


Wiley Series in Acoustics, Noise and Vibration

---

# ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE



Edited by  
Ivan Nenadic  
Matthew Urban  
James Greenleaf  
Jean-Luc Gennisson  
Miguel Bernal  
Mickael Tanter

WILEY



## **Ultrasound Elastography for Biomedical Applications and Medicine**



# **Ultrasound Elastography for Biomedical Applications and Medicine**

*Edited by*

*Ivan Nenadic*

Mayo Clinic  
USA

*Matthew Urban*

Mayo Clinic  
USA

*James Greenleaf*

Mayo Clinic  
USA

*Jean-Luc Gennisson*

Imagerie par Résonance  
Magnétique Médicale et  
Multi-Modalités  
France

*Miguel Bernal*

Universidad Pontificia  
Bolivariana  
Colombia

*Mickael Tanter*

Institut Langevin - Ondes et Images  
ESPCI ParisTech CNRS  
France

**WILEY**

This edition first published 2019  
© 2019 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

*Registered Offices*

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

*Editorial Office*

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at [www.wiley.com](http://www.wiley.com).

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

*Limit of Liability/Disclaimer of Warranty*

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

*Library of Congress Cataloging-in-Publication Data*

Names: Nenadic, Ivan Z. (Ivan Zdenko), 1983- editor.

Title: Ultrasound Elastography for Biomedical Applications

and Medicine / [edited by] Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Miguel Bernal, Mickael Tanter, Jean-Luc Gennisson.

Description: Hoboken, NJ :Wiley, 2019. | Includes bibliographical references and index. |

Identifiers: LCCN 2018017424 (print) | LCCN 2018017679 (ebook) | ISBN 9781119021551 (Adobe PDF) | ISBN 9781119021544 (ePub) | ISBN 9781119021513 (hardcover)

Subjects: | MESH: Elasticity Imaging Techniques--methods

Classification: LCC RC78.7.U4 (ebook) | LCC RC78.7.U4 (print) | NLMWN 208 |

DDC 616.07/543--dc23

LC record available at <https://lccn.loc.gov/2018017424>

Cover Design: Wiley

Cover Image: Image courtesy of Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal and Mickael Tanter

Set in 10/12pt WarnockPro by SPI Global, Chennai, India

## Contents

### List of Contributors *xix*

### Section I Introduction 1

#### 1 Editors' Introduction 3

*Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter*

References 5

### Section II Fundamentals of Ultrasound Elastography 7

#### 2 Theory of Ultrasound Physics and Imaging 9

*Roberto Lavarello and Michael L. Oelze*

2.1 Introduction 9

2.2 Modeling the Response of the Source to Stimuli [ $h(t)$ ] 10

2.3 Modeling the Fields from Sources [ $p(t, \mathbf{x})$ ] 12

2.4 Modeling an Ultrasonic Scattered Field [ $s(t, \mathbf{x})$ ] 15

2.5 Modeling the Bulk Properties of the Medium [ $a(t, \mathbf{x})$ ] 19

2.6 Processing Approaches Derived from the Physics of Ultrasound [ $\Omega$ ] 21

2.7 Conclusions 26

References 27

#### 3 Elastography and the Continuum of Tissue Response 29

*Kevin J. Parker*

3.1 Introduction 29

3.2 Some Classical Solutions 31

3.3 The Continuum Approach 32

3.4 Conclusion 33

Acknowledgments 33

References 34

|          |                                                                                       |           |
|----------|---------------------------------------------------------------------------------------|-----------|
| <b>4</b> | <b>Ultrasonic Methods for Assessment of Tissue Motion in Elastography</b>             | <b>35</b> |
|          | <i>Jingfeng Jiang and Bo Peng</i>                                                     |           |
| 4.1      | Introduction                                                                          | 35        |
| 4.2      | Basic Concepts and their Relevance in Tissue Motion Tracking                          | 36        |
| 4.2.1    | Ultrasound Signal Processing                                                          | 36        |
| 4.2.2    | Constitutive Modeling of Soft Tissues                                                 | 37        |
| 4.3      | Tracking Tissue Motion through Frequency-domain Methods                               | 37        |
| 4.4      | Maximum Likelihood (ML) Time-domain Correlation-based Methods                         | 39        |
| 4.5      | Tracking Tissue Motion through Combining Time-domain and Frequency-domain Information | 44        |
| 4.6      | Time-domain Maximum A Posterior (MAP) Speckle Tracking Methods                        | 45        |
| 4.6.1    | Tracking Large Tissue Motion                                                          | 45        |
| 4.6.2    | Strategies for Accurately Tracking Large Tissue Motion                                | 47        |
| 4.6.2.1  | Maximize Prior Information                                                            | 48        |
| 4.6.2.2  | Regularized Motion Tracking Using Smoothness Constraint(s)                            | 50        |
| 4.6.2.3  | Bayesian Speckle Tracking                                                             | 50        |
| 4.6.3    | Discussions                                                                           | 52        |
| 4.7      | Optical Flow-based Tissue Motion Tracking                                             | 53        |
| 4.7.1    | Region-based Optical Flow Methods                                                     | 53        |
| 4.7.2    | Optical Flow Methods with Smoothness Constraints                                      | 55        |
| 4.8      | Deformable Mesh-based Motion-tracking Methods                                         | 55        |
| 4.9      | Future Outlook                                                                        | 57        |
| 4.9.1    | Tracking Lateral Tissue Motion                                                        | 57        |
| 4.9.2    | Tracking Large Tissue Motion                                                          | 59        |
| 4.9.3    | Testing of Motion-tracking Algorithms                                                 | 61        |
| 4.9.3.1  | Evaluation of Performance                                                             | 61        |
| 4.9.3.2  | Testing Data                                                                          | 62        |
| 4.9.4    | Future with Volumetric Ultrasound Data                                                | 63        |
| 4.10     | Conclusions                                                                           | 63        |
|          | Acknowledgments                                                                       | 63        |
|          | Acronyms                                                                              | 63        |
|          | Additional Nomenclature of Definitions and Acronyms                                   | 64        |
|          | References                                                                            | 65        |

### **Section III Theory of Mechanical Properties of Tissue 71**

|          |                                                                            |           |
|----------|----------------------------------------------------------------------------|-----------|
| <b>5</b> | <b>Continuum Mechanics Tensor Calculus and Solutions to Wave Equations</b> | <b>73</b> |
|          | <i>Luiz Vasconcelos, Jean-Luc Gennisson, and Ivan Nenadic</i>              |           |
| 5.1      | Introduction                                                               | 73        |
| 5.2      | Mathematical Basis and Notation                                            | 73        |
| 5.2.1    | Tensor Notation                                                            | 73        |
| 5.2.2    | Vector Operators                                                           | 74        |
| 5.2.3    | Important Tensors and Notations                                            | 75        |
| 5.3      | Solutions to Wave Equations                                                | 75        |
| 5.3.1    | Displacement and Deformation                                               | 75        |
| 5.3.2    | The Stress Tensor                                                          | 75        |
| 5.3.3    | Stress–Strain Relation                                                     | 76        |
| 5.3.4    | Displacement Equation of Motion                                            | 77        |
| 5.3.5    | Helmholtz Decomposition                                                    | 77        |
| 5.3.6    | Compressional and Shear Waves                                              | 78        |
|          | References                                                                 | 81        |

