Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

David Bauer

Verlustanalyse bei elektrischen Maschinen für Elektro- und Hybridfahrzeuge zur Weiterverarbeitung in thermischen Netzwerkmodellen

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

M. Bargende, Stuttgart, Deutschland H.-C. Reuss, Stuttgart, Deutschland J. Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement - auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten. Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungsund Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen. Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose. Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal. Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

David Bauer

Verlustanalyse bei elektrischen Maschinen für Elektro- und Hybridfahrzeuge zur Weiterverarbeitung in thermischen Netzwerkmodellen

David Bauer Lehrstuhl für Kraftfahrzeugmechatronik Universität Stuttgart/IVK Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2018

D93

ISSN 2567-0042 ISSN 2567-0352 (electronic) Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-24271-8 ISBN 978-3-658-24272-5 (eBook) https://doi.org/10.1007/978-3-658-24272-5

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als Teilnehmer des kooperativen Promotionskollegs Hybrid. Hierdurch war es mir möglich, sowohl als wissenschaftlicher Mitarbeiter an der Hochschule Esslingen als auch als Doktorand innerhalb der Robert Bosch GmbH, wertvolle Erfahrungen zu sammeln. An dieser Stelle möchte ich verschiedenen Personen Dank sagen, die dazu beigetragen haben, dass die Arbeit in dieser Form möglich war.

Besonderer Dank gilt Herrn Prof. Hans-Christian Reuss und Herrn Prof. Eugen Nolle, die mir als meine betreuenden Professoren immer zur Seite standen und mich in jeder Hinsicht gefördert haben. Herr Prof. Nolle hatte immer und überall ein offenes Ohr. Unsere sehr konstruktiven Gespräche werden mir immer in Erinnerung bleiben. Des Weiteren danke ich Herrn Prof. Dieter Gerling gleichermaßen für die freundliche Übernahme des Mitberichts.

Auch danke ich allen Mitarbeitern der Hochschule Esslingen rund um das Labor Elektrische Antriebe und Anlagen, sowie Herrn Prof. Rainer Würslin für die Unterstützung.

Des Weiteren sind Herr Dr. Stephan Usbeck und Herr Dr. Marcus Alexander hervorzuheben. Sie ermöglichten mir bei Bosch eine hervorragende Arbeitsumgebung und standen mir immer und überall zur Seite.

Großer Dank gilt Herrn Daniel Kühbacher, der als guter Banknachbar, Freund und Bezugsperson in jeder Situation jederzeit zu überzeugen wusste. Lob auch dafür, dass er es geschafft hat, mich in die Welt der thermischen Simulation einzuführen. Des Weiteren möchte ich allen Mitarbeitern bei Bosch danken, die zum Entstehen dieser Arbeit beigetragen haben. Besonders sind hier Harald Bodendorfer, Oliver Eckert, Benjamin Gruler, Patrick Heuser, Christoph Kubala, Tino Merkel und Manuel Warwel zu nennen. Großer Dank gilt auch Marco Degner, Yavuz Gürlek, Matthias Häcker, Paul Mamuschkin, David Morisco, Sabin Sathyan und Shaohan Wang, welche mit ihren durchweg sehr guten studentischen Arbeiten zu dieser Arbeit beigetragen haben.

VI Vorwort

Dank gebührt den Initiatoren des Promotionskollegs Hybrid und dem Ministerium für Wissenschaft und Kunst für dessen Förderung. Zudem danke ich den Firmen Powersys und JSOL für den Support rund um das Simulationstool JMAG. Daneben danke ich der Firma Voestalpine rund um Herrn Dr. Sonnleitner für die sehr gute Zusammenarbeit und die Bereitstellung hochwertiger Messreihen. Des Weiteren möchte ich Herrn Hubert Fußhoeller für die Unterstützung rund um die Erstellung der druckfähigen Version danken.

