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Introduction

With the emergence of a multitude of network architectures, performance

evaluation, originating from Erlang’s work, has become an important research topic.

The simplest model of a communication system is the queue, and by extension, these

systems of queues have a high modeling power. A queue is composed of a waiting
queue and a server that processes data in the waiting queue. If Xptq is the number of

data in the queue at time t, C is the number of data that can be processed by unit of

time and Aptq is the number of data entering the system between times t and t ` 1,

then the first (and most important) formula that can be written is the Lindley formula
[LIN 52]:

Xpt ` 1q “ maxpXptq ´ C, 0q ` Aptq. [I.1]

Based on this formula, the queueing theory derives properties for Xptq based on

the knowledge of C and Aptq given by some distributions and independence

relations. Among the important results derived from this formula are the

Pollaczek–Khinchine formula and the Little formula [LIT 61]. As far as stochastic

models are concerned, queueing theory is still an active topic, and with the

emergence of large and complex networks, new models have also been theory

[BAC 02, LEB 07, GAS 12, DUF 10], stochastic geometry [BAC 09a, BAC 09b],

random graphs [FRA 08, BOL 01, DRA 10] and so on.

Another direction of research is to make use of the “+” and the “max” in

equation [I.1]. Then, systems of queues can be analyzed using the (max,plus) (or

tropical) algebra [BAC 92]. Compared to classical algebra, the addition is replaced

by the maximum, and the multiplication by the addition. In this type of system, the

addition models the time evolution and the maximum models the synchronization of

events. An alternative and dual model for such systems uses the (min,plus) algebras,

which is the base of the network calculus theory, the topic of this book.
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Unlike classical queueing theory, it is based on the study of envelopes and

bounding processes rather than studying their exact value. Introduced by the seminal

work of Cruz [CRU 91a, CRU 91b], in which the traffic is characterized by

pσ, ρq-envelopes to compute maximum delays, the notion of envelope has been

formalized and generalized to functions with values in the (min,plus) dioid

[CRU 95]. The elements of a network, namely wires, switches and processors, have

also been generalized from conservative link (the amount of data that can be served

during each unit of time is constant) to more general envelopes in the same functional

space. The aim of this theory is to compute deterministic upper bounds of

performances (such as transmission delay or buffer usage) in networks.

In this model, data flows and systems are abstracted by functions in the dioid of

the (min,plus) functions and performances can be derived by combining those

functions through (min,plus) operators, such as the (min,plus) convolution, the

(min,plus) deconvolution or the sub-additive closure. The main references on the

topic are the textbooks [CHA 00] and [LEB 01], and since the pioneer works of Cruz

in the 1990s, thousands of papers on network calculus have been published and at

least six academic and four industrial tools based on network calculus have been

developed.

The target application was originally communication networks, such as the

Internet. Network calculus was successfully applied to study networks with

differentiated services (DiffServ), as it enables us to compute a guaranteed rate for

the best effort flows and integrated services (IntServ), which guarantees a bandwidth

for each flow [PAR 93, PAR 94, FID 04]. Another success is the application of

network calculus to define efficient load-balanced switches, the Birkhoff–Von

Neumann switch, for example, which has a periodic scheme to connect any input to

any output during a time proportional to the bandwidth requested for this connection

[CHA 01, CHA 02a, CHA 02b]. A third example of application in this field is

video-on-demand (VoD) [MCM 06, DUF 98, GAN 11].

However, in other fields of communication networks, dimensioning the capacities

of the network with regard to the worst-case performance leads to over-provisioning.

Indeed, the transmission times are often not critical: worst-case performance is not the

right parameter to study (it happens very rarely), whereas the mean or the variability

of the transmission delay might be the parameters to study, as the users of the network

might be more sensitive to a slower than usual network. As a result, stochastic models

are more relevant. For this aim, the stochastic counterpart of network calculus has

been developed, the stochastic network calculus [CHA 94, JIA 08, FID 15]. The aim

of this theory is to compute the violation probability of some flow of data to have

a certain maximum delay. Several models have been defined, but they all mix the

network calculus theory with the deviation theory.
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Another class of applications where deterministic network calculus is relevant is

real-time and critical systems. These systems have hard deadlines and require a

deterministic analysis. The most famous success of network calculus is certainly its

use to bound the delay and the buffer usage of the AFDX (Avionics Full Duplex)

network of the Airbus A380 airplane [FRA 06, BOY 08, BOY 10c], and recent

developments of network calculus have been obtained in this context. AFDX is an

embedded network based on the Ethernet technology, and is where switches are

connected using full-duplex links, i.e. there are two different wires between two

switches, one for each direction, avoiding collisions. A realistic network is composed

of a dozen switches and thousands of flows, called virtual links. As a result, the

techniques developed to analyze such networks must be algorithmically efficient and

compute accurate upper bounds on the transmission delays.