|          |                                                                                                |     |
|----------|------------------------------------------------------------------------------------------------|-----|
| <b>6</b> | <b>Transverse Wave Propagation in Anisotropic Media</b>                                        | 82  |
|          | <i>Jean-Luc Gennisson</i>                                                                      |     |
| 6.1      | Introduction                                                                                   | 82  |
| 6.2      | Theoretical Considerations from General to Transverse Isotropic Models for Soft Tissues        | 82  |
| 6.3      | Experimental Assessment of Anisotropic Ratio by Shear Wave Elastography                        | 87  |
| 6.3.1    | Transient Elastography                                                                         | 87  |
| 6.3.2    | Supersonic Shear Imaging                                                                       | 87  |
| 6.4      | Conclusion                                                                                     | 88  |
|          | References                                                                                     | 88  |
| <b>7</b> | <b>Transverse Wave Propagation in Bounded Media</b>                                            | 90  |
|          | <i>Javier Brum</i>                                                                             |     |
| 7.1      | Introduction                                                                                   | 90  |
| 7.2      | Transverse Wave Propagation in Isotropic Elastic Plates                                        | 90  |
| 7.2.1    | Field Equations for Plane Waves in Two Dimensions                                              | 91  |
| 7.2.2    | The Partial Wave Technique in Isotropic Plates                                                 | 92  |
| 7.3      | Plate in Vacuum: Lamb Waves                                                                    | 93  |
| 7.3.1    | Low Frequency Approximation for Modes with Cut-off Frequency                                   | 95  |
| 7.3.2    | Modes Without Cut-off Frequencies                                                              | 96  |
| 7.4      | Viscoelastic Plate in Liquid: Leaky Lamb Waves                                                 | 96  |
| 7.4.1    | Elastic Plate in Liquid                                                                        | 96  |
| 7.4.1.1  | Leakage into the Fluid                                                                         | 98  |
| 7.4.2    | Viscoelastic Plate                                                                             | 98  |
| 7.4.3    | Empirical Formula                                                                              | 99  |
| 7.5      | Isotropic Plate Embedded Between Two Semi-infinite Elastic Solids                              | 99  |
| 7.6      | Transverse Wave Propagation in Anisotropic Viscoelastic Plates Surrounded by Non-viscous Fluid | 100 |
| 7.6.1    | Guided Wave Propagation Parallel to the Fibers                                                 | 101 |
| 7.6.2    | Guided Wave Propagation Perpendicular to the Fibers                                            | 102 |
| 7.7      | Conclusions                                                                                    | 103 |
|          | Acknowledgments                                                                                | 103 |
|          | References                                                                                     | 103 |
| <b>8</b> | <b>Rheological Model-based Methods for Estimating Tissue Viscoelasticity</b>                   | 105 |
|          | <i>Jean-Luc Gennisson</i>                                                                      |     |
| 8.1      | Introduction                                                                                   | 105 |
| 8.2      | Shear Modulus and Rheological Models                                                           | 106 |
| 8.2.1    | Rheological Models and Mechanical Response of the Solid                                        | 106 |
| 8.2.2    | Voigt's Model                                                                                  | 106 |
| 8.2.3    | Maxwell's Model                                                                                | 107 |
| 8.2.4    | Standard Linear Model                                                                          | 109 |
| 8.2.5    | Fractional Rheological Models and Biological Tissues                                           | 110 |
| 8.2.5.1  | Spring-pot                                                                                     | 110 |
| 8.2.6    | Generalized Maxwell and Voigt Models                                                           | 111 |
| 8.3      | Applications of Rheological Models                                                             | 113 |
| 8.3.1    | Blood Coagulation                                                                              | 114 |
| 8.3.2    | Hydrogel Characterization                                                                      | 114 |
| 8.3.3    | Some Conclusions                                                                               | 116 |
|          | References                                                                                     | 116 |

|                                                                        |                                                                                                                              |            |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>9</b>                                                               | <b>Wave Propagation in Viscoelastic Materials</b>                                                                            | <i>118</i> |
|                                                                        | <i>Yue Wang and Michael F. Insana</i>                                                                                        |            |
| 9.1                                                                    | Introduction                                                                                                                 | <i>118</i> |
| 9.2                                                                    | Estimating the Complex Shear Modulus from Propagating Waves                                                                  | <i>119</i> |
| 9.3                                                                    | Wave Generation and Propagation                                                                                              | <i>120</i> |
| 9.4                                                                    | Rheological Models                                                                                                           | <i>122</i> |
| 9.5                                                                    | Experimental Results and Applications                                                                                        | <i>124</i> |
| 9.5.1                                                                  | Validation of Shear Wave and Surface Wave Elasticity Imaging on Phantoms                                                     | <i>124</i> |
| 9.5.2                                                                  | 3D Modulus Reconstruction of Sample with Inclusion                                                                           | <i>124</i> |
| 9.5.3                                                                  | Modeling of Viscoelastic Material                                                                                            | <i>125</i> |
| 9.6                                                                    | Summary                                                                                                                      | <i>125</i> |
|                                                                        | References                                                                                                                   | <i>126</i> |
| <br><b>Section IV Static and Low Frequency Elastography</b> <i>129</i> |                                                                                                                              |            |
| <b>10</b>                                                              | <b>Validation of Quantitative Linear and Nonlinear Compression Elastography</b>                                              | <i>131</i> |
|                                                                        | <i>Jean Francois Dord, Sevan Goenezen, Assad A. Oberai, Paul E. Barbone, Jingfeng Jiang, Timothy J. Hall, and Theo Pavan</i> |            |
| 10.1                                                                   | Introduction                                                                                                                 | <i>131</i> |
| 10.2                                                                   | Methods                                                                                                                      | <i>132</i> |
| 10.2.1                                                                 | The Inverse Algorithm                                                                                                        | <i>132</i> |
| 10.2.2                                                                 | Phantom Description and RF Data Acquisition                                                                                  | <i>132</i> |
| 10.2.3                                                                 | Displacement Estimation                                                                                                      | <i>133</i> |
| 10.3                                                                   | Results                                                                                                                      | <i>134</i> |
| 10.3.1                                                                 | Description of the Forward Problem                                                                                           | <i>134</i> |
| 10.3.2                                                                 | Options for the Optimization Strategy                                                                                        | <i>134</i> |
| 10.3.3                                                                 | Shear Modulus Images                                                                                                         | <i>135</i> |
| 10.3.4                                                                 | Nonlinear Parameter Images                                                                                                   | <i>135</i> |
| 10.3.5                                                                 | Axial Strain Images                                                                                                          | <i>136</i> |
| 10.4                                                                   | Discussion                                                                                                                   | <i>137</i> |
| 10.4.1                                                                 | Analysis of the Shear Modulus Distributions                                                                                  | <i>137</i> |
| 10.4.2                                                                 | Analysis of the Nonlinear Parameter Images                                                                                   | <i>138</i> |
| 10.4.3                                                                 | Effect of Varying Regularization Parameters                                                                                  | <i>138</i> |
| 10.4.4                                                                 | Effect of Boundary Conditions on Lateral Edges                                                                               | <i>140</i> |
| 10.5                                                                   | Conclusions                                                                                                                  | <i>140</i> |
|                                                                        | Acknowledgement                                                                                                              | <i>141</i> |
|                                                                        | References                                                                                                                   | <i>141</i> |
| <b>11</b>                                                              | <b>Cardiac Strain and Strain Rate Imaging</b>                                                                                | <i>143</i> |
|                                                                        | <i>Brecht Heyde, Oana Mirea, and Jan D'hooge</i>                                                                             |            |
| 11.1                                                                   | Introduction                                                                                                                 | <i>143</i> |
| 11.2                                                                   | Strain Definitions in Cardiology                                                                                             | <i>143</i> |
| 11.3                                                                   | Methodologies Towards Cardiac Strain (Rate) Estimation                                                                       | <i>145</i> |
| 11.3.1                                                                 | Doppler-based Methods                                                                                                        | <i>145</i> |
| 11.3.2                                                                 | Optical Flow Methods                                                                                                         | <i>147</i> |
| 11.3.2.1                                                               | Differential Methods                                                                                                         | <i>147</i> |
| 11.3.2.2                                                               | Region-based Methods                                                                                                         | <i>147</i> |
| 11.3.2.3                                                               | Phase-based methods                                                                                                          | <i>148</i> |