Am Ende möchte ich meiner Frau Carina, meiner Tochter Hanna, meinen Eltern, meiner Schwester und auch meiner ganzen Familie für ihre Unterstützung danken. Ohne Euch und ohne Eure Rückendeckung wäre diese Arbeit nicht möglich gewesen.

Asperg David Bauer

Inhaltsverzeichnis

Vo	orwort			V
Αl	bildu	ngsverz	eichnis	XI
		_	hnis	
			zeichnis	
		_	nnis	
•			X	
			X	
1	Einl	leitung .		1
	1.1	Motiva	ation und Ziele der Arbeit	1
	1.2		ur der Arbeit	
2	Eins	satz von	elektrischen Maschinen im Elektro- bzw.	
	Hyb	ridfahı	zeug	7
	2.1		ischer Antriebsstrang	
	2.2	Anfor	derungen an die elektrische Maschine	8
	2.3	Releva	anz von Fahrzyklen	9
3			ungen in elektrischen Maschinen und deren	
	Bed	eutung		13
	3.1	Übers	icht auftretender Verlustleistungen	13
	3.2	Therm	nische Auswirkungen	13
	3.3	Bedeu	tung für die Auslegung und Berechnung	15
4	Unt	ersucht	es Maschinenmuster	17
5	The	rmisch	e Modelle	19
	5.1	Therm	isches Netzwerkmodell	20
		5.1.1	Aufbau und Grundgleichungen	20
		5.1.2	Stationäre und transiente Lösung	22
		5.1.3	Verlusteinspeisung und Verlustskalierung - Stand der	
			Technik	22

VIII Inhaltsverzeichnis

		5.1.4	Verwendetes thermisches Modell	23
	5.2	FEM-	Modell für gezielte Analysen zur Verlustübergabe	28
6	Verl	lustanal	lyse und Schnittstelle zur thermischen Simulation	31
	6.1		rverluste	
		6.1.1	Verlustmechanismen	31
		6.1.2	Stand der Technik - Kurzzusammenfassung	40
		6.1.3	Berechnungsgrundlagen	
		6.1.4	Verlustanalyse	
		6.1.5	Analyse thermisch relevanter Kriterien	
		6.1.6	Fazit	81
	6.2	Eisenv	verluste	85
		6.2.1	Verlustmechanismen	86
		6.2.2	Stand der Technik - Kurzzusammenfasung	87
		6.2.3	Berechnungsgrundlagen	88
		6.2.4	Verlustanalyse	
		6.2.5	Analyse thermisch relevanter Kriterien	124
		6.2.6	Fazit	135
	6.3	Magne	etverluste	137
		6.3.1	Verlustmechanismen	137
		6.3.2	Stand der Technik - Kurzzusammenfassung	142
		6.3.3	Berechnungsgrundlagen	143
		6.3.4	Verlustanalyse	144
		6.3.5	Analyse thermisch relevanter Kriterien	159
		6.3.6	Fazit	165
	6.4	Einflu	ss von Stromoberschwingungen durch den Umrichter	166
		6.4.1	Verlustmechanismen	167
		6.4.2	Stand der Technik - Kurzzusammenfassung	167
		6.4.3	Berechnungsgrundlagen	168
		6.4.4	Verlustanalyse und Abgleich mit der Messung	168
		6.4.5	Fazit	182
7	Ges	amtmas	schinenvalidierung: Verluste und Temperaturen	183
8	Zus	ammen	fassung und Ausblick	193

Inhaltsverzeichnis IX

Literatur	verzeichnis	199
Anhang .		215
A.1	Beispiel eines thermischen Netzwerks im Axialschnitt	215
A.2	Vereinfachtes FE-Stromverdrängungsmodell	216
A.3	Herstellung der spezifizierten Drahtlagen	217
A.4	Parameterstudie zur lokalen Verlustübergabe	219
A.5	Verwendete Magnetisierungskennlinie	220
A.6	Einfluss des Schneidspalts	221
A.7	Schnittbilder der verschiedenen Messergüten	222
	Vorstellung PSM B	
ΔΟ	Vorstellung PSM C	223