In the field of embedded networks, network calculus competes with other

techniques. Among them, we can cite model checking [CLA 99]. Model checking is

based on the exhaustive modeling of the states of the system with objects such as

timed automata (or recently adapted to the context of network calculus, event-count

automata [CHA 05]) and computes the exact bounds by analyzing them. As a result,

it will give very accurate bounds, but at a prohibitive algorithmic cost. For example,

in [PHA 07], a three-node network can be analyzed in 30 minutes. A second and

classical technique is scheduling. In the context of the AFDX network, the

trajectorial approach has been developed [MAR 06]. Given a sporadic flow (almost

periodic with jitters) and a packet of this flow, the aim is to find a bound on the

worst-case delay suffered by this packet given the interacting flows. The equation

that gives this worst-case delay can then be solved using a fix-point equation. These

techniques have been designed to be more accurate than the network calculus.

Unfortunately, flaws have been found in this theory, invalidating the results of first

investigations [KEM 13b, KEM 13a], and although these have been corrected

[LI 14], no comparison with network calculus has been done since this correction.

In this book, we propose to present what are in our opinion the most important

results obtained in the deterministic network calculus theory, since its first

developments. Indeed, no general book on the topic has been published since the

publication of two reference books in the early 2000s.

I.1. Organization of the book

This book is composed of three parts: the first presents the mathematical

framework of the network calculus theory, the second focuses on the analysis of a

network element in isolation and the third shows how to analyze a whole network.

These three parts are preceded by Chapter 1, which introduces the model and

explains our assumptions in the rest of the book. We take the example of a single
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server crossed by a single flow and show how the (min,plus) operators naturally

appear in our model and how performances (delay and backlog) are computed.

The first part is about the mathematical framework, i.e. the dioid of (min,plus)

functions:

– Chapter 2 defines this dioid and all the (min,plus) operators that will appear,

namely the convolution, deconvolution and sub-additive closure. In this chapter, we

use an algebraic approach whenever possible, to stress the importance of the dioid

structure of the theory;

– Chapter 3 focuses on the classes of functions that are generally used for network

calculus: functions are non-decreasing and important classes of functions are the

convex and the sub-additive functions;

– Chapter 4 deals with the algorithmic aspects of the (min,plus) functions. Indeed,

the implementation of the (min,plus) operators is important in order to build network

calculus tools. We present general procedures to compute the (min,plus) operators and

also some efficient algorithms when restricting to some classes of functions. We also

present containers that enable us to efficiently perform the operations on approximate

functions.

The second part defines the network calculus model of a server and is devoted to

the local analysis of networks:

– Chapter 5 presents the foundations of the network calculus model, with the

definitions of the arrival and service curves, that respectively model the data flows

and the network elements. We show how performance bounds are computed from

these curves;

– Chapter 6 extends the model to the case of a flow crossing a sequence of servers.

The pay burst only once phenomenon, demonstrating the importance of studying

a network in its globality, is explored. Several important use cases are presented,

including the flow-window control;

– Chapter 7 presents the case of a network element crossed by several data flows.

Here, the notion of residual service curve is introduced, allowing us to compute

a service guarantee for every flow crossing the server. The residual service curve

depends on the service policy of the server, and we study several of them;

– Chapter 8 extends Chapter 7 by considering packets instead of fluid data,

showing the modeling power of network calculus;

– Chapter 9 ends the second part and offers a detailed comparison of the different

notions of service curves that have been defined, including the real-time calculus
theory.
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The third part considers a whole network:

– Chapter 10 presents different solutions to compute end-to-end delay bounds in

feed-forward networks. The pay multiplexing only once phenomenon is exhibited,

which emphasizes the difficulty of computing accurate performance bounds in

networks;

– Chapter 11 presents a completely different way to compute performance bounds

in feed-forward networks, using linear programming. This method is less general, but

when it applies, it allows us to compute tight performance bounds;

– Chapter 12 closes this third part by considering a network with cyclic

dependencies. Sufficient conditions for the stability are computed, depending on the

topology (with the fix-point method) or the service policy.