|           |                                                                                |            |
|-----------|--------------------------------------------------------------------------------|------------|
| 11.3.3    | Registration-based Techniques                                                  | 148        |
| 11.3.4    | Biomechanical Models                                                           | 149        |
| 11.3.5    | Statistical Models                                                             | 149        |
| 11.4      | Experimental Validation of the Proposed Methodologies                          | 149        |
| 11.4.1    | Synthetic Data Testing                                                         | 150        |
| 11.4.2    | Mock Model Testing                                                             | 150        |
| 11.4.3    | Experimental Animal Testing                                                    | 151        |
| 11.4.4    | In Vivo Human Testing                                                          | 151        |
| 11.5      | Clinical Applications                                                          | 151        |
| 11.6      | Future Developments                                                            | 153        |
|           | References                                                                     | 154        |
| <b>12</b> | <b>Vascular and Intravascular Elastography</b>                                 | <b>161</b> |
|           | <i>Marvin M. Doyley</i>                                                        |            |
| 12.1      | Introduction                                                                   | 161        |
| 12.2      | General Principles                                                             | 161        |
| 12.2.1    | Strain-based Vascular Imaging Methods                                          | 162        |
| 12.2.2    | Model-based Imaging                                                            | 164        |
| 12.3      | Conclusion                                                                     | 168        |
|           | References                                                                     | 168        |
| <b>13</b> | <b>Viscoelastic Creep Imaging</b>                                              | <b>171</b> |
|           | <i>Carolina Amador Carrascal</i>                                               |            |
| 13.1      | Introduction                                                                   | 171        |
| 13.2      | Overview of Governing Principles                                               | 172        |
| 13.2.1    | Viscoelastic Behavior                                                          | 172        |
| 13.2.2    | Creep                                                                          | 172        |
| 13.2.3    | Acoustic Radiation Force                                                       | 173        |
| 13.3      | Imaging Techniques                                                             | 173        |
| 13.3.1    | Kinetic Acoustic Vitreoretinal Examination (KAVE)                              | 173        |
| 13.3.2    | Monitored Steady-state Excitation and Recovery (MSSER) Radiation Force Imaging | 176        |
| 13.3.3    | Viscoelastic Response (VisR) Imaging                                           | 177        |
| 13.3.4    | Acoustic Radiation Force-induced Creep (RFIC)                                  | 179        |
| 13.3.5    | Acoustic Radiation Force-induced Creep-recovery (RFICR)                        | 183        |
| 13.4      | Conclusion                                                                     | 187        |
|           | References                                                                     | 187        |
| <b>14</b> | <b>Intrinsic Cardiovascular Wave and Strain Imaging</b>                        | <b>189</b> |
|           | <i>Elisa Konofagou</i>                                                         |            |
| 14.1      | Introduction                                                                   | 189        |
| 14.2      | Cardiac Imaging                                                                | 189        |
| 14.2.1    | Myocardial Elastography                                                        | 189        |
| 14.2.1.1  | Introduction                                                                   | 189        |
| 14.2.1.2  | Mechanical Deformation of Normal and Ischemic or Infarcted Myocardium          | 190        |
| 14.2.1.3  | Myocardial Elastography                                                        | 190        |
| 14.2.1.4  | Simulations                                                                    | 194        |
| 14.2.1.5  | Myocardial ischemia and infarction detection in canines <i>in vivo</i>         | 194        |
| 14.2.1.6  | Validation of Myocardial Elastography against CT Angiography                   | 195        |
| 14.2.2    | Electromechanical Wave Imaging (EWI)                                           | 197        |

|          |                                                                       |     |
|----------|-----------------------------------------------------------------------|-----|
| 14.2.2.1 | Cardiac Arrhythmias                                                   | 197 |
| 14.2.2.2 | Clinical Diagnosis of Atrial Arrhythmias                              | 198 |
| 14.2.2.3 | Treatment of Atrial Arrhythmias                                       | 198 |
| 14.2.2.4 | Electromechanical Wave Imaging (EWI)                                  | 198 |
| 14.2.2.5 | Imaging the Electromechanics of the Heart                             | 202 |
| 14.2.2.6 | EWI Sequences                                                         | 202 |
| 14.2.2.7 | Characterization of Atrial Arrhythmias in Canines In Vivo             | 207 |
| 14.2.2.8 | EWI in Normal Human Subjects and with Arrhythmias                     | 207 |
| 14.3     | Vascular Imaging                                                      | 208 |
| 14.3.1   | Stroke                                                                | 208 |
| 14.3.2   | Stroke and Plaque Stiffness                                           | 209 |
| 14.3.3   | Abdominal Aortic Aneurysms                                            | 210 |
| 14.3.4   | Pulse Wave Velocity (PWV)                                             | 211 |
| 14.3.5   | Pulse Wave Imaging                                                    | 211 |
| 14.3.6   | Methods                                                               | 211 |
| 14.3.6.1 | PWI System using Parallel Beamforming                                 | 212 |
| 14.3.6.2 | Coherent Compounding                                                  | 214 |
| 14.3.6.3 | Flow Measurement                                                      | 215 |
| 14.3.6.4 | 3D PWI                                                                | 215 |
| 14.3.7   | PWI Performance Assessment in Experimental Phantoms                   | 216 |
| 14.3.8   | Mechanical Testing                                                    | 217 |
| 14.3.9   | PWI in Aortic Aneurysms and Carotid Plaques in Human Subjects In Vivo | 218 |
| 14.3.9.1 | Abdominal Aortic Aneurysms                                            | 218 |
| 14.3.9.2 | Carotid Plaques                                                       | 219 |
|          | Acknowledgements                                                      | 219 |
|          | References                                                            | 219 |

## Section V Harmonic Elastography Methods 227

|        |                                                     |     |
|--------|-----------------------------------------------------|-----|
| 15     | <b>Dynamic Elasticity Imaging</b>                   | 229 |
|        | <i>Kevin J. Parker</i>                              |     |
| 15.1   | Vibration Amplitude Sonoelastography: Early Results | 229 |
| 15.2   | Sonoelastic Theory                                  | 229 |
| 15.3   | Vibration Phase Gradient Sonoelastography           | 232 |
| 15.4   | Crawling Waves                                      | 233 |
| 15.5   | Clinical Results                                    | 233 |
| 15.6   | Conclusion                                          | 234 |
|        | Acknowledgments                                     | 235 |
|        | References                                          | 235 |
| 16     | <b>Harmonic Shear Wave Elastography</b>             | 238 |
|        | <i>Heng Zhao</i>                                    |     |
| 16.1   | Introduction                                        | 238 |
| 16.2   | Basic Principles                                    | 239 |
| 16.2.1 | Vibration Source                                    | 239 |
| 16.2.2 | Motion Detection                                    | 239 |
| 16.2.3 | Directional Filter                                  | 240 |
| 16.2.4 | 2D Shear Wave Speed Estimation                      | 241 |
| 16.2.5 | Weighted Averaging                                  | 242 |

|           |                                                                    |            |
|-----------|--------------------------------------------------------------------|------------|
| 16.2.6    | Shear Wave Speed Image Compounding                                 | 242        |
| 16.3      | Ex Vivo Validation                                                 | 242        |
| 16.3.1    | Experimental Setup                                                 | 242        |
| 16.3.2    | Phantom Experiments                                                | 243        |
| 16.4      | In Vivo Application                                                | 244        |
| 16.5      | Summary                                                            | 246        |
|           | Acknowledgments                                                    | 247        |
|           | References                                                         | 247        |
| <b>17</b> | <b>Vibro-acoustography and its Medical Applications</b>            | <b>250</b> |
|           | <i>Azra Alizad and Mostafa Fatemi</i>                              |            |
| 17.1      | Introduction                                                       | 250        |
| 17.2      | Background                                                         | 250        |
| 17.2.1    | General Principles of VA and Method                                | 250        |
| 17.2.2    | Features of a Vibro-acoustography Image                            | 251        |
| 17.3      | Application of Vibro-acoustography for Detection of Calcifications | 251        |
| 17.4      | In Vivo Breast Vibro-acoustography                                 | 254        |
| 17.4.1    | Background on Breast Imaging                                       | 254        |
| 17.4.2    | Method of In Vivo VA and Results                                   | 254        |
| 17.5      | In Vivo Thyroid Vibro-acoustography                                | 259        |
| 17.6      | Limitations and Further Future Plans                               | 260        |
|           | Acknowledgments                                                    | 261        |
|           | References                                                         | 261        |
| <b>18</b> | <b>Harmonic Motion Imaging</b>                                     | <b>264</b> |
|           | <i>Elisa Konofagou</i>                                             |            |
| 18.1      | Introduction                                                       | 264        |
| 18.2      | Background                                                         | 264        |
| 18.2.1    | Ultrasound-guided HIFU                                             | 264        |
| 18.2.2    | MR-guided HIFU                                                     | 265        |
| 18.2.3    | Harmonic Motion Imaging                                            | 265        |
| 18.2.4    | Harmonic Motion Imaging for Focused Ultrasound (HMIFU)             | 266        |
| 18.3      | Methods                                                            | 267        |
| 18.3.1    | The HMIFU System                                                   | 267        |
| 18.3.2    | Parallel Beamforming                                               | 268        |
| 18.3.3    | HIFU Treatment Planning                                            | 268        |
| 18.3.4    | HIFU Treatment Monitoring                                          | 268        |
| 18.3.5    | HIFU Treatment Assessment                                          | 268        |
| 18.3.6    | Displacement Estimation                                            | 268        |
| 18.3.7    | Real-time Implementation                                           | 269        |
| 18.3.8    | Beam Steering                                                      | 270        |
| 18.3.9    | Modulus Estimation                                                 | 271        |
| 18.4      | Preclinical Studies                                                | 273        |
| 18.4.1    | Detection and Diagnosis of Breast Tumors                           | 273        |
| 18.4.1.1  | Phantom Studies                                                    | 273        |
| 18.4.1.2  | Ex Vivo Breast Specimens                                           | 273        |
| 18.4.2    | Detection and Treatment Monitoring of Breast and Pancreatic Tumors |            |
|           | In Vivo                                                            | 274        |
| 18.4.2.1  | Breast Mouse Tumor Model                                           | 274        |
| 18.4.2.2  | Pancreatic Mouse Tumor Model                                       | 277        |