Abbildungsverzeichnis

2.1	Ersatzschaltbild des elektrischen Antriebsstranges [102]	7
2.2	Schematische Darstellung von Überlast- und Dauerbetriebsbereich	
	einer elektrischen Maschine	. 10
2.3	Aus Fahrzyklen resultierende Betriebspunkte einer beispielhaften	
	$PSM mit n_{max} = 16000 \frac{U}{min} \dots$. 11
3.1	Verlustübersicht am Beispiel einer PSM	. 14
4.1	Untersuchtes Maschinenmuster (PSM A)	. 17
4.2	Maximalkennlinie der untersuchten Maschine PSM A bei	
	$T = 30 ^{\circ}\text{C}$. 18
5.1	Einfaches thermisches Netzwerk eines Statorsegments: Li.: Räuml.	
	Aufteilung der Knoten; Re.: Abstrahiertes Modell inkl.	
	Randbedingungen	. 20
6.1	Vereinfachte Wirkprinzipdarstellung des Skin-Effekts	. 33
6.2	Konturplot der Stromdichte in einem Leiter bei $d = 3$ mm, $\hat{I} =$	
	100 A, $f = 10$ kHz und $t_1 = 68$ μ s. Zum Vergleich dazu: $\hat{J}_{DC} =$	
	$14,147 \frac{A}{mm^2}$. 34
6.3	Stromdichte in Abhängigkeit vom Zentrumsabstand zum Zeitpunkt	
	$t_2 = 0 $ mit $i(t_2) = 0 $. 34
6.4	Konturplot der Stromdichte in 16 von Luft umgebenen Drähten	
	zum Zeitpunkt $t = 0,68 \text{ ms } (d_{Draht} = 2 \text{ mm}, \hat{I}_{Draht} = 100 \text{ A und}$	
	$f = 1 \text{ kHz}$). Zum Vergleich: $\hat{J}_{DC} = 31,831 \frac{A}{\text{mm}^2}$. 35
6.5	Konturplot der Stromdichte zum Zeitpunkt $t = 0.68$ ms ($d_{Draht} =$	
	1 mm, $\hat{I}_{Draht} = 22.2$ A und $f = 1$ kHz). Zum Vergleich: $\hat{J}_{DC} =$	
	$28,27\frac{A}{mm^2}$. 36
6.6	Vereinfachtes Beispiel zur Darlegung des Einflusses der Drahtlage	
	bei Verwendung von drei parallelen Drähten. Grün (Drähte ${\rm A_g}-$	
	C_g) symbolisiert die gute und Rot (Drähte $A_s - C_s$) die schlechte	
	Drahtlage	. 37
6.8	Elektrische und magnetische Felder im stromdurchflossenen	
	Leiter [22]	. 42

