent since the first reports by the NCHS using the 1988–1994 NHANES database. This textbook focuses on adult bariatric endocrinology, but these data are included because youth with obesity will swell the ranks of adults having the disease at a much younger age than previous generations.

1.3 Obesity in USA Racial and Ethnic Groups

Using data from 9120 participants in the 2011–2012 nationally representative NHANES database, in the USA non-Hispanic blacks have the highest age-adjusted rates of obesity (48.1%), followed by Hispanics (42.5%), non-Hispanic whites (34.5%), and non-Hispanic Asians (11.7%). Among non-Hispanic black and Mexican-American men, those with higher incomes are more likely to have obesity than those with low incomes. To the contrary, higher-income women are less likely to have obesity than low-income women.

1.4 Obesity in Geographical Regions of the World

In 1988, Gurney and Gorstein published initial data compiled by the World Health Organization (WHO) on the prevalence of obesity in many countries. The publication validated that, for adults, the body mass index is reasonably easy to obtain and correlates well with mortality and morbidity risk. For children, "overweight" is indicated by a weight-for-height ratio above the median NCHS value plus two standard deviations. By 1999, the prevalence of obesity around the world was estimated to exceed 250 million people. The first formal WHO Consultation on obesity concluded that the global obesity epidemic was a consequence of modernization, economic development, urbanization, and other societal changes. These led to widespread reductions in spontaneous and work-related physical activity and to excessive consumption of energy dense foods. The International Obesity Task Force launched a global initiative for coherent action to tackle the epidemic of obesity. Despite increased awareness and attempts to intervene at the public health level, the prevalence of obesity around the world has continued to rise.

Reports on the prevalence of obesity in both adults and children from countries around the world continue to highlight both potential causes and opportunities for intervention. In 2008, the prevalence of obesity (using estimated mean BMI in a regression model to predict overweight and obesity prevalence by age, country, year, and sex) in women ranged from 1.4% (0.7–2.2%) in Bangladesh and 1.5%

Fig. 1.3 Worldwide prevalence of obesity by BMI*, ages 18+, both sexes, 2014. (From World Health Organization. http://gamapserver.who.int/mapLibrary/Files/Maps/Global_Obesity_2014_BothSexes.png (27/Mar/2015 post; accessed 9/5/2016))

(0.9–2.4%) in Madagascar to 70.4% (61.9–78.9%) in Tonga and 74.8% (66.7–82.1%) in Nauru. Obesity in men was below 1% in Bangladesh, Democratic Republic of the Congo, and Ethiopia and was the highest in Cook Islands (60.1%, 52.6–67.6%) and Nauru (67.9%, 60.5–75.0%). Figure 1.3 shows the latest data on the prevalence of obesity compiled by WHO, as of 2015.

The WHO data have also clearly established the rising rates of diabetes worldwide, parallel to the development of obesity. Some populations around the world seem particularly susceptible to the twin epidemics of obesity and diabetes. In India, for example, defining obesity as a BMI of 25 kg/m² or higher, the incidence of obesity rose from 2% to 17.1% of the population between 1989 and 2003. This represented a 750% increase in the incidence of obesity. Over the same period, the incidence of diabetes rose from 2.2% to 6.4% of the population, a 191% increase. At the CDC, Ali Mokdad and colleagues documented the same parallel rise in the incidence of obesity and diabetes in the USA. Between 1998 and 2012, there was a 96% increase in the incidence of obesity, defined as a BMI of 30 kg/m² or higher, with a 43% concomitant increase in the incidence of diabetes. It has also been established that the incidence of hypertension, dyslipidemia, and diabetes rises with BMI thresholds from normal to overweight to obesity.

1.5 The Economic Impact of Obesity

Awareness of the increasing prevalence of obesity from data generated by the CDC in the 1980s and 1990s led to significant concern about the financial impact of this disease. Early projections based on the prevalence of obesity of 34 million adults in

the USA in 1980 led to the estimate of 1986 expenditures of \$11.3 billion for diabetes, \$22.2 billion for cardiovascular disease, \$2.4 billion for gallbladder disease, \$1.5 billion for hypertension, and \$1.9 billion for breast and colon cancers—\$39.3 billion or around 5.5% of the costs of illnesses in 1986.

In 2011, a simulation model, to project the probable health and economic consequences in the next two decades from a continued rise in obesity in the USA and the United Kingdom (UK), estimated 65 million and 11 million more adults with obesity in the USA and the UK, respectively, by 2030. The projections were for an additional 6–8.5 million cases of diabetes, 5.7–7.3 million cases of heart disease and stroke, 492,000–669,000 additional cases of cancer, and 26–55 million quality-adjusted life years forgone for the USA and the UK combined. The combined medical costs associated with the treatment of these preventable complications of obesity were estimated to increase by \$48–66 billion/year in the USA and by £1.9–2 billion/year in the UK by 2030.