|                                                      |                                                                                                                                                 |            |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 18.5                                                 | Future Prospects                                                                                                                                | 277        |
|                                                      | Acknowledgements                                                                                                                                | 279        |
|                                                      | References                                                                                                                                      | 279        |
| <b>19</b>                                            | <b>Shear Wave Dispersion Ultrasound Vibrometry</b>                                                                                              | <b>284</b> |
|                                                      | <i>Pengfei Song and Shigao Chen</i>                                                                                                             |            |
| 19.1                                                 | Introduction                                                                                                                                    | 284        |
| 19.2                                                 | Principles of Shear Wave Dispersion Ultrasound Vibrometry (SDUV)                                                                                | 284        |
| 19.3                                                 | Clinical Applications                                                                                                                           | 286        |
| 19.3.1                                               | Tissue-mimicking Phantoms                                                                                                                       | 286        |
| 19.3.2                                               | Liver                                                                                                                                           | 288        |
| 19.3.3                                               | Skeletal Muscle                                                                                                                                 | 288        |
| 19.3.4                                               | Heart                                                                                                                                           | 288        |
| 19.3.5                                               | Prostate                                                                                                                                        | 289        |
| 19.3.6                                               | Kidney                                                                                                                                          | 290        |
| 19.4                                                 | Summary                                                                                                                                         | 291        |
|                                                      | References                                                                                                                                      | 292        |
| <b>Section VI Transient Elastography Methods</b> 295 |                                                                                                                                                 |            |
| <b>20</b>                                            | <b>Transient Elastography: From Research to Noninvasive Assessment of Liver Fibrosis Using Fibroscan®</b>                                       | <b>297</b> |
|                                                      | <i>Laurent Sandrin, Magali Sasso, Stéphane Audiére, Cécile Bastard, Céline Fournier, Jennifer Oudry, Véronique Miette, and Stefan Catheline</i> |            |
| 20.1                                                 | Introduction                                                                                                                                    | 297        |
| 20.2                                                 | Principles of Transient Elastography                                                                                                            | 297        |
| 20.2.1                                               | Elastic Wave Propagation in Soft Tissues                                                                                                        | 297        |
| 20.2.2                                               | Early Developments of Transient Elastography                                                                                                    | 298        |
| 20.2.3                                               | 1D Transient Elastography: A Purely Longitudinal Shear Wave                                                                                     | 299        |
| 20.2.4                                               | Ultrafast Imaging for Transient Elastography                                                                                                    | 300        |
| 20.2.5                                               | Validation on Phantoms                                                                                                                          | 301        |
| 20.3                                                 | Fibroscan                                                                                                                                       | 301        |
| 20.3.1                                               | An Average Stiffness Measurement Device                                                                                                         | 301        |
| 20.3.2                                               | Probes Adapted to Patient Morphology                                                                                                            | 303        |
| 20.3.3                                               | Narrow Band and Controlled Shear Wave Frequency Content                                                                                         | 303        |
| 20.3.4                                               | Low Acoustic Output Power                                                                                                                       | 304        |
| 20.3.5                                               | Standardized Examination Procedure                                                                                                              | 304        |
| 20.4                                                 | Application of Vibration-controlled Transient Elastography to Liver Diseases                                                                    | 306        |
| 20.4.1                                               | A Questioned Gold Standard                                                                                                                      | 307        |
| 20.4.2                                               | Viral Hepatitis                                                                                                                                 | 307        |
| 20.4.3                                               | Fatty Liver Disease                                                                                                                             | 307        |
| 20.4.4                                               | Other Diseases                                                                                                                                  | 307        |
| 20.4.5                                               | Cirrhosis                                                                                                                                       | 307        |
| 20.4.6                                               | Prognosis                                                                                                                                       | 307        |
| 20.4.7                                               | Confounding Factors                                                                                                                             | 308        |
| 20.4.8                                               | The Pressure–Matrix–Stiffness Sequence Hypothesis                                                                                               | 308        |
| 20.4.9                                               | Advanced Applications: CAP                                                                                                                      | 308        |
| 20.4.10                                              | Spleen Stiffness Measurements                                                                                                                   | 308        |
| 20.4.11                                              | Conclusion                                                                                                                                      | 309        |

|           |                                                                                                 |            |
|-----------|-------------------------------------------------------------------------------------------------|------------|
| 20.5      | Other Applications of Transient Elastography                                                    | 309        |
| 20.5.1    | Preclinical Applications of Transient Micro-elastography                                        | 309        |
| 20.5.2    | Adipose Tissue                                                                                  | 310        |
| 20.6      | Conclusion                                                                                      | 310        |
|           | References                                                                                      | 311        |
| <b>21</b> | <b>From Time Reversal to Natural Shear Wave Imaging</b>                                         | <b>318</b> |
|           | <i>Stefan Catheline</i>                                                                         |            |
| 21.1      | Introduction: Time Reversal Shear Wave in Soft Solids                                           | 318        |
| 21.2      | Shear Wave Elastography using Correlation: Principle and Simulation Results                     | 320        |
| 21.3      | Experimental Validation in Controlled Media                                                     | 323        |
| 21.4      | Natural Shear Wave Elastography: First In Vivo Results in the Liver, the Thyroid, and the Brain | 328        |
| 21.5      | Conclusion                                                                                      | 331        |
|           | References                                                                                      | 331        |
| <b>22</b> | <b>Acoustic Radiation Force Impulse Ultrasound</b>                                              | <b>334</b> |
|           | <i>Tomasz J. Czernuszewicz and Caterina M. Gallippi</i>                                         |            |
| 22.1      | Introduction                                                                                    | 334        |
| 22.2      | Impulsive Acoustic Radiation Force                                                              | 334        |
| 22.3      | Monitoring ARFI-induced Tissue Motion                                                           | 335        |
| 22.3.1    | Displacement Resolution                                                                         | 335        |
| 22.3.2    | Displacement Underestimation                                                                    | 336        |
| 22.3.3    | Clutter Artifacts                                                                               | 338        |
| 22.4      | ARFI Data Acquisition                                                                           | 340        |
| 22.5      | ARFI Image Formation                                                                            | 341        |
| 22.5.1    | Physiological Motion Rejection                                                                  | 341        |
| 22.5.2    | ARFI Image Resolution and Contrast                                                              | 341        |
| 22.6      | Real-time ARFI Imaging                                                                          | 343        |
| 22.6.1    | Efficient Beam Sequencing                                                                       | 343        |
| 22.6.2    | GPU-based Processing                                                                            | 345        |
| 22.7      | Quantitative ARFI Imaging                                                                       | 345        |
| 22.8      | ARFI Imaging in Clinical Applications                                                           | 346        |
| 22.9      | Commercial Implementation                                                                       | 350        |
| 22.10     | Related Technologies                                                                            | 350        |
| 22.11     | Conclusions                                                                                     | 351        |
|           | References                                                                                      | 351        |
| <b>23</b> | <b>Supersonic Shear Imaging</b>                                                                 | <b>357</b> |
|           | <i>Jean-Luc Gennisson and Mickael Tanter</i>                                                    |            |
| 23.1      | Introduction                                                                                    | 357        |
| 23.2      | Radiation Force Excitation                                                                      | 357        |
| 23.2.1    | Radiation Force                                                                                 | 357        |
| 23.2.2    | Focus Duration                                                                                  | 358        |
| 23.2.3    | Impulse Response                                                                                | 359        |
| 23.2.4    | Mach Cone and Quasi Plane Shear Wave                                                            | 360        |
| 23.2.5    | Norms and Safety                                                                                | 361        |
| 23.3      | Ultrafast Imaging                                                                               | 362        |
| 23.3.1    | Ultrasonic Plane Wave Imaging                                                                   | 362        |
| 23.3.2    | Shear Wave Detection                                                                            | 363        |