6.9	Darstellung der eff. Stromdichte in einem Leiter mit dem Radius	
	$r_0 = 1,5 \text{ mm}, \hat{I}_{Draht} = 100 \text{ A und } f = 1 \text{ kHz}$	46
6.10	Beispielhafte Draht- und Leiteranordnungen zur Erklärung der	
	Parameter; gute (li.) und schlechte (re.) Drahtlage	49
6.11	Verlustzunahme im Aktivteil der Maschine durch den Proximity-	
	Effekt im gesamten Betriebsbereich bei $T = 30 ^{\circ}\text{C}$	54
6.12	Zusatzverluste der Gesamtmaschine durch den Proximity-Effekt	
	im Kennfeld bei $T = 30 ^{\circ}\text{C}$	54
6.13	Schnittbild einer realen Nut (li.) und Konturplot der Verlustdichte	
	bei $n = 12000 \frac{\text{U}}{\text{min}}$ und $I_{Ph} = 228,3 \text{ A (re.)}$	55
6.14		
	Kupferzusatzverluste in Folge des Proximity-Effekts (links:	
	Realer Wickelkopf, rechts: Modelle)	56
6.15	Gute (li.) und schlechte (re.) Drahtlage für die untersuchte	
	Maschine	57
6.16	Resultierende Ströme für die gute (li.) und schlechte (re.)	
	Drahtlage	58
6.17	Drahtlage von vier in Reihe verschalteten Spulen	59
6.18	Strommessboxen	60
6.19	Umgesetzte Drahtanordnungen im Musterbau: Gute (links) und	
	schlechte (rechts) Drahtlage	61
6.20	Eingezogene Wicklung: Gute (links) und schlechte (rechts)	
	Drahtlage	61
6.21	Kompletter Messaufbau	62
6.22	Gemessene Verluste bei Starttemperatur	62
6.24	Vergleich der ermittelten Verlustdifferenzen zwischen Analytik,	
	FEM und Messung	64
6.25	Vergleich der gemessenen und mittels FEM berechneten	
	Stromverläufe bei 11000 $\frac{\text{U}}{\text{min}}$ und schlechter Drahtlage	65
6.26	Darstellung der mittels FEM berechneten inhomogenen	
	Verlustdichte innerhalb der Nut	66
6.27	Einführung des radialen Schichtenmodells, schematische	
	Darstellung	
6.28	Messstellen zum Abgleich der Kupfertemperaturen	68
6.29	Vergleich der Temperaturfelder bei unterschiedlicher	
	Verlusteinspeisung	69

6.30	Vergleich der Temperaturentwicklung bei verschiedenen	
	Messstellen	70
6.31	Einzelne Drahtverluste im gekoppelten Referenzmodell	73
6.32	Nach Verlusteffekt getrennte Darstellung der Skalierungsfunktion	74
6.33	Unterschiedliche Verlustanteile in Abhängigkeit von der	
	Temperatur in einem Draht unter Berücksichtigung des	
	Skin-Effekts	75
6.34	Vergleich der Temperaturfelder unter Berücksichtigung der	
	Temperaturabhängigkeit	77
6.39	Beispielhafte Hystereseschleife eines Elektroblechs [114]	86
6.40	Schematische Darstellung der Wirbelstrombahnen in einem	
	geblechten Paket	87
6.41	Bearbeitungseinflüsse Elektroblech	90
6.44	Einfluss der Schrägung auf die Eisenverluste im Stator und	
	Rotor, betrachteter Betriebspunkt bei n_{max} und M_{max} : Vergleich	
	einer 3D-Rechnung inklusive kontinuierlicher Schrägung und	
	einer 2D-Rechnung	94
6.45	Schematische Darstellung der Wirbelstrombahn bei senkrecht zur	
	Blechebene eintretenden Magnetfeldern (vgl. Abb. 6.40)	95
6.46	Vergleich zwischen FEM-Modell und realer Maschine	96
6.48	Vergleich der magnetischen Flussdichte in z-Richtung ohne / mit	
	Wickelkopf	99
6.49	Aufweitung des Magnetfeldes im Bereich des Luftspalts	99
6.50	Vergleich verschiedener Trennverfahren [104]1	01
6.53	Darstellung verschiedener Stanzeinflüsse auf die spezifischen	
	Verluste bei $f = 50$ Hz und $J = 1,5$ T	06
6.54	Einfluss der Stanzkantenanzahl auf die relative Permeabilität bei	
	Verwendung einer schlechten Schere ($f = 50 \text{ Hz} \text{ und } J = 1,5 \text{ T}$)1	06
6.56	Einfluss der Scherengüte in Abhängigkeit von der Anzahl an	
	Stanzkanten ($f = 50 \text{ Hz}$)1	08
6.59	Einfluss der Frequenz auf die Verlustzunahme durch das Stanzen	
	(a) und auf die resultierende Stanzkantenbreite (b). Beides bei	
	Verwendung der guten Schere	10
6.60	Mittelwert aller unter gleichen Bedingungen gemessenen	
	Leerlaufkennlinien1	14