I.2. How to read this book

While writing this book, we had the following concerns in mind:

1) self-satisfaction: we tried to be as comprehensive as possible from the modeling

with the (min,plus) algebra to the more elaborate results. We provide proofs for all of

the results presented, although some have been simplified to keep them compact;

2) rigor: we paid attention to technical details such as function domains and

continuity, while also justifying the modeling choices. Indeed, our personal experience

is that most errors in formal methods come either from such details or from a modeling

that does not capture the reality of the systems;

3) audience diversity: every reader has different expectations when opening a

technical book. We tried to take into account this variety by presenting different

aspects of network calculus: an engineer might be mainly interested in the modeling

power and the applicability of the theory, but a developer might be more interested

in its algorithmic aspects and in the tools that have been developed. Finally, some

researchers might want to delve deeper into the theoretical aspects.

Figure I.1 represents the interdependence of the chapters.

A reader focusing on the application of network calculus could almost skip Part 1:

they can refer to the definitions of the (min,plus) operators and classes of function in

the summaries of Chapters 2 and 3 for the notations. Therefore, from Chapter 1 which

motivates the model, they can jump to Chapters 5 to 8 and then to Chapter 10 and

eventually to Chapter 12, depending on the type of networks they want to analyze.

Finally, they might be interested in the list of existing tools in the Conclusion.

The reader interested in the implementation of network calculus will also be

interested in the first part of the book, which deals with the operators and their

properties, and especially in Chapter 4.
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Chap. 1

Chap. 2

Chap. 3

Chap. 4

Chap. 5

Chap. 6

Chap. 7

Chap. 8Chap. 9

Chap. 10

Chap. 11

Chap. 12

Figure I.1. Dependence between chapters

Some sections of this book are only of theoretical interest. This is particularly

the case for Chapter 9, which compares the different types of service curves defined

in the literature, and section 10.5, which proves the NP-hardness of computing tight

performance bounds.

Finally, we shall use “WARNING.–” notes to emphasize counter-intuitive results.

I.3. Network calculus in four pages

In this section, we briefly present the model and the theory of network calculus.

For readability, we do not mention the hypothesis required for the computations. The

reader is referred to the rest of this book for more details.

Flow model: a flow of data crossing a given point of the network (from the input

to the output of a server element) is described by a cumulative function A: Aptq is the

amount of data crossing that point up to time t.

Server model: a network element (or server), represented in Figure I.2, is a relation

between two cumulative functions: A, the arrival cumulative function (at the input of

the server) and D, the departure cumulative function (at the output of the server). For

modeling purposes, this relation is usually not a function.

Performance bounds: From A and D, the arrival and departure cumulative

functions, respectively, and provided that data exit in the same order as they arrive,

the maximum delay dpA,Dq is the maximum horizontal distance between A and D,

as illustrated in Figure I.3.
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SA D

Figure I.2. Server: a relation between arrival
and departure cumulative functions
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time
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DdpA,Dq

Figure I.3. Delay from the cumulative functions. For a color version
of this figure, see www.iste.co.uk/bouillard/calculus.zip

An abstraction by curves: the exact behavior of a system is unknown at the design

stage or too complex to be handled. The principle of network calculus is to abstract the

flow and server by contracts, called arrival curves and service curves, respectively.

For the flows, the arrival curve bounds the amount of data during any interval of

time: α is an arrival curve for A if

Apt ` sq ´ Aptq ď αpsq for all s and t,

which translates into “the amount of data that arrived between time t and t ` s is less

than αpsq” and is illustrated in Figure I.4.

Symmetrically, a guarantee on the server is to bound the minimum amount of

data that can be processed during any interval of time by the server. If βpsq is the

minimum amount of data that the server can process in any time interval of length s,

then β is a service curve. Of course, as the server can be empty and thus serve no data,

Dpt ` sq ´ Dptq will not be lower-bounded by βpsq. However, we can show that D
can be expressed as a function of A and β.

Algebraic relations: the (min,plus) convolution ˚ (defined in Chapter 2) enables

us to relate the cumulative processes with the arrival and service curves:

A ď A ˚ α and D ě A ˚ β. [I.2]
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Figure I.4. Arrival curve of a flow

Performances from curves: from this modeling, it is now possible to compute

bounds from the curves only. The maximum delay is bounded by the horizontal

distance between α and β, and the maximum backlog (or buffer occupancy) by the

vertical distance of the curves. Moreover, α m β is an arrival curve for D, where m is

the (min,plus) deconvolution which will be defined in Chapter 2.

