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Preface

This is the written record of the 14th meeting of the annual Genetic Programming
Theory and Practice Workshop, which was hosted by the Center for the Study of
Complex Systems at the University of Michigan, in Ann Arbor, May 19–21, 2016.

It is, as a matter of course, woefully incomplete. It can serve only as a
fragmentary record of our meeting. I say this not as an apology, but rather as a
sort of gentle warning, of a sort I rarely seem to see in these collections.

Let me try to explain. The central and explicit focus of the GPTP Workshop has
always been the conversations that are fostered at the meeting itself. These conver-
sations happen among the invited keynote speakers, the technical participants, the
students, and sponsors who spend somewhat more than 3 days in a room together.
The technical work that invited speakers have prepared before they arrive, and which
they bring with them to present in session and discuss, is really just the provocation
or seed of the “real workshop.” As a result, the proceedings volume from each
workshop should only ever be read as a record of where some subset of attendees
started individually, not as a position in which we ended up as a group by the end.
The real results will only gradually appear in the subsequent literature, as a cloud of
works that may not even explicitly refer to this meeting, and in the subtly changed
directions of ongoing research programs in years to come.

In other words, think of these chapters as the inputs to a years-long dynamical
process, not as the final output of that process.

Further, this volume does not even manage to cover all of the presentation-driven
portion of our discussions. It is a sad but unavoidable truth of modern worklife that
only a fraction of our most influential participants have the spare time to produce a
chapter for you to read. Our three invited keynote speakers, for example, inevitably
have a strong influence on our collective attention, setting the tone and focus of the
entire week as soon as they begin speaking. . . but they are rarely able to make time
to provide written contributions here. And because we so actively seek out both
industrial and academic speakers, we often hear at least one or two presentations
that treat contemporary professional work from an industrial domain. Proprietary
and ongoing projects cannot always be translated successfully into an academic-
style paper.

v



vi Preface

Since this was our 14th meeting, you should suspect that even calling these
chapters the “inputs” of a long-term process misses the preceding history. If we can
only detect the “outputs” in the workshop’s future-facing light-cone—by seeing the
consequences of the week’s conversations and insights in the attendees’ actions—
then surely almost all of 2016s workshop was in turn influenced by earlier sessions.
You will find chapters here describing the ongoing efforts of Michael Affenzeller’s
HEAL group, as they implement, explore, and distribute ideas and algorithms in
their HeuristicLab system, which have in several cases arisen directly from earlier
GPTP workshops. Michael Korns carries forward his many years’ effort in support
of industrial-strength symbolic regression systems. There are at least three chapters
here from Lee Spector, Nic McPhee, Thomas Helmuth, and colleagues, which have
arisen from many years of fruitful exploration of the Push language for GP, and so
on. I doubt a single chapter lacks a strong link from some earlier GPTP conversation.

Therefore, think of this book as a collection of blurred snapshots, taken from
the center of the web of conversations that make up the “real” GPTP Workshop.
The historian interested in the context from which they have arisen should review
the prior 13 volumes in the series at least as diligently as she reviews the more
mundane published conference literature in adjacent years.

Assume that we took the time to speak to one another—substantively, but not
constantly—about the material presented in this volume. But in the moment and in
the room together, our conversations were much more along the lines of, “That’s
fascinating, but have you considered. . . ,” or “I wonder if you’ve noticed that what
you did in Section 3 could be related to what Smith did in her work on. . . ,” and
so forth. We do not just clap and grumble at one another—we discuss. When it
works, this workshop is a generative process, not a ritualized presentation. Most
of the “work” it does in the field will have happened after the attendees arrived, in
the lunch breaks, the hallway conversations, and the notes we have scribbled on a
napkin in the pub afterward, or in our notebooks in hotel rooms after quiet thoughtful
dinners.