6.63	Vergleichsauswertung der Schleppkennlinie einer ASM mit	
	ähnlichen Rotorabmessungen und identischem Lagertyp	117
6.65	Simulationsmodell inkl. der separat berücksichtigten Stanzkante	119
6.69	69 Vergleich der simulierten und aus der Messung zurückgerechneten	
	Eisenverluste im Kurzschluss	123
6.70	Stator-Verlustdichte im Kurzschluss bei maximaler Drehzahl ($n =$	
	$12000 \frac{\text{U}}{\text{min}}$) und die daraus abgeleiteten Schichten zur	
	Verlustübergabe	125
6.71	Resultierende Temperaturen im Stator für verschiedene räumliche	
	Verlusteinspeisungen	126
6.72	Rotor-Verlustdichte im Kurzschluss bei maximaler Drehzahl ($n =$	
	$12000 \frac{\text{U}}{\text{min}}$) und die daraus abgeleiteten Schichten zur	
	Verlustübergabe	127
6.73	Resultierende Temperaturen im Rotor für verschiedene räumliche	
	Verlusteinspeisungen	127
6.74	Rotor-Verlustdichte im gewählten Betriebspunkt und die daraus	
	abgeleiteten Schichten zur Verlustübergabe	128
6.75	Resultierende Temperaturen im Rotor für verschiedene räumliche	
	Verlusteinspeisungen im gewählten Betriebspunkt	128
6.76	Stator-Verlustdichte inkl. Schrägung im gewählten Betriebspunkt	129
6.77	Rotor-Verlustdichte inkl. Schrägung im gewählten Betriebspunkt	130
6.78	Resultierende Temperaturen im Stator für verschiedene räumliche	
	Verlusteinspeisungen im gewählten Betriebspunkt unter	
	Berücksichtigung der Schrägung	130
6.79	Resultierende Temperaturen im Rotor für verschiedene räumliche	
	Verlusteinspeisungen im gewählten Betriebspunkt unter	
	Berücksichtigung der Schrägung	131
6.80	Gemessene Magnetisierungskennlinien bei unterschiedlichen	
	Temperaturen [66]	132
6.81	Hystereschleife bei unterschiedlichen Temperaturen [107]	133
6.83	Schematische Entstehung von Wirbelströmen im Magnet	138
6.84	3D-FEM Modell zur Berechnung der Magnetverluste (PSM A)	143
6.85	Magnetverluste (in Prozent) in Abhängigkeit der elektrischen	
	Leitfähigkeit	144
6.86	Magnetverluste in Abhängigkeit des Vorsteuerwinkels α	146
6 87	Analyse der Magnetyerluste	147

6.95	Fertiges PSM B Muster zur Magnetverlustmessung155
6.96	Analyse der Magnetverluste
6.100	Resultierende Magnettemperaturen bei unterschiedlicher
	Verlusteinspeisung160
6.101	Resultierende Rotortemperaturen bei unterschiedlicher
	Verlusteinspeisung161
6.103	3Magnetverluste in Abhängigkeit der Temperatur: Test der
	vorgestellten Skalierungsfunktion164
6.104	4Gemessene Phasenströme bei unterschiedlichen DC-Spannungen170
6.105	5Messdaten bei 180 und 360 V Batteriespannung170
6.106	Simulierte Verluste für die beiden Messpunkte und Angabe der
	relativen Verlustzunahme bei einer Spannungserhöhung von 180
	auf 360 V174
6.107	Vergleich der gemessenen (rot) und simulierten (blau)
	Stromverläufe und -spektren, Batteriespannung 180 V [102]174
6.108	3 Vergleich der gemessenen (rot) und simulierten (blau)
	Stromverläufe und -spektren, Batteriespannung 360 V [102]175
6.114	Abhängigkeit der Zusatzverluste von der Taktfrequenz181
7.1	Vergleich der berechneten und gemessenen Verluste im Leerlauf
	und Kurzschluss
7.2	Vorhandene Temperaturmessstellen im Stator und Rotor der
	Maschine. Wickelkopf- und Kühlwassertemperatur nicht
	dargestellt
7.4	Vergleich der simulierten und gemessenen Temperaturen im
	Wickelkopf
7.5	Vergleich der simulierten und gemessenen Temperaturen
	innerhalb der Nut in der axialen Mitte der Maschine190
7.6	Vergleich der simulierten und gemessenen Temperaturen
	innerhalb der Magnete191
	Vergleich der Kupferverlustmodelle
A3.1	Fixierung der sieben parallelen Drähte mittels kleiner
	Klebestreifen unter Berücksichtigung der Lage der parallelen
	Drähte zueinander
A3.2	Nummerierung der sieben parallelen Drähte mit den Buchstaben
	A-G
A3.3	Vorbereitung der einzelnen Spulen