By the end of 2014, the National Center for Weight and Wellness at George Washington University placed the cost of obesity at more than \$300 billion annually in direct medical and nonmedical services, decreased worker productivity, disability, and premature death.

There are now projections that weight loss reduces lifetime health-care costs. Using claims data for 2.1 million beneficiaries in the federal government in 2008, there were 857,200 patients with overweight and 521,800 patients with obesity, all aged 18–64 years. Among federal beneficiaries who have overweight or obesity, lifetime expenditures decline by \$440 (3% discount rate) for each permanent 1% reduction in body weight. This includes \$590 in savings from improved health, offset by \$150 in additional expenditures from prolonged life. Estimates range from a \$660 reduction for adults aged <45 years with obesity to a \$40 gain for adults aged 55–64 years with obesity, where expenditures from increased longevity exceed savings from improved health. If weight loss is temporary and regained after 24 months, lifetime expenditures decline by \$40 per 1% reduction in body weight. The long-term benefits from weight loss are substantially greater than the short-term benefits.

There are additional economic correlates to the epidemic of obesity. Obesity results in increased medical expenditures and absenteeism among full-time employees. Approximately 30% of the total costs to employers result from increased absenteeism. Employees with stage 3 obesity represent about 3% of the employed population but account for 21% of the costs of obesity. These costs do not include the additional loss of income to employers from disability and presenteeism (loss of productivity during the time present at work). Physical disabilities magnify the costs of obesity. The combination of physical disabilities and obesity costs employers around \$23.9 billion/year or roughly 50% of the total costs attributable to obesity in the USA. Using data on medical expenditures and body weight from the National Health and Interview Survey and the Medical Expenditure Panel Survey, it is estimated that, in a health plan with a coinsurance rate of 17.5%, obesity imposes a welfare cost of about \$150 per capita on health insurance costs. The welfare loss to health insurance companies can be reduced by technological change that lowers

pecuniary and nonpecuniary costs of losing weight and also by increasing the coinsurance rate for people with obesity. The workplace has become a venue of active obesity prevention and treatment as a means to decrease health-care costs to employers and to increase productivity. Regardless, the rates of personal bankruptcy have risen along with the incidence of obesity. Using the National Longitudinal Survey of Youth 1979, a duration model was used to investigate the relative importance of obesity on the timing of bankruptcy. Even after accounting for possible endogeneity of BMI and controlling for a wide variety of individual and aggregate-level confounding factors, having obesity puts a person at a greater risk of filing for bankruptcy. Thus, obesity has an impact on the individual employee and also on the employers.

Older adults with obesity are twice as likely to be admitted to a nursing home. Many have comorbidities such as type 2 diabetes mellitus. Older adult patients with obesity and diabetes incurred one in every four nursing home days. Besides the costs of early entrance into nursing facilities, caring for residents with obesity is different than caring for residents who do not have obesity. Residents with obesity need additional equipment, supplies, and staff costs. Unlike emergency rooms and hospitals, nursing homes do not have federal requirements to serve all patients. Some nursing homes are not prepared to deal with patients with stage 2 or higher obesity, having to decline their care. The epidemic of obesity makes this gap in nursing home care a public health concern.

In addition to all the financial considerations mentioned above, an estimated 15 million adults in the USA took prescription medications concurrently with herbal remedies and/or high-dose vitamins in 1997. Alternative medicine professional services in 1997 were estimated at \$21.2 billion, with at least \$12.2 billion paid out-of-pocket. The total 1997 out-of-pocket expenditures on alternative therapies, estimated at \$27 billion, matched the 1997 out-of-pocket expenditures for all USA physician services. Alternative therapies for weight management incurred the American public a \$30 billion expenditure in 2003 without documentable long-term benefit.

Medical tourism is a relatively new phenomenon. Facing increasing health-care costs and the dilemma that obesity care is frequently excluded from coverage, many find it cheaper to have medical interventions abroad. This is certainly true for both bariatric surgery procedures and cosmetic surgeries following weight loss. The debate about safety, efficacy, and overall cost of care continues, but there is an increasing call for the globalization of medicine. With cheaper medical consultation, pharmacotherapy, and surgical costs abroad, many patients cross borders to secure medical care at a lower cost.

1.6 Obesity and Mortality

Actuarial tables from insurance companies provided the first data that overweight and obesity conveyed a higher risk of death. In 1972, Ancel Keys and colleagues coined the term BMI and published the formula for calculating it. For most people,