In the following 14 chapters, you will find the subset of contributions from invited
speakers who were able to provide them. They have done a good job contextualizing
and framing their work, subject to the caveats I have spelled out above. So rather
than simply revisiting each one in turn, let me try to fill in the gaps between them a
bit, beginning with our three keynote speakers.

Dr. Joanna Masel, from Ecology and Evolutionary Biology at the University of
Arizona, was the first of our invited keynote speakers. She spoke on “Evolution
of molecular error rates, and the consequences for robustness, evolvability, and the
de novo emergence of new protein-coding genes from junk DNA.” She pointedly
reminded the audience—we are for the most part computer science folks—of the
deep fundamental differences between biological and “computational” evolutionary
processes. In the course of her presentation, she did an excellent job conveying both
the fascinating complexity of biological evolution (and evolutionary biology, the
discipline), and also the potential shortcomings of our greatly simplified mental
models in evolutionary computing. Throughout the workshop, she was able to
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helpfully remind many speakers and participants of the ways in which such an overly
glib simple model might lead one into a proverbial ditch.

Dr. Stephanie Forrest, from the University of New Mexico and the Santa Fe
Institute (a colleague of several attendees), spoke in her keynote lecture about
“Software: Evolution, Robustness, and Diversity (also, the Mutation Cliff).” She
spoke about her group’s and colleagues’ ongoing research into the complexities
of real (which is to say: human-written) software systems and in particular their
work in the new field of genetic improvement and automated software repair. As
with Dr. Masel’s effort, we in the audience were frequently and pointedly reminded
of the “simplifying assumptions” our work often makes for the sake of being
tractable. Once again, there are many ways in which the consequences from our
overly simplified framing notions can stumble, when faced with the externalities
of the real world. In particular, she spoke of her own practical and philosophical
explorations of what “fitness” might mean in the context of producing well-repaired
software originally produced by human programmers. As my notes have it, “What
is a reasonable way of quantifying the performance of a broken or repaired piece of
low-level software infrastructure?” We tend in the field of GP not to think very often
about bug reports, side effects, and other matters that live past the interface with
software development, deployment, and usability. . . but our more advanced work
inevitably bumps up against it.

On the third day of our meeting, Dr. Cosma Shalizi from the Statistics Depart-
ment at Carnegie Mellon University and the Santa Fe Institute spoke on “Bayesian
Learning, Evolutionary Search, and Information Theory.” And boy did he. He
pointed out remarkable (but as far as I am aware, previously unremarked) similar-
ities in the deep structure of Bayesian learning representations and algorithms, the
replicator equation and other core dynamical models from theoretical population
biology, and the ways in which information (in Shannon’s sense) is “handled” by
these processes. In other words, in a bit more than an hour, he stitched together
three increasingly independent disciplinary approaches to learning and dynamical
systems models and described a strong framework for exploring what it might mean
for evolution to “learn.” This delightful presentation—which several of us hope he
will have published somewhere soon—brought in frameworks from disciplines that
will certainly benefit from an ontological reconciliation like this. In other words, we
look forward to reading his paper on the matter at least as much as you do.

Intermingled with the three keynote speakers’ talks, and the presentations from
the invited speakers whose chapters follow, there were also innumerable breakfast,
lunch, and dinner meetings (all ad hoc of course). Watch for their effects in the future
work of the attendees, as you read the works they brought to the table to begin our
conversations with one another.

Ann Arbor, MI, USA William Tozier
Fort Collins, CO, USA Brian Goldman
Ann Arbor, MI, USA Rick Riolo
Ann Arbor, MI, USA William P. Worzel
December 2017
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Chapter 1
Similarity-Based Analysis of Population
Dynamics in Genetic Programming
Performing Symbolic Regression

Stephan M. Winkler, Michael Affenzeller, Bogdan Burlacu,
Gabriel Kronberger, Michael Kommenda, and Philipp Fleck