A3.4	Teilausschnitt des fertiggestellten Stators mit der schlechten	
	Drahtlage	.218
A4.1	Parameterstudie zur benötigten Anzahl radialer Schichten. Oben	
	4, Mitte 10, unten 20 Schichten im Vergleich zu 40 Schichten und	
	der FEM-Referenzlösung.	.219
A5.1	B-H-Kennlinie und relative Permeabilität des verwendeten	
	Elektroblechs (ISOVAC330-35A HF)	.220
A6.1	Darstellung des resultierenden Randbereichs bei verschiedenen	
	Schneidspaltmaßen	.221
A7.1	Vergleich der Schneitbilder nach dem Schneiden mit	
	verschiedenen Messergüten	.222
A8.1	Untersuchtes Maschinenmuster	.223
A9.1	Blechschnitt der PSM C (Rotor aus Geheimhaltungsgründen nur	
	vereinfacht dargestellt)	.224

Tabellenverzeichnis

4.1	Maschinendaten der untersuchten PSM A	18
6.1	Verlustzunahme und Verlustwerte durch ungünstige Drahtlage	57
6.2	Verlustfaktoren für die einzelnen Nuten und der resultierende	
	Verlustfaktor bei Verschaltung; keine Berücksichtigung der	
	auftretenden Wickelkopfinduktivitäten und -widerstände	59
6.3	Darstellung der berechneten und gemessenen Verlustwerte auf	
	Basis der guten und schlechten Drahtlage. Vergleich der sich	
	ergebenden Differenzen △ zwischen guter und schlechter	
	Drahtlage für die Analytik, FEM und Messung	66
6.4	Vergleich der berechneten Eisenverluste auf Basis einer 2D- und	
	3D-Rechnung. Berücksichtigung der Schrägung im 3D-Modell	93
6.5	Ausgewählte Betriebspunkte zur Abschätzung des Einflusses durch	
	Stirnraumfelder	97
6.6	Ergebnisse der ausgewählten Betriebspunkte zur Abschätzung des	
	Einflusses durch Stirnraumfelder	97
6.7	Resultierende mittlere relative Stanzkantenbreite in Abhängigkeit	
	der Scherenqualität bei $f=50~\mathrm{Hz}$. Zusätzliche Darstellung der	
	Änderung zwischen den einzelnen Scherengüten1	09
6.8	Resultierende Eisenverluste innerhalb der Leerlaufmessung1	19
6.9	Resultierende Eisenverluste bei der Kurzschlussmessung1	23
6.10	Magnetmasse je Pol	54
6.11	Vergleich der aus der Messung rekonstruierten Magnetverluste	
	gegenüber transienter 3D-FEM. Jeweilige Hochrechnung auf die	
	Maschinengesamtverluste	57
6.12	Messdaten bei 180 und 360 V Batteriespannung	71
6.13	Simulierte Verluste für die beiden Messpunkte1	73
6.14	Berechnungsergebnisse unter Berücksichtigung von	
	Stromoberschwingungen ($f_{Takt} = 10 \text{ kHz}, U_{DC} = 360 \text{ V})$	76
6.15	Berechnungsergebnisse unter Berücksichtigung verschiedener	
	Batteriespannungen; $f_{Takt} = 10 \text{ kHz} \dots 1$	78