|           |                                                                                                                      |            |
|-----------|----------------------------------------------------------------------------------------------------------------------|------------|
| 23.4      | Shear Wave Speed Mapping                                                                                             | 364        |
| 23.4.1    | Building an Image                                                                                                    | 364        |
| 23.5      | Conclusion                                                                                                           | 365        |
|           | References                                                                                                           | 366        |
| <b>24</b> | <b>Single Tracking Location Shear Wave Elastography</b>                                                              | <b>368</b> |
|           | <i>Stephen A. McAleavy</i>                                                                                           |            |
| 24.1      | Introduction                                                                                                         | 368        |
| 24.2      | SMURF                                                                                                                | 370        |
| 24.3      | STL-SWEI                                                                                                             | 373        |
| 24.4      | Noise in SWE/Speckle Bias                                                                                            | 376        |
| 24.5      | Estimation of viscoelastic parameters (STL-VE)                                                                       | 380        |
| 24.6      | Conclusion                                                                                                           | 384        |
|           | References                                                                                                           | 384        |
| <b>25</b> | <b>Comb-push Ultrasound Shear Elastography</b>                                                                       | <b>388</b> |
|           | <i>Pengfei Song and Shigao Chen</i>                                                                                  |            |
| 25.1      | Introduction                                                                                                         | 388        |
| 25.2      | Principles of Comb-push Ultrasound Shear Elastography (CUSE)                                                         | 389        |
| 25.3      | Clinical Applications of CUSE                                                                                        | 396        |
| 25.4      | Summary                                                                                                              | 396        |
|           | References                                                                                                           | 397        |
|           | <b>Section VII Emerging Research Areas in Ultrasound Elastography</b>                                                | <b>399</b> |
| <b>26</b> | <b>Anisotropic Shear Wave Elastography</b>                                                                           | <b>401</b> |
|           | <i>Sara Aristizabal</i>                                                                                              |            |
| 26.1      | Introduction                                                                                                         | 401        |
| 26.2      | Shear Wave Propagation in Anisotropic Media                                                                          | 402        |
| 26.3      | Anisotropic Shear Wave Elastography Applications                                                                     | 403        |
| 26.3.1    | Influence of Tissue Anisotropy on the SWE Evaluation of Kidneys                                                      | 403        |
| 26.3.1.1  | Experimental Setup                                                                                                   | 403        |
| 26.3.1.2  | Experimental Results                                                                                                 | 404        |
| 26.3.2    | Influence of Tissue Anisotropy on the SWE Evaluation of the Achilles Tendon                                          | 404        |
| 26.3.2.1  | Experimental Setup                                                                                                   | 404        |
| 26.3.2.2  | Experimental Results                                                                                                 | 406        |
| 26.3.3    | Influence of Tissue Anisotropy on the SWE Evaluation of Skeletal Muscle                                              | 406        |
| 26.3.3.1  | Experimental Setup                                                                                                   | 406        |
| 26.3.3.2  | Experimental Results                                                                                                 | 409        |
| 26.3.4    | Influence of Tissue Anisotropy on the SWE Evaluation of the Myocardium                                               | 410        |
| 26.3.4.1  | Experimental Setup                                                                                                   | 411        |
| 26.3.4.2  | Experimental Results: ETI Method                                                                                     | 411        |
| 26.3.5    | Design and Evaluation of Tissue-mimicking Phantoms to Characterize the Anisotropy Phenomenon in a Laboratory Setting | 414        |
| 26.3.5.1  | Experimental Setup                                                                                                   | 414        |
| 26.3.5.2  | Experimental Results                                                                                                 | 416        |
| 26.4      | Conclusion                                                                                                           | 420        |
|           | References                                                                                                           | 420        |

|                                                                   |                                                                                                                       |            |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|
| <b>27</b>                                                         | <b>Application of Guided Waves for Quantifying Elasticity and Viscoelasticity of Boundary Sensitive Organs</b>        | <b>422</b> |
|                                                                   | <i>Sara Aristizabal, Matthew Urban, Luiz Vasconcelos, Benjamin Wood, Miguel Bernal, Javier Brum, and Ivan Nenadic</i> |            |
| 27.1                                                              | Introduction                                                                                                          | 422        |
| 27.2                                                              | Myocardium                                                                                                            | 422        |
| 27.3                                                              | Arteries                                                                                                              | 426        |
| 27.4                                                              | Urinary Bladder                                                                                                       | 431        |
| 27.5                                                              | Cornea                                                                                                                | 433        |
| 27.6                                                              | Tendons                                                                                                               | 435        |
| 27.7                                                              | Conclusions                                                                                                           | 439        |
|                                                                   | References                                                                                                            | 439        |
| <b>28</b>                                                         | <b>Model-free Techniques for Estimating Tissue Viscoelasticity</b>                                                    | <b>442</b> |
|                                                                   | <i>Daniel Escobar, Luiz Vasconcelos, Carolina Amador Carrascal, and Ivan Nenadic</i>                                  |            |
| 28.1                                                              | Introduction                                                                                                          | 442        |
| 28.2                                                              | Overview of Governing Principles                                                                                      | 442        |
| 28.2.1                                                            | Wave Propagation                                                                                                      | 442        |
| 28.3                                                              | Imaging Techniques                                                                                                    | 443        |
| 28.3.1                                                            | Acoustic Radiation Force-induced Creep (RFIC) and Acoustic Radiation Force-induced Creep–Recovery (RFICR)             | 443        |
| 28.3.2                                                            | Attenuation Measuring Ultrasound Shear Wave Elastography (AMUSE)                                                      | 444        |
| 28.4                                                              | Conclusion                                                                                                            | 449        |
|                                                                   | References                                                                                                            | 449        |
| <b>29</b>                                                         | <b>Nonlinear Shear Elasticity</b>                                                                                     | <b>451</b> |
|                                                                   | <i>Jean-Luc Gennisson and Sara Aristizabal</i>                                                                        |            |
| 29.1                                                              | Introduction                                                                                                          | 451        |
| 29.2                                                              | Shocked Plane Shear Waves                                                                                             | 451        |
| 29.2.1                                                            | Theoretical Developments                                                                                              | 452        |
| 29.2.2                                                            | Numerical Simulation with Modified Burgers Equation                                                                   | 453        |
| 29.2.3                                                            | Experimental Study                                                                                                    | 454        |
| 29.3                                                              | Nonlinear Interaction of Plane Shear Waves                                                                            | 455        |
| 29.4                                                              | Acoustoelasticity Theory                                                                                              | 460        |
| 29.5                                                              | Assessment of 4th Order Nonlinear Shear Parameter                                                                     | 465        |
| 29.6                                                              | Conclusion                                                                                                            | 468        |
|                                                                   | References                                                                                                            | 468        |
| <b>Section VIII Clinical Elastography Applications</b> <b>471</b> |                                                                                                                       |            |
| <b>30</b>                                                         | <b>Current and Future Clinical Applications of Elasticity Imaging Techniques</b>                                      | <b>473</b> |
|                                                                   | <i>Matthew Urban</i>                                                                                                  |            |
| 30.1                                                              | Introduction                                                                                                          | 473        |
| 30.2                                                              | Clinical Implementation and Use of Elastography                                                                       | 474        |
| 30.3                                                              | Clinical Applications                                                                                                 | 475        |
| 30.3.1                                                            | Liver                                                                                                                 | 475        |
| 30.3.2                                                            | Breast                                                                                                                | 476        |
| 30.3.3                                                            | Thyroid                                                                                                               | 476        |