Abstract Population diversity plays an important role in the evolutionary dynamics
of genetic programming (GP). In this paper we use structural and semantic similarity
measures to investigate the evolution of diversity in three GP algorithmic flavors:
standard GP, offspring selection GP (OS-GP), and age-layered population structure
GP (ALPS-GP). Empirical measurements on two symbolic regression benchmark
problems reveal important differences between the dynamics of the tested configu-
rations. In standard GP, after an initial decrease, population diversity remains almost
constant until the end of the run. The higher variance of the phenotypic similarity
values suggests that small changes on individual genotypes have significant effects
on their corresponding phenotypes. By contrast, strict offspring selection within
the OS-GP algorithm causes a significantly more pronounced diversity loss at both
genotypic and, in particular, phenotypic levels. The pressure for adaptive change
increases phenotypic robustness in the face of genotypic perturbations, leading to
less genotypic variability on the one hand, and very low phenotypic diversity on
the other hand. Finally, the evolution of similarities in ALPS-GP follows a periodic
pattern marked by the time interval when the bottom layer is reinitialized with new
individuals. This pattern is easily noticed in the lower layers characterized by shorter
migration intervals, and becomes less and less noticeable on the upper layers.

S. M. Winkler (�) · M. Affenzeller · B. Burlacu · M. Kommenda
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Hagenberg, Austria
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Keywords Genetic programming · Symbolic regression · Population dynamics ·
Genetic diversity · Phenotypic diversity · Offspring selection · Age-layered
population structure · ALPS

1.1 Introduction: Genetic Programming, Population
Diversity, and Population Dynamics

Genetic Programming (GP) [6, 9] is a powerful optimization technique which
evolves a population of tree-encoded solution candidates according to the rules
of natural selection. Similar to its biological counterpart, the GP algorithm is
dependent on the two steps of Darwinian evolution: variation (due to crossover
and mutation) and selection. Genotypes (G) are mapped into phenotypes (P), an
evaluation function f : S → R (where S is the solution space) assigns a fitness
value to each individual in the population. If a variation in a trait is more successful
(i.e., it improves an organism’s propagation success rate by allowing it to have more
viable offspring) then that trait may eventually come to dominate the population.
When certain phenotypic traits dominate the population to the detriment of others,
genotypic variation with a high adaptive potential but lower fitness runs the risk of
becoming extinct as a consequence of selection. Schaper and Louis [10] suggest this
happens when the more “globally fit” do not have time to be found or to fix in the
population over evolutionary timescales. The authors suggest that “strong biases in
the rates at which traits can arrive through variation may direct evolution towards
outcomes that are not simply the fittest”. Thus, loss of diversity has a negative impact
on the search by reducing the population’s adaption potential.

While low genotypic diversity will in most cases hinder the genetic process to
generate novel solution candidates, low phenotypic diversity might indicate that
there is no significant search progress since newly created individuals are not better
than their parents. This is why we here specifically analyze phenotypic as well as
genotypic diversities, as this shall also enable a more detailed discussion about the
reasons of premature convergence (seen in genotypic diversity) and its consequences
(seen in phenotypic diversity).

In this paper, we analyze empirically the loss of population diversity for
different GP flavors and symbolic regression problem instances. We introduce
computational methods for measuring diversity at the genotypic and phenotypic
level, and investigate the correlation between the two. Burke et al. [2] provide a good
overview of various distance measures, analyzing the correlation between fitness
and diversity; structural versus evaluation based solutions similarity analysis for
symbolic regression was for example discussed in [16]. We show the progress of
genotype and phenotype population diversity for three GP algorithmic configura-
tions, namely standard GP, GP with strict offspring selection, and ALPS-GP.

The chapter is organized as follows: Sect. 1.2 describes the tree distance metrics
that were used for similarity calculation and the methodology for our experiments.
Section 1.3 describes the test settings, Sect. 1.4 summarizes the obtained results, and
in Sect. 1.5 we give our conclusions.
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1.2 Similarity Measures

We here introduce a new genotype similarity measure based on the bottom-up tree
distance [11] and a phenotype similarity measure based on the correlation between
two individuals’ outputs.