6.16	6 Berechnungsergebnisse unter Berücksichtigung verschiedener	
	Taktfrequenzen	.180
7.1	Zusammenfassung der berechneten und gemessenen Verluste für	
	ausgewählte Betriebspunkte	.183
7.2	Übersicht über die umgesetzten Methoden zur Verlusteinspeisung	
	und Verlustskalierung im thermischen Modell	.185
A2.1	Vergleich vollständiges Maschinenmodell - Einfach-Nutmodell	
	hinsichtlich der Kupferverlustberechnung	.217
A6.1	Einfluss des Schneidspalts e der Schlagschere auf die Verluste	.221
A8.1	Maschinendaten der untersuchten PSM B	.224
A9.1	Maschinendaten der PSM C	.224

Abkürzungsverzeichnis

2D 2-Dimensional 3D 3-Dimensional

AC Alternating Current (dt.: Wechselstrom)

ASM Asynchronmaschine

BP Betriebspunkt

CFD Computational Fluid Dynamics (dt.: Numerische

Strömungsmechanik

DC Direct Current (dt.: Gleichstrom)

E-Blech Elektroblech

EL Einzelne Lamelle EM Elektrische Maschine

FE Finite-Elemente

FEM Finite-Elemente-Methode FVM Finite-Volumen-Methode

KS Kurzschluss KW Kühlwasser

LE Leistungselektronik

LL Leerlauf

MS Messstelle

NEFZ Neuer Europäischer Fahrzyklus

PM Permanentmagnet

PSM Permanentmagneterregte Synchronmaschine

RB Randbedingung

Sim Simulation SK Stanzkante

SVPWM Space Vector Pulse Width Modulation (dt.:

Raumzeigermodulation)

WF Wicklungsfelder WK Wickelkopf

WLTC Worldwide Harmonized Light-Duty Vehicles Test Cycle (dt.:

Weltweit vereinheitlichter Prüfzyklus von Fahrzeugen für den

Leichtverkehr)

WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure

(dt.: Weltweit vereinheitlichtes Testverfahren von Fahrzeugen

für den Leichtverkehr)

WR Wechselrichter

Symbolverzeichnis

Lateinische Buchstaben

\boldsymbol{A}	Fläche	m^2
a	Koeffizient	-
a	Anzahl	-
B	Magnetische Flussdichte	T
b	Koeffizient	-
b	Breite	m
\boldsymbol{c}	Wärmekapazitätsmatrix	J/K
c	Parameter für Formfunktion	-
c	Spez. Wärmekapazität	J/kgK
c	Korrekturfaktor	-
D	Verschiebungsdichte	$\frac{As}{m^2}$
d	Durchmesser	m
d	Blechdicke	m
E	Elektrische Feldstärke	V/m
e	Schneidspalt	m
f	Frequenz	Hz
\boldsymbol{G}	Wärmeleitmatrix	W/K
g	Laufvariable	-
H	Magnetische Feldstärke	A/m
h	Höhe	m
I_0	Modifizierte Bessel-Funktion 1. Art 0.	-
	Ordnung	
I_1	Modifizierte Bessel-Funktion 1. Art 1.	-
	Ordnung	
I	Strom (Effektivwert)	A
i	Strom- Zeitaugenblickswert	A
J	Stromdichte	$\frac{A}{m^2}$
J	Polarisation	$\overset{\mathrm{m}}{\mathrm{T}}$
j	Imaginäre Zahl	-