|           |                                                                                                                           |            |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------|
| 30.3.4    | Musculoskeletal                                                                                                           | 476        |
| 30.3.5    | Kidney                                                                                                                    | 477        |
| 30.3.6    | Heart                                                                                                                     | 478        |
| 30.3.7    | Arteries and Atherosclerotic Plaques                                                                                      | 479        |
| 30.4      | Future Work in Clinical Applications of Elastography                                                                      | 480        |
| 30.5      | Conclusions                                                                                                               | 480        |
|           | Acknowledgments                                                                                                           | 480        |
|           | References                                                                                                                | 481        |
| <b>31</b> | <b>Abdominal Applications of Shear Wave Ultrasound Vibrometry and Supersonic Shear Imaging</b>                            | <b>492</b> |
|           | <i>Pengfei Song and Shigao Chen</i>                                                                                       |            |
| 31.1      | Introduction                                                                                                              | 492        |
| 31.2      | Liver Application                                                                                                         | 492        |
| 31.3      | Prostate Application                                                                                                      | 494        |
| 31.4      | Kidney Application                                                                                                        | 495        |
| 31.5      | Intestine Application                                                                                                     | 496        |
| 31.6      | Uterine Cervix Application                                                                                                | 497        |
| 31.7      | Spleen Application                                                                                                        | 497        |
| 31.8      | Pancreas Application                                                                                                      | 497        |
| 31.9      | Bladder Application                                                                                                       | 498        |
| 31.10     | Summary                                                                                                                   | 499        |
|           | References                                                                                                                | 499        |
| <b>32</b> | <b>Acoustic Radiation Force-based Ultrasound Elastography for Cardiac Imaging Applications</b>                            | <b>504</b> |
|           | <i>Stephanie A. Eyerly-Webb, Maryam Vejdani-Jahromi, Vaibhav Kakkad, Peter Hollender, David Bradway, and Gregg Trahey</i> |            |
| 32.1      | Introduction                                                                                                              | 504        |
| 32.2      | Acoustic Radiation Force-based Elastography Techniques                                                                    | 504        |
| 32.3      | ARF-based Elasticity Assessment of Cardiac Function                                                                       | 505        |
| 32.3.1    | ARF-based Measurement of Cardiac Elasticity and Function                                                                  | 505        |
| 32.3.2    | Clinical Translation of Transthoracic ARF-based Methods for Cardiac Stiffness Assessment                                  | 508        |
| 32.3.3    | ARFI Imaging of Myocardial Ischemia and Infarct                                                                           | 510        |
| 32.4      | ARF-based Image Guidance for Cardiac Radiofrequency Ablation Procedures                                                   | 510        |
| 32.4.1    | Clinical Translation of ARFI Imaging for Acute Ablation Lesion Assessment                                                 | 511        |
| 32.4.2    | Preliminary Clinical Investigations of ARFI Imaging of Ablation Lesions                                                   | 513        |
| 32.5      | Conclusions                                                                                                               | 515        |
|           | Funding Acknowledgements                                                                                                  | 515        |
|           | References                                                                                                                | 516        |
| <b>33</b> | <b>Cardiovascular Application of Shear Wave Elastography</b>                                                              | <b>520</b> |
|           | <i>Pengfei Song and Shigao Chen</i>                                                                                       |            |
| 33.1      | Introduction                                                                                                              | 520        |
| 33.2      | Cardiovascular Shear Wave Imaging Techniques                                                                              | 521        |
| 33.2.1    | Cardiovascular Shear Wave Generation Methods                                                                              | 521        |
| 33.2.2    | Cardiovascular Viscoelasticity Calculation Methods                                                                        | 523        |
| 33.2.3    | Cardiovascular Shear Wave Detection Methods                                                                               | 525        |
| 33.3      | Clinical Applications of Cardiovascular Shear Wave Elastography                                                           | 525        |

|           |                                                                            |            |
|-----------|----------------------------------------------------------------------------|------------|
| 33.3.1    | Ischemic Myocardial Infarction                                             | 526        |
| 33.3.2    | Assessment of Myocardial Contractility                                     | 527        |
| 33.3.3    | Myocardial Architecture Imaging                                            | 527        |
| 33.3.4    | Evaluation of Atrial Radio Frequency Ablation                              | 527        |
| 33.3.5    | Coronary Perfusion Pressure Quantification                                 | 528        |
| 33.3.6    | Carotid Artery Plaque Characterization                                     | 528        |
| 33.4      | Summary                                                                    | 529        |
|           | References                                                                 | 530        |
| <b>34</b> | <b>Musculoskeletal Applications of Supersonic Shear Imaging</b>            | <b>534</b> |
|           | <i>Jean-Luc Gennisson</i>                                                  |            |
| 34.1      | Introduction                                                               | 534        |
| 34.2      | Muscle Stiffness at Rest and During Passive Stretching                     | 535        |
| 34.3      | Active and Dynamic Muscle Stiffness                                        | 537        |
| 34.3.1    | Isometric Contraction                                                      | 537        |
| 34.3.2    | Involuntary and Voluntary Contraction                                      | 539        |
| 34.4      | Tendon Applications                                                        | 539        |
| 34.5      | Clinical Applications                                                      | 541        |
| 34.6      | Future Directions                                                          | 542        |
|           | References                                                                 | 542        |
| <b>35</b> | <b>Breast Shear Wave Elastography</b>                                      | <b>545</b> |
|           | <i>Azra Alizad</i>                                                         |            |
| 35.1      | Introduction                                                               | 545        |
| 35.2      | Background                                                                 | 545        |
| 35.3      | Breast Elastography Techniques                                             | 546        |
| 35.3.1    | Shear Wave Elastography (SWEI)                                             | 547        |
| 35.3.2    | Supersonic Shear Imaging (SSI)                                             | 547        |
| 35.3.3    | Virtual Touch Tissue Quantification using Acoustic Radiation Force Impulse | 547        |
| 35.3.4    | Comb-push Ultrasound Shear Elastography (CUSE)                             | 547        |
| 35.4      | Application of CUSE for Breast Cancer Detection                            | 548        |
| 35.5      | CUSE on a Clinical Ultrasound Scanner                                      | 549        |
| 35.6      | Limitations of Breast Shear Wave Elastography                              | 551        |
| 35.7      | Conclusion                                                                 | 552        |
|           | Acknowledgments                                                            | 552        |
|           | References                                                                 | 552        |
| <b>36</b> | <b>Thyroid Shear Wave Elastography</b>                                     | <b>557</b> |
|           | <i>Azra Alizad</i>                                                         |            |
| 36.1      | Introduction                                                               | 557        |
| 36.2      | Background                                                                 | 557        |
| 36.3      | Role of Ultrasound and its Limitation in Thyroid Cancer Detection          | 557        |
| 36.4      | Fine Needle Aspiration Biopsy (FNAB)                                       | 558        |
| 36.5      | The Role of Elasticity Imaging                                             | 558        |
| 36.5.1    | Thyroid Ultrasound Elastography                                            | 559        |
| 36.5.2    | Thyroid Shear Wave Elastography                                            | 559        |
| 36.5.3    | Virtual Touch Tissue Imaging using Acoustic Radiation Force Impulse (ARFI) | 559        |
| 36.5.4    | Supersonic Imagine (SSI)                                                   | 559        |
| 36.5.5    | Comb-push Ultrasound Shear Elastography (CUSE)                             | 560        |
| 36.6      | Application of CUSE on Thyroid                                             | 561        |

|      |                                     |     |
|------|-------------------------------------|-----|
| 36.7 | CUSE on Clinical Ultrasound Scanner | 561 |
| 36.8 | Conclusion                          | 563 |
|      | Acknowledgments                     | 564 |
|      | References                          | 564 |

**Section IX Perspective on Ultrasound Elastography 567**

|           |                                                                                   |            |
|-----------|-----------------------------------------------------------------------------------|------------|
| <b>37</b> | <b>Historical Growth of Ultrasound Elastography and Directions for the Future</b> | <b>569</b> |
|           | <i>Armen Sarvazyan and Matthew W. Urban</i>                                       |            |
| 37.1      | Introduction                                                                      | 569        |
| 37.2      | Elastography Publication Analysis                                                 | 569        |
| 37.3      | Future Investigations of Acoustic Radiation Force for Elastography                | 574        |
| 37.3.1    | Nondissipative Acoustic Radiation Force                                           | 574        |
| 37.3.2    | Nonlinear Enhancement of Acoustic Radiation Force                                 | 575        |
| 37.3.3    | Spatial Modulation of Acoustic Radiation Force Push Beams                         | 575        |
| 37.4      | Conclusions                                                                       | 576        |
|           | Acknowledgments                                                                   | 577        |
|           | References                                                                        | 577        |