Since our similarity measures are symmetrical, the number of similarity calcula-
tions necessary to compute the average similarity for a population of N individuals
is N(N−1)

2 . Therefore, the population diversity is given by:

Div(T ) = 1 −
∑N−1

i=1
∑N

j=i+1 Sim(ti , tj )

N(N − 1)/2
, (1.1)

where Sim(t1, t2) can be either the bottom-up or the phenotypic similarity.

1.2.1 Genotypic Similarity

Genotypic similarity is calculated using a measure similar to the tree edit distance,
called the bottom-up distance. The bottom-up tree distance is a flexible distance
measure based on the largest common forest between trees, as described by Valiente
[11]. It has the advantage of maintaining the same time complexity, namely linear
in the size of the two trees regardless of whether the trees are ordered or unordered.
The algorithm works as follows:

1. In the first step, it computes the compact directed acyclic graph representation
G of the largest common forest F = t1 ·∪ t2 (consisting of the disjoint union
between the two trees). The graph G is built during a bottom-up traversal of F

(in the order of non-decreasing node height). Two nodes in F are mapped to the
same vertex in G if they are at the same height and their children are mapped to
the same sequence of vertices in G. The bottom-up traversal ensures that children
are mapped before their parents, leading to O(|t1|+ |t2|) time for adding vertices
in G corresponding to all nodes in F . This step returns a map K : F → G which
is used to compute the bottom-up mapping.

2. The second step iterates over the nodes of t1 in level-order and builds a mapping
M : t1 → t2 using K to determine which nodes correspond to the same vertices
in G. The level-order iteration guarantees that every largest unmapped subtree of
t1 will be mapped to an isomorphic subtree of t2. Finally, the bottom-up distance
between trees t1 and t2 is calculated as

BottomUpDistance(t1, t2) = 2 × |M(t1, t2)|
|t1| + |t2| . (1.2)

Thus, the similarity of t1 and t2 is defined as

GenotypicSimilarity(t1, t2) = 1 − BottomUpDistance(t1, t2). (1.3)
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Fig. 1.1 Bottom-up mapping
between two trees t1 and t2
(see [11])

By taking two times the size of the bottom-up mapping between the two trees,
we make sure that the similarity values will always fall inside the [0, 1] interval
(Fig. 1.1).

1.2.2 Phenotypic Similarity

Similarity at the phenotype level is calculated with regard to an individual’s response
on the training data. Individuals with the same response (with the same semantics)
are considered phenotypically similar regardless of their actual structure.

In this paper, we introduce a phenotypic similarity measure based on the squared
Pearson product-moment correlation coefficient:

R2
X,Y = (

ρX,Y

)2 =
(

Cov(X, Y )

σXσY

)2

. (1.4)

Since ρ ∈ [−1,+1], the R2 correlation coefficient will always return a similarity
value in the interval [0, 1]. One pitfall of using the above formula is that individuals
with a constant response cannot be compared, as the Pearson correlation coefficient
cannot be calculated when the variance is zero. In this special case, we consider two
individuals with constant response to be completely similar to each other (returning
a similarity value of 1). Thus, the phenotypic similarity measure is calculated using
the formula:

PhenotypicSimilarity(t1, t2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if Var(t1) = Var(t2) = 0

0 if Var(t1) = 0 or Var(t2) = 0

R2
t1,t2

otherwise

(1.5)
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1.3 Test Setup

For analyzing the effects of selection mechanisms and algorithmic settings on
GP population dynamics we ran test series using standard GP, GP with offspring
selection and ALPS-GP. As benchmark data sets we used the Poly-10 and the Tower
data sets. For our test series we used the implementations of these algorithms and
problems in HeuristicLab [14, Ver. 3.13], an open source framework for heuristic
optimization that can be retrieved from http://dev.heuristiclab.com/.