Ordnung k Korrekturfaktor- k Parameter für Substitution- k Verlustfaktor für Stromverdrängung- k Füllfaktor- L InduktivitätH l Längem M DrehmomentNm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} k & & \text{Verlustfaktor für Stromverdrängung} & \text{-} \\ k & & \text{Füllfaktor} & \text{-} \\ L & & \text{Induktivität} & \text{H} \\ l & & \text{Länge} & \text{m} \\ \end{array}$
$\begin{array}{cccc} k & & \text{F\"{u}llfaktor} & & - \\ L & & \text{Induktivit\"{a}t} & & \text{H} \\ l & & \text{L\"{a}nge} & & \text{m} \\ \end{array}$
L Induktivität H L Länge m
l Länge m
<u>e</u>
M Drehmoment Nm
m Parameter für Kreisstromberechnung -
m Phasenzahl -
m Steigung -
m Masse kg
Nu Nusselt-Zahl -
N Nutzahl -
n Anzahl -
n Drehzahl U/mir
P Leistung W
p Polpaarzahl -
p Leistungsdichte kW/k
Q Wärmestrom W
q Lochzahl -
R Widerstand Ω m
Ta Taylor-Zahl -
r Radius m
s Strecke/Weg m
T Periodendauer s
T Temperatur °C
t Zeit s
U Spannung V
V Volumen m ³
x Koordinate -
x Radiale Position m
z Parameter für Substitution -
z Anzahl Drähte -

Griechische Buchstaben

α	Vorsteuerwinkel	°el
α	Exponent zur Lagerverlustbestimmung	-
α	Verlustexponent	-
α	Temperaturkoeffizient	1/K
β	Reduzierte Leiterhöhe	m
β	Skalierungsfaktor für Skin- und	-
	Proximityverluste	
β	Verlustexponent	-
Δ	Differenz	-
δ	Luftspalt	m
δ	Eindringtiefe	m
ε	Permittivität	F/m
η	Faktor für Excessverluste	-
η	Parameter zur Wicklungsbeschreibung	-
η	Wirkungsgrad	-
γ	Schrägungswinkel	0
γ	Phasenwinkel	0
K	elektr. Leitfähigkeit	S/m
λ	Wärmeleitfähigkeit	W/mK
μ	Permeabilität	H/m
ν	Viskosität	$Pa \cdot s$
v	Ordnungszahl	-
ω	Kreisfrequenz	1/s
φ	Hilfsfunktion	-
φ	Phasenwinkel	0
π	Kreiszahl	-
Ψ	Magnetischer Fluss	Wb
Ψ	Hilfsfunktion	-
ρ	Spez. elektr. Widerstand	Ωm
σ	Eisenverlustfaktor	-
σ	Elektr. Leitfähigkeit	S/m
τ	Harzfuellfaktor	-
ξ	Strukturparameter für die Nut	-

Indizes

AC Alternating Current (dt.: Wechselstrom)

akt Aktivteil
analyt Analytisch
b Breite
Batt Batterie
Cu Kupfer
D Draht

DC Direct Current (dt.: Gleichstrom)

dyn Dynamisch eff Effektiv

EL Einzelne Lamelle

el Elektrisch

Exc Excess-Verluste

Fe Eisen Gut g Gesamt ges global Global Höhe h Hys Hysterese Index ind Induziert Iso Isolation k Laufindex

kn Index zur Beschreibung des Korrekturfaktors

für Stromverdrängung

Kreis Kreisströme

L Leiter
Lsp Luftspalt
Luft Luftreibung

m Mittel
Mag Magnet
max Maximal
mech Mechanisch
mech Mechanisch

Mess Messung

NdFeB Neodym-Eisen-Bor

Normiert norm Parallel par Ph Phase **Proximity** Prox R Rotor Relativ r rad Radial Red Reduziert Resultierend res

S Stator
S Sättigung
s Schlecht
Sim Simulation
sin Sinus

SK Stanzkante
Stirn Stirnraum

t Index für Leiterlage innerhalb der Nut

tang **Tangential** Thermisch th Unterhalb u V Verluste Wirbel Wirbelstrom WK Wickelkopf WR Wechselrichter Zwischenkreis ZK