**Index 581**

## List of Contributors

***Azra Alizad***

Department of Radiology  
Mayo Clinic  
Rochester, Minnesota  
USA

***Carolina Amador Carrascal***

Department of Physiology and Biomedical  
Engineering  
Mayo Clinic  
Rochester, Minnesota  
USA

***Sara Aristizabal***

Well Living Lab  
Rochester, Minnesota  
USA

***Stéphane Audièrè***

Echosens  
Paris  
France

***Paul E. Barbone***

Department of Mechanical Engineering  
Boston University  
Boston, Massachusetts  
USA

***Cécile Bastard***

Echosens  
Paris  
France

***Miguel Bernal***

Universidad Pontificia Bolivariana  
Medellín  
Colombia

***David Bradway***

Department of Biomedical Engineering  
Duke University  
Durham, North Carolina  
USA

***Javier Brum***

Laboratorio deAcustica Ultrasonda  
Instituto de Fisica, Facultad de Ciencias  
Universidad de la Republica  
Montevideo  
Uruguay

***Stefan Catheline***

LabTAU  
INSERM-University of Lyon  
Lyon  
France

***Shigao Chen***

Department of Radiology  
Mayo Clinic  
Rochester, Minnesota  
USA

***Tomasz J. Czernuszewicz***

The Joint Department of Biomedical  
Engineering  
The University of North Carolina at Chapel  
Hill and North Carolina State University  
Chapel Hill and Raleigh, North Carolina  
USA

***Jan D'hooge***

KU Leuven  
Leuven  
Belgium

***Jean Francois Dord***

Department of Mechanical Aerospace and Nuclear Engineering  
 Rensselaer Polytechnic Institute  
 Troy, New York  
 USA

***Marvin M. Doyley***

Department of Electrical and Computer Engineering  
 Hajim School of Engineering and Applied Sciences  
 University of Rochester  
 Rochester, New York  
 USA

***Daniel Escobar***

Department of Physiology and Biomedical Engineering  
 Mayo Clinic  
 Rochester, Minnesota  
 USA

***Stephanie A. Eyerly-Webb***

Department of Biomedical Engineering  
 Duke University  
 Durham, North Carolina  
 USA

***Mostafa Fatemi***

Department of Physiology and Biomedical Engineering  
 Mayo Clinic  
 Rochester, Minnesota  
 USA

***Céline Fournier***

Echosens  
 Paris  
 France

***Caterina M. Gallippi***

The Joint Department of Biomedical Engineering  
 The University of North Carolina at Chapel Hill and North Carolina State University  
 Chapel Hill and Raleigh, North Carolina  
 USA

***Jean-Luc Gennisson***

Imagerie par Résonance Magnétique Médicale et Multi-Modalités  
 Université Paris-Saclay  
 Orsay  
 France

***Sevan Goenezen***

Department of Mechanical Aerospace and Nuclear Engineering  
 Rensselaer Polytechnic Institute  
 Troy, New York  
 USA

***James Greenleaf***

Department of Physiology and Biomedical Engineering  
 Mayo Clinic  
 Rochester, Minnesota  
 USA

***Timothy J. Hall***

Medical Physics Department  
 University of Wisconsin  
 Madison, Wisconsin  
 USA

***Brecht Heyde***

KU Leuven  
 Leuven  
 Belgium

***Peter Hollender***

Department of Biomedical Engineering  
 Duke University  
 Durham, North Carolina  
 USA

***Michael F. Insana***

Departments of Bioengineering and Electrical and Computer Engineering  
 Beckman Institute for Advanced Science and Technology  
 University of Illinois at Urbana-Champaign  
 Champaign, Illinois  
 USA

***Jingfeng Jiang***

Department of Biomedical Engineering  
 Michigan Technological University  
 Houghton, Michigan  
 USA

***Vaibhav Kakkad***

Department of Biomedical Engineering  
 Duke University  
 Durham, North Carolina  
 USA

***Elisa Konofagou***

Department of Biomedical Engineering  
 Columbia University  
 New York, New York  
 USA

***Roberto Lavarello***

Laboratorio de Imágenes Médicas  
 Departamento de Ingeniería  
 Pontificia Universidad Católica del Perú  
 Lima  
 Peru

***Stephen A. McAleavy***

Biomedical Engineering Department  
 University of Rochester  
 Rochester, New York  
 USA

***Véronique Miette***

Echosens  
 Paris  
 France

***Oana Mirea***

KU Leuven  
 Leuven  
 Belgium

***Ivan Nenadic***

Department of Physiology and Biomedical  
 Engineering  
 Mayo Clinic  
 Rochester, Minnesota  
 USA

***Assad A. Oberai***

Department of Mechanical Aerospace and  
 Nuclear Engineering  
 Rensselaer Polytechnic Institute  
 Troy, New York  
 USA

***Michael L. Oelze***

Bioacoustics Research Laboratory  
 Department of Electrical and Computer Engi-  
 neering  
 University of Illinois at Urbana-Champaign  
 Champaign, Illinois  
 USA

***Jennifer Oudry***

Echosens  
 Paris  
 France

***Kevin J. Parker***

Department of Electrical and Computer Engi-  
 neering  
 University of Rochester  
 Rochester, New York  
 USA

***Theo Pavan***

Departamento de Física  
 University of São Paulo  
 São Paulo  
 Brazil

***Bo Peng***

Department of Biomedical Engineering  
 Michigan Technological University  
 Houghton, Michigan  
 USA

***Laurent Sandrin***

Echosens  
 Paris  
 France

***Armen Sarvazyan***

Artann Laboratories  
 West Trenton, New Jersey  
 USA

***Magali Sasso***

Echosens  
 Paris  
 France

***Pengfei Song***

Department of Radiology  
 Mayo Clinic  
 Rochester, Minnesota  
 USA

***Mickael Tanter***

Institut Langevin–Waves and Images  
Ecole Supérieure de Physique et de Chimie  
Industrielle (ESPCI)  
Paris  
France

***Gregg Trahey***

Department of Biomedical Engineering  
Duke University  
Durham, North Carolina  
USA  
and  
Department of Radiology  
Duke University Medical Center  
Durham, North Carolina  
USA

***Matthew Urban***

Department of Radiology  
Mayo Clinic  
Rochester, Minnesota  
USA

***Luiz Vasconcelos***

Department of Physiology and Biomedical  
Engineering  
Mayo Clinic  
Rochester, Minnesota  
USA

***Maryam Vejdani-Jahromi***

Department of Biomedical Engineering  
Duke University  
Durham, North Carolina  
USA

***Yue Wang***

Department of Bioengineering  
Beckman Institute for Advanced Science and  
Technology  
University of Illinois at Urbana-Champaign  
Champaign, Illinois  
USA

***Benjamin Wood***

Department of Physiology and Biomedical  
Engineering  
Mayo Clinic  
Rochester, Minnesota  
USA

***Heng Zhao***

Department of Physiology and Biomedical  
Engineering  
Mayo Clinic  
Rochester, Minnesota  
USA

## **Section I**

### **Introduction**



## 1

## Editors' Introduction

Ivan Nenadic<sup>1</sup>, Matthew Urban<sup>2</sup>, James Greenleaf<sup>1</sup>, Jean-Luc Gennisson<sup>3</sup>, Miguel Bernal<sup>4</sup>, and Mickael Tanter<sup>5</sup>

<sup>1</sup>Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA

<sup>2</sup>Department of Radiology, Mayo Clinic, Rochester, MN, USA

<sup>3</sup>Imagerie par Résonance Magnétique Médicale et Multi-Modalités, Université Paris-Saclay, Orsay, France

<sup>4</sup>Universidad Pontificia Bolivariana, Medellin, Colombia

<sup>5</sup>Institut Langevin-Waves and Images, Ecole Supérieure de Physique et de Chimie, Industrielle (ESPCI) Paris, France

Medical imaging has become an integrated part of modern medicine. Images are made on the basis of exploiting physical processes as contrast mechanisms. For example, X-Ray imaging takes advantage of the differences in mass density of different tissues. Magnetic resonance imaging uses proton densities and magnetic relaxation times to create exquisite images of different soft tissues. Ultrasound imaging takes advantage of acoustic impedance differences related to the compressibility of tissue.