From this modeling, we now illustrate how these basic elements can be used to

analyze more complex networks.

Sequence of servers: suppose that the flow of data crosses several servers as in

Figure I.5. Due to the nice algebraic properties of the (min,plus) convolution, we can

write C ě B ˚ β2 ě A ˚ pβ1 ˚ β2q, which means that the sequence of servers S1 and

S2 can be modeled as a server with service curve β1 ˚ β2.

S1, β1 S2, β2A,α
B

C

β1 ˚ β2

Figure I.5. A single flow crossing two servers in tandem

The end-to-end delay can then be computed by dpα, β1 ˚ β2q. Another solution

would be to add the maximum delay of each server: dpα, β1q ` dpα m β1, β2q.
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The pay burst only once phenomenon, a key result of network calculus detailed in

Chapter 6, is the observation that

dpα, β1 ˚ β2q ď dpα, β1q ` dpα m β1, β2q.

Residual service curves: suppose now that the server is crossed by several flows.

The service curve represents the global guarantee for the server that is shared among

the flows. Our goal is to compute residual service curves, i.e. service guarantees for

each flow. These service guarantees will of course depend on the service policy of the

server (FIFO, priorities, processor sharing, etc.), and on the characteristics of the other

flows.

S, β D1

D2

A1, α1

A2, α2

S1, β1A1, α1 D1

S2, β2A2, α2 D2

residual

Figure I.6. Residual service curves

For example, when a server of capacity β is shared by two flows with respective

arrival functions A1, A2 and arrival curves α1, α2, as in Figure I.6, the simplest result

valid for any service policy is that a residual service offered to flow i is

βi “ rβ ´ αjs`
Ò ,

where ti, ju “ t1, 2u and rxs`
Ò will be defined in Chapter 3. This result seems quite

simple and coherent with the intuition (each flow gets the minimal service minus the

maximal interference), but technical assumptions have been omitted here and must be

verified in Chapter 7.

Analysis of a network: let us now consider a more generic case as illustrated in

Figure I.7.

S1, β1S1, β1 S2, β2

S3, β3 S4, β4

A1, α1

B1
C1

A2, α2
B2

C2
A3, α3

B3
C3A4, α4

B4 C4

Figure I.7. Topology with several flows crossing several servers
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To analyze such generic topologies, the most common approach, called modular
analysis, consists of mixing results on the sequence of servers and residual service

curves.

In Figure I.7, an end-to-end service curve for flow 1 (described by the cumulative

functions A1, B1 and C1) can be computed by

β̃1 “ rβ1 ´ α2s`
Ò ˚ β2.

The case of flow 2 is a little more complicated as we also need to compute the

residual service curve at server 4. This residual service curve can be computed by

grouping flows 3 and 4: the end-to-end residual service curve for flow 2 is then:

β̃2 “ rβ1 ´ α1s`
Ò ˚ rβ4 ´ pα3 ` α4q m β3s`

Ò .

The case of flows 3 and 4 can be handled differently: the same process would be

possible, but in many cases, it is possible to group servers 3 and 4 first: denote β1
4 “”

β4 ´ α2 m rβ1 ´ α1s`
Ò

ı`
Ò

the residual service curve for flows 3 and 4 at server 4.

Then, the residual service curve for flow 3 can be computed as

β̃3 “ “pβ3 ˚ β1
4q ´ α3

‰`
Ò ,

and similarly for flow 4. This illustrates the pay multiplexing only once phenomenon:

the interference with flow 3 counted only once. The different modular approaches will

be detailed in Chapter 10.

Another approach, explained in Chapter 11, consists of writing the equations on

cumulative functions for the whole network and considering the arrival and service

curves as constraints on the system. The computation of the delay then boils down to

an optimization problem.
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Basic Model: Single Server, Single Flow

Network calculus is a theory designed to compute upper bounds of flow delays

and server backlogs in networks. Before presenting how to compute such bounds, we

present in this chapter the modeling process so that the network calculus model is

an abstraction of a real system. This includes modeling of the data that circulate in

a network (flows) and modeling of the processing of data (servers). The modeling

process also justifies the hypothesis we made in this book.

1.1. Modeling principles

Formal methods, as described in Figure 1.1, are used to compute properties in real

systems (such as there is no loss of message): if a model M is built from a system Σ,

then any property P of the system must be translated into a formal property Φ of the

model. Such a property can, for example, be that there is no buffer overflow.

Σ

M Φ

PReal world

Theory T

System Property

Formal model Formal property

$

m
o

d
el

in
g

m
o

d
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g

?