The parameters for all here used algorithms were set such that they represent
typical as well as competitive settings for the problem instances, i.e. typical
configurations that are frequently used in practical applications and theoretical
research studies.

1.3.1 Algorithms

1.3.1.1 Standard Genetic Programming (SGP)

First we applied symbolic regression using genetic programming as implemented in
HeuristicLab. The following parameter settings were chosen for these tests:

• Population size: 500 individuals
• Termination criterion: 1000 generations
• Tree initialization: probabilistic Tree Creation (PTC2) [7]
• Maximum tree size: 50 nodes, 10 levels
• Elites: 1 individual
• Parent selection: tournament selection, group size 5
• Crossover: subtree crossover, 100% probability
• Mutation: 25% mutation rate, each mutation is performed either as single-point,

multi-point, remove branch or replace branch mutation
• Fitness function: coefficient of determination R2 [3]
• Terminal symbols: constant, weight * variable
• Function symbols: binary functions (+,−,×, ÷, exp, log)

1.3.1.2 Genetic Programming with Offspring Selection (OSGP)

Secondly, we used GP with strict offspring selection (OS) as explained in [1].
OS-GP shifts the focus of selection towards adaptive change by introducing an
additional selection step where newly created individuals are accepted into the
population only if their fitness exceeds that of their parents. The algorithm produces
as many individuals as needed in order to fill in a new generation of individuals.
In this context, the active selection pressure is defined as the ratio between the
total number of produced offspring and the number of individuals needed to fill

http://dev.heuristiclab.com/
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a generation (i.e., the population size). The active selection pressure varies every
generation depending on how easy it is to generate better offspring. The active
selection pressure at generation i is expressed as:

SelectionPressure(i) = |GeneratedOffspring(i)|
|SuccessfulOffspring(i)| = |GeneratedOffspring(i)|

|Population| .

(1.6)
We use the selection pressure as termination criterion, i.e., the algorithm is
terminated as soon as the selection pressure reaches a predefined maximum value.

Most parameters for these OS-GP tests are equal to those used for standard GP;
OS-GP specific parameter settings were set as follows:

• Population size: 200 individuals
• Termination criterion: Maximum selection pressure 200
• Parent selection: Gender specific [13]; proportional and random
• Offspring selection: Strict, i.e. success ratio = 1.0 and comparison factor = 1.0 [1]

1.3.1.3 ALPS GP

Age-layered population structure (ALPS) GP uses a novel measure of age to
separate the population into multiple layers [4]. Each layer states a maximum age
so that lower layers contain younger individuals and higher layers contain older
individuals.

An individual’s age determines how long it is allowed to remain in its current
layer. Randomly generated individuals start with an age of zero, while in the default
age-inheritance scheme, individuals generated by crossover inherit the age of the
oldest parent plus one. Other inheritance schemes, such as using the younger or the
average of the parents’ age, have also been studied [5].

The age concept allows younger, less fit individuals to compete for survival
within their own age layer, without being dominated by already matured individuals.
A fair competition allows reseeding the lowest layer with new randomly generated
individuals during the run, increasing the overall genetic diversity.

We used ALPS-GP as implemented in HeuristicLab and used the same operators
and settings for tree size, initialization, crossover, and mutation as in standard GP
and OS-GP. The following ALPS specific parameter settings were chosen for these
tests:

• Population size: 300 individuals
• Age inheritance: Older
• Replacement strategy: Comma
• Aging: Age gap 20, polynomial aging scheme, i.e. the first layer (layer 0) is

newly initialized every 20 generations, and individuals may move to upper layers
at generations 20, 40, 80, and 160
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1.3.2 Problem Instances

We tested the aforementioned GP algorithms on two benchmark regression prob-
lems to examine population dynamics. The problems were taken from the recom-
mended GP benchmark problems [15] and are both available within the Heuristic-
Lab framework.