Palpation has been practiced by physicians for centuries because pathological tissue “feels” harder or stiffer than normal tissues, as in the examples of breast tumors. Palpation has some disadvantages – such as being subjective, dependent on the proficiency of the examiner, insensitive to deep or small lesions, and difficult to compare assessments at different time points. For the last 25 years scientists have been working on methods to create images based on the material stiffness differences of tissues in the body. This imaging modality has come to be known as elasticity imaging or elastography. The advantages of such a modality are that it would be objective, quantitative, independent of the examiner, and have high spatial and temporal resolution.

Within the field of elasticity there is a very large parameter space of different material properties – such as the Young's modulus, shear modulus, Poisson's ratio, viscoelasticity, anisotropy, nonlinearity, and density [1]. These different properties vary in different tissue types, some over narrow ranges and some over large ranges – such as the shear modulus which can range over six orders of magnitude [2, 3].

There is a wide range of pathological processes that change the material properties of tissue such as the liver, breast, thyroid, skeletal muscle, pancreas, spleen, kidney, myocardium, vasculature, brain, bladder, prostate, etc. Different conditions, such as inflammation, fibrosis, edema, and cancer, all contribute to changing the material properties of organs because the constituents of the organs are altered on the microscopic scale and that translates into changes observed at the macroscopic scale (micrometers to centimeters).

Elastographic measurements require some form of mechanical stimulation or excitation to cause deformation. Then a measurement system is needed to measure the resulting deformation. The deformation can be caused by an external applied source, such as mechanical vibration, an internal source, such as acoustic radiation force, or an endogenous process, such as the pumping of the heart. Based on the particular form of excitation and its temporal and spatial

characteristics, different material properties can be evaluated. The measurement system could be magnetic resonance imaging, ultrasound, optical, or acoustic (hydrophone or accelerometer). For the purposes of this book, we focus only on ultrasound-based measurement of deformations.

This book is comprised of chapters written by pioneers and innovators in the field of ultrasound-based elastography. The book is broken up into eight primary sections.

The first section provides an overview of ultrasound physics and imaging theory, a primer on mechanical stimulation of tissue and its response, and ultrasound-based methods for motion estimation. In Chapter 2, Drs. Roberto Lavarello and Michael Oelze provide a systematic review of ultrasound physics and imaging formation relevant for the field of ultrasound-based elastography. Dr. Kevin Parker gives an overview of the continuum of excitation used in this field in Chapter 3. Chapter 4, by Drs. Jingfeng Jiang and Bo Peng, provides a thorough treatment of the ultrasonic and signal-processing methods to measure tissue motion, which is one of the main components of any elastographic measurement.

The second section provides an in-depth theoretical background on continuum mechanics and wave propagation. Wave propagation in anisotropic, bounded, and viscoelastic media is covered in detail. Chapter 5 provides the basis for continuum mechanics and solutions to wave equations as a foundation for elastography. In Chapter 6, Dr. Jean-Luc Gennisson presents theory for shear wave (or transverse wave) propagation in anisotropic media. Chapter 7, by Dr. Javier Brum, describes wave propagation in bounded media, which has applications to thin structures such as vessels, myocardium, cornea, and tendons. Chapters 8 and 9 cover measurements of tissue viscoelasticity.

The third section is devoted to methods that have been developed based on quasi-static compression and endogenous excitations. Compression elastography, particularly as applied in nonlinear materials, is covered in Chapter 10. Dynamic strain and strain rate in cardiac applications are addressed in Chapter 11 by Dr. Jan D'hooge and colleagues. Dr. Marvin Doyley describes vascular and intravascular elastography methods in Chapter 12. Dr. Carolina Amador presents different approaches for measurement of viscoelasticity with creep-based methods in Chapter 13. Lastly, Dr. Elisa Konofagou writes about wave and strain imaging based on the intrinsic motion present in the cardiovascular system in Chapter 14.

The fourth section describes methods based on external vibration for generating propagating waves in the tissue. Two different approaches for performing dynamic elastography measurements with harmonic excitations are presented in Chapters 15 and 16. Methods that produce harmonic acoustic radiation forces including vibro-acoustography, harmonic motion imaging, and shearwave dispersion ultrasound vibrometry are presented by leaders in these methods in Chapters 17–19, respectively.

The fifth section details methods that use mechanical and acoustic radiation force to perturb the tissue within the organ itself with transient excitations. Transient elastography, described by Dr. Laurent Sandrin and colleagues in Chapter 20, is a mechanically based system used primarily for investigation of liver diseases. Dr. Stefan Catheline presents methods to use time reversal techniques for measuring wave propagation in the body in Chapter 21. Chapter 22, by Drs. Tomasz Czernuszewicz and Caterina Gallippi, describes the acoustic radiation force impulse (ARFI) imaging method and its applications. The supersonic shear imaging method is presented by Drs. Jean-Luc Gennisson and Mickael Tanter in Chapter 23. Dr. Stephen McAleavy presents the benefits of applying single tracking location shear wave elastography in Chapter 24. Lastly, Chapter 25 describes the comb-push ultrasound shear elastography method developed by Drs. Pengfei Song and Shigao Chen, which uses multiple simultaneous acoustic radiation force push beams to generate shear waves for measurement of local shear wave velocity.

The sixth section provides insights into emerging areas that are being explored in the elastography field. Chapter 26, by Dr. Sara Aristizabal, provides an overview of different shear wave elastography approaches applied to characterizing elastic properties in anisotropic tissues. The use of guided waves for shear wave elastography and quantitative measurement of mechanical properties in thin tissues is addressed in Chapter 27 by Drs. Miguel Bernal and Ivan Nenadic and colleagues. Rheological model-free approaches for measuring viscoelasticity are described in Chapter 28. Lastly, methods that combine quasi-static compression elastography and dynamic shear wave elastography are presented to measure nonlinear elastic parameters in Chapter 29.

The seventh section reviews clinical application areas, including measurements made in abdominal organs, cardiovascular tissues, the musculoskeletal system, and breast and thyroid tissues. Chapter 30, by Dr. Matthew Urban, provides an overview of these clinical applications. Chapter 31 describes abdominal applications with shear wave elastography in liver, kidney, spleen, pancreas, intestines, bladder, prostate, and uterus. The group at Duke University led by Dr. Gregg Trahey describe the use of ARFI for cardiac applications in Chapter 32. Additional description of other cardiovascular applications of shear wave elastography are provided in Chapter 33. Dr. Jean-Luc Gennisson details the use of supersonic shear imaging for musculoskeletal applications using different levels of contraction of skeletal muscle and measurements in tendons in Chapter 34. Dr. Azra Alizad writes about the use of shear wave elastography in breast and thyroid applications in Chapters 35 and 36, respectively.

The final section provides a reflection on the growth of elastography from a literature-based perspective by Drs. Armen Sarvazyan and Matthew Urban. Different transitions in the field are described from a literature citation approach.

We believe that this book provides a review of the field after two decades of development, a snapshot of current clinical applications, and look to future areas of investigation. Elastographic methods are now installed on a plethora of clinical scanners and the inclusion of these methods is still being introduced in many clinical practices in hepatology, oncology, cardiology, obstetrics, nephrology, and radiology, among others. This past 25 years has been devoted to development of many efficacious methods and we believe that development will continue to evolve such that elastographic methods are available on all types of ultrasound scanners. This will enable another 25 years of clinical application to provide clinicians noninvasive tools for improving diagnosis and monitoring of treatment and other interventions, providing benefit to a multitude of patients worldwide.

## References

- 1 Sarvazyan, A.P., Urban, M.W., and Greenleaf, J.F. (2013). Acoustic waves in medical imaging and diagnostics. *Ultrasound Med. Biol.* 39: 1133–1146.
- 2 Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D. et al. (1998). Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. *Ultrasound Med. Biol.* 24: 1419–1435.
- 3 Mariappan, Y.K., Glaser, K.J., and Ehman, R.L. (2010). Magnetic resonance elastography: A review. *Clin. Anat.* 23: 497–511.