Figure 1.1. Formal methods for guaranteeing properties on systems
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In our context, we want to ensure that if the model states that Φ is satisfied, then

P is also satisfied. We then want a conservative modeling: it can never happen that

a good property (i.e. the system satisfies all of the desired requirements) is satisfied

in the model, but not in the real system. Indeed, the system’s behavior would not be

guaranteed.

Hence, we want to emphasize our modeling choices here and show how they fit

systems.

1.2. Constant rate server

In this section, we present an example that will serve as an illustration in the whole

chapter. Consider a server that transmits exactly R bits of data per unit time. Our aim

is to find upper bounds on the transmission delay, assuming that data exit the server in

their arrival order, or to bound the amount of data that can be present in the server.

SA D

Figure 1.2. Server: a relation between arrival and departure

Let us first introduce some notations. For all t ě 0, we denote by Aptq the amount

of data that arrive in the system up to time t, and by Dptq the amount of data that

departed the system up to time t. We assume that there is no loss and no creation of

data in the system and that initially the system is empty: Ap0q “ Dp0q “ 0. The

function A is called the cumulative arrival function (or process) of the system and

D is called the cumulative departure function (or process) of the system. Let us now

derive the relation between A and D.

Suppose that during the time interval pu, ts, the system is never empty (we also

say that it is always backlogged), meaning that during this period of time, exactly

R ¨ pt ´ uq bits of data exit the system:

Dptq ´ Dpuq “ R ¨ pt ´ uq. [1.1]

The assumption that the system is always backlogged is mandatory. Otherwise,

we would have Dptq ´ Dpuq ď R ¨ pt ´ uq, which is not a guarantee for the service

offered.
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As Ap0q “ Dp0q, the last instant s0 before t at which the system is empty exists:

Aps0q “ Dps0q and s0 “ supts ď t | Apsq “ Dpsqu. Using the latter formula, we

obtain

Dptq “ Aps0q ` R ¨ pt ´ s0q.

If s ă s0, then Dptq ď Dpsq ` R ¨ pt ´ sq ď Apsq ` R ¨ pt ´ sq as Dpsq ď Apsq.

If s ą s0, then Apsq ` R ¨ pt ´ sq ě Apsq ` Dptq ´ Dpsq ě Dptq, and we finally

obtain

Dptq “ inf
0ďsďt

Apsq ` R ¨ pt ´ sq. [1.2]

d
at

a

time

Aptq

Dptq

s0 t

Figure 1.3. Input/output relation for a constant-rate server. For a color
version of this figure, see www.iste.co.uk/bouillard/calculus.zip

This formula corresponds to the (min,plus) convolution of A and β : t ÞÑ R ¨ t that

will be introduced in the next chapter. In short, we denote D “ A ˚ β.

Before explaining how performance guarantees can be computed, let us focus on

the two key elements in the description of this system: the modeling of the flows and

of the relation between the arrival and departure flows model (server).

1.3. Flow model

A data flow is usually a set of information, encoded into bits or bytes, grouped

or fragmented into frames or packets, through the different network layer. Network

calculus only focuses on performances, and parts of this information are forgotten. In

particular, we focus only on the amount of information and not on its content, which

in general does not affect the performance of the system. In particular, the size of the
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packets is not modeled in the basic model, whereas it may have an impact depending

on the scheduling policy. Chapter 8 will be devoted to such aspects.

In the basic model, a flow is represented by a cumulative function that models an

amount of data.

DEFINITION 1.1 (Cumulative function).– The cumulative function of a flow is a
function A, defined on R`, that is non-decreasing, piecewise continuous and
left-continuous and such that Ap0q “ 0. Denote by C the set of functions that satisfy
these properties. The quantity Aptq represents the amount of data sent by the flow in
the interval r0, tq.

An example of a cumulative function A is drawn in Figure 1.4. The slope

between times u and u1 may represent the fluid arrival of a packet of size 1, as well as

the successive arrival of two packets of respective sizes 1
3 and 2

3 . The interval ru1, vs
not only could be the period between the arrival of two packets, but may also be

some pause inside the arrival of one packet. The discontinuity at w can represent the

instantaneous arrival of one or several packets: cumulative functions represent only

an amount of data and give no information about packet boundaries or content.

t

Aptq

u u1 v v1 w

1

2

3

Figure 1.4. Cumulative flow function

After this short illustration, we more precisely discuss the following three points:

– the choice of the time domain;

– the use of a cumulative amount of data instead of throughput;

– the continuity of curves.