• The Poly-10 data set [8] consists of 500 samples with ten variables x1...10 and the
response variable y. The values x1...10 were generated by randomly (uniformly)
drawing values from the interval [−1,+1], the response values were calculated
according to the following equation:

y = f (x) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

• The Tower data set [12] comes from an industrial problem on modeling gas
chromatography measurements of the composition of a distillation tower. It
contains 5000 records and 25 potential input variables, the response variable
is the propylene concentration at the top of the distillation tower. The samples
were measured by a gas chromatograph and recorded as floating averages every
15 min. The 25 potential inputs are temperatures, flows, and pressures related to
the distillation tower. The Tower data set can be downloaded from http://www.
symbolicregression.com/?q=towerProblem.

1.4 Test Results

Similarity and quality measurements were averaged over ten runs for each problem
instance (Poly-10 and Tower) and algorithmic configuration.

Figures 1.2 and 1.3 show the evolution of best and average quality and similarity
values for standard GP. We notice that genotypic similarity remains at a constant
level on both test problems. On the other hand, phenotypic similarity and average
quality are higher on the Tower problem, suggesting a correlation between the two.

The distribution of similarity values per generation is displayed in Fig. 1.4a as 2d
histograms, measured every 100 generations on the Poly-10 problem. In the charts,
the x-axis represents phenotypic similarity while the y-axis represents genotypic
similarity. The results reveal that genotype similarity increases at a higher rate than
the phenotypic similarity. The presence of multiple “islands” on the phenotypic
similarity axis (at the same genotype similarity level) suggests that individuals in the
population are organized into different semantic groups, some consisting of highly
similar individuals.

http://www.symbolicregression.com/?q=towerProblem
http://www.symbolicregression.com/?q=towerProblem
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Fig. 1.2 Genotypic and phenotypic population diversity in standard GP, on the Poly-10 and
Tower problems. Thick lines represent average values over ten repetitions. (a) Poly-10 genotypic
similarity. (b) Tower genotypic similarity. (c) Poly-10 phenotypic similarity. (d) Tower phenotypic
similarity

Fig. 1.3 Population quality in standard GP, on the Poly-10 and Tower problems. (a) Poly-10 best
quality. (b) Tower best quality. (c) Poly-10 average quality. (d) Tower average quality
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Fig. 1.4 Distribution of genotypic vs. phenotypic similarities in standard GP. (a) Poly-10 problem.
(b) Tower problem

We compare standard GP similarities with those measured on the OS-GP runs.
Figure 1.5 indicates a steeper increase of similarity levels (both genotypic and
phenotypic) towards significantly higher values.
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(a) (b)

(c) (d)

Fig. 1.5 Genotypic and phenotypic population diversity in OS-GP, on the Poly-10 and Tower
problems. (a) Poly-10 genotypic similarity. (b) Tower genotypic similarity. (c) Poly-10 phenotypic
similarity. (d) Tower phenotypic similarity

The effects of strict offspring selection are particularly noticeable on the pheno-
typic similarity curves increasing asymptotically to a value of 1. At the same time,
genotypic similarity is increased from an average value of about 0.35 (standard GP)
to a value of approximately 0.5. Figure 1.6 shows average and best quality curves
for OS-GP, which are almost identical due to strict offspring selection.

The distribution of similarities in Fig. 1.7 shows the movement of individuals
in similarity space towards high genotypic and phenotypic similarity. We conclude
that high semantic similarity heavily depends on the requirement that selection only
accepts adaptive change (offspring with better fitness).

Figure 1.8 shows the overall average and best population quality for ALPS-GP,
while Figs. 1.9 and 1.10 show the quality and similarity values per layer.

We notice that ALPS-GP is able to achieve a better average best quality than
standard GP despite the fact that the overall average population quality is lower
than the corresponding standard GP value, due to the lower-quality of the bottom
ALPS layers. As expected, each age layer displays the same similarity behavior
as standard GP, with the average population similarity increasing in the intervals