Time domain: the time domain is restricted to R`, excluding negative time values.

We assume the existence of a starting time in the system: at time 0, all servers are

empty and no flow has started sending data in the system.
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The choice of a dense time domain might surprise some readers since a computer

is basically a discrete-time system, scheduled by a clock. However, while considering

a network, each element has its own clock, and different clocks may drift with regard

to the others. As a result, the set of natural numbers for the time domain is excluded1.

Still, we could choose Q`, but it is much more convenient to work with R`.

Cumulative amount of data: the choice of the cumulative amount of data, where

the network community often represents a flow by its throughput, is mainly motivated

by mathematical requirements. The amount of data sent by the flow from a time origin

up to the current time t is always defined, whereas the instantaneous throughput is not

defined at every time scale, especially because we assume that a positive amount of

data may arrive instantaneously (as in Figure 1.4 at time w)

It is clear that a cumulative function is non-decreasing.

The left-continuity assumption: the point that deserves the longest discussion relies

on the informal expression up to time t, and is related to the continuity of A.

There are several interpretations of this sentence: the quantity Aptq represents the

amount of data that arrived during r0, ts, r0, tq or p0, ts.
The last case can be immediately discarded as Aptq would never take into account

the arrival of a packet at time 0 (even Ap0q).

Initially, r0, ts might seem more natural than r0, tq: with the right-open interval, a

packet arriving at time t will not be taken into account in Aptq, but just after (at

Apt`q “ limxÑt,xąt Aptq; see equation [A.1]); with the right-closed version, a

packet arrival at time t is taken into account in Aptq.

The key point is that we are not only interested in the amount of data from 0 up to

t, but also in any interval of time. Let s and t be two instants with s ď t and Aps, tq
be the amount of data arriving between times s and t. Intuitively, we want this amount

of data to satisfy Chasles’s relation:

@s ď t ď u, Aps, uq “ Aps, tq ` Apt, uq,

and to be written as Aps, tq “ Aptq ´ Apsq.

If Aps, tq is the amount of data that arrived in the interval rs, ts, then we have

Aps, tq ` Apt, uq “ Aps, uq ` Apt, tq, where Apt, tq might be positive. Therefore, we

have to reject this model.

1 Note that while considering one single element, or a set of elements sharing a common clock,

such as a system-on-chip, the assumption of a discrete time is a natural choice.
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As has already been pointed out, if Aps, tq is the amount of data that arrived in the

interval ps, ts, then we have Aps, tq ` Apt, uq “ Aps, uq, but as mentioned above, the

data that might arrive at time 0 will never be taken into account.

Therefore, finally, we consider Aps, tq to be the amount of data that arrived in

the interval rs, tq. We now have Apt, tq “ 0 for all t P R`, so Chasles’s relation is

satisfied, and we can set Aptq “ Ap0, tq:

Ap0q “ 0 and Aps, tq “ Ap0, tq ´ Ap0, sq “ Aptq ´ Apsq.

This choice thus conforms to our requirements.

This choice implies two mathematical requirements on cumulative functions. First,

it implies Ap0q “ 0 since the amount of data produced in the empty interval r0, 0q is

null. Second, it implies left-continuous functions (the arrival of a single packet of size

1 at time 1 is represented by a function A such that Aptq “ 0 for any t P r0, 1s and

Aptq “ 1 for t ą 1).

The last hypothesis, assuming piecewise continuity, is reasonable considering

computer-based behavior: we assume that only a finite number of events can happen

in a finite interval of time, so there is a finite number of discontinuities in any finite

interval.

Nevertheless, after these presentations of the technical reasons why

left-continuous cumulative curves are best suited to model cumulative amounts of

data, we may wonder what would happen to the theory if right-continuous functions

were chosen to model arrival curves. As already mentioned, this modeling seems

more natural for many people since a packet arriving at time t is represented by the

value of Aptq.

Section 5.3.3.3 will show that the choice of continuity for cumulative functions

has no influence on the values of the delay and backlog, as they will be defined in

section 1.5, and section 5.3.3.3 will provide more arguments that allow us to consider

that continuity is a technical choice that can change the ways to get results, but not the

results themselves.

1.4. Server model

In the example in section 1.2, the server was described as transmitting exactly R
bits of data per unit of time, and we could derive a relation between the cumulative

arrival function A and the cumulative departure function D. In network calculus, a

server is a relation between some arrival and departure cumulative functions.


