Murugan Anandarajan Chelsey Hill Thomas Nolan

Practical Text Analytics

Maximizing the Value of Text Data

Advances in Analytics and Data Science

Volume 2

Series Editors

Ramesh Sharda Oklahoma State University, Stillwater, OK, USA

Hsinchun Chen University of Arizona, Tucson, AZ, USA Murugan Anandarajan • Chelsey Hill Thomas Nolan

Practical Text Analytics

Maximizing the Value of Text Data

Murugan Anandarajan LeBow College of Business Drexel University Philadelphia, PA, USA

Thomas Nolan Mercury Data Science Houston, TX, USA Chelsey Hill Feliciano School of Business Montclair State University Montclair, NJ, USA

ISSN 2522-0233 ISSN 2522-0241 (electronic) Advances in Analytics and Data Science ISBN 978-3-319-95662-6 ISBN 978-3-319-95663-3 (eBook) https://doi.org/10.1007/978-3-319-95663-3

Library of Congress Control Number: 2018955905

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my aunts and uncle—MA
To my angel mother, Deborah—CH
To my dad—TN

Preface

The oft-cited statistic that "80% of data is unstructured" reminds industry leaders and analytics professionals about the vast volume of untapped text data resources. Predictably, there has been an increasing focus on text analytics to generate information resources. In fact, the expected growth in this market is projected to be \$5.93 billion by 2020!

Whenever businesses capture text data, they want to capitalize on the information hidden within. Beginning with early adopters in the intelligence and biomedical communities, text analytics has expanded to include applications across industries, including manufacturing, insurance, healthcare, education, safety and security, publishing, telecommunications, and politics. The broad range of applied text analytics requires practitioners in this field.

Our goal is to democratize text analytics and increase the number of people using text data for research. We hope this book lowers the barrier of entry for analyzing text data, making it more accessible for people to uncover value-added text information.

This book covers the elements involved in creating a text mining pipeline. While analysts will not use every element in every project, each tool provides a potential segment in the final pipeline. Understanding the options is key to choosing the appropriate elements in designing and conducting text analysis.

The book is divided into five parts. The first part provides an overview of the text analytics process by introducing text analytics, discussing the relationship with content analysis, and providing a general overview of the process.

Next, the chapter moves on to the actual practice of text analytics, beginning with planning the project. The next part covers the methods of data preparation and preprocessing. Once the data is prepared, the next step is the analysis. Here, we describe the array of analysis options. The part concludes with a discussion about reporting options, indicating the benefits of various choices for convincing others about the value of the analysis.

¹ http://www.marketsandmarkets.com/PressReleases/text-analytics.asp

viii Preface

The last part of the book demonstrates the use of various software programs and programming languages for text analytics. We hope these examples provide the reader with practical examples of how information hidden within text data can be mined.

Philadelphia, PA, USA Montclair, NJ, USA Houston, TX, USA Murugan Anandarajan Chelsey Hill Thomas Nolan

Acknowledgments

The authors wish to acknowledge the invaluable contributions of several individuals to the preparation of the manuscript of this book.

Diana Jones, Director of the Center for Business Analytics and the Dornsife Office for Experiential Learning, at the LeBow College of Business, Drexel University, for her chapter on *Storytelling Using Text Data*.

Jorge Fresneda Fernandez, Assistant Professor of Marketing at the Martin Tuchman School of Management, New Jersey Institute of Technology, for his chapters on *Latent Semantic Analysis (LSA) in Python* and *SAS Visual Text Analytics*.

We thank Diana and Jorge for their expertise and invaluable contributions to this book.

We also thank Irena Nedelcu, Rajiv Nag, and Stacy Boyer, all of the LeBow College of Business, Drexel University, for providing valuable comments on various chapters.

Our appreciation to Matthew Amboy and his team at Springer who made the publication of this book possible.

Murugan Anandarajan Chelsey Hill Thomas Nolan

Contents

	Intr	oduction to Text Analytics
	1.1	Introduction
	1.2	Text Analytics: What Is It?
	1.3	Origins and Timeline of Text Analytics
	1.4	Text Analytics in Business and Industry
	1.5	Text Analytics Skills
	1.6	Benefits of Text Analytics
	1.7	Text Analytics Process Road Map
		1.7.1 Planning
		1.7.2 Text Preparing and Preprocessing
		1.7.3 Text Analysis Techniques
		1.7.4 Communicating the Results
	1.8	Examples of Text Analytics Software
	D C	
	Refe	erences
	Refe	rences
ar		Planning the Text Analytics Project
ar	tI I	Planning the Text Analytics Project
ar	tI I	
ır	t I I	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction
ır	t I I The 2.1	Planning the Text Analytics Project Fundamentals of Content Analysis
ır	t I I The 2.1	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches
ar	t I I The 2.1	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference.
ar	The 2.1 2.2	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference
ar	The 2.1 2.2	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference Unitizing and the Unit of Analysis. 2.3.1 The Sampling Unit.
ar	The 2.1 2.2	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference Unitizing and the Unit of Analysis 2.3.1 The Sampling Unit 2.3.2 The Recording Unit
ar	The 2.1 2.2	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference Unitizing and the Unit of Analysis. 2.3.1 The Sampling Unit. 2.3.2 The Recording Unit
ar	The 2.1 2.2	Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference Unitizing and the Unit of Analysis. 2.3.1 The Sampling Unit. 2.3.2 The Recording Unit 2.3.3 The Context Unit
ar	The 2.1 2.2 2.3	Planning the Text Analytics Project Fundamentals of Content Analysis Introduction Deductive Versus Inductive Approaches 2.2.1 Content Analysis for Deductive Inference 2.2.2 Content Analysis for Inductive Inference Unitizing and the Unit of Analysis. 2.3.1 The Sampling Unit. 2.3.2 The Recording Unit. 2.3.3 The Context Unit Sampling

xii Contents

		2.6.2 Deductive Inference
	Refe	erences. 25
3	Plar	nning for Text Analytics
	3.1	Introduction
	3.2	Initial Planning Considerations
		3.2.1 Drivers
		3.2.2 Objectives
		3.2.3 Data 30
		3.2.4 Cost 30
	3.3	Planning Process
	3.4	Problem Framing
		3.4.1 Identifying the Analysis Problem
		3.4.2 Inductive or Deductive Inference
	3.5	Data Generation
		3.5.1 Definition of the Project's Scope and Purpose
		3.5.2 Text Data Collection
		3.5.3 Sampling
	3.6	Method and Implementation Selection
		3.6.1 Analysis Method Selection
		3.6.2 The Selection of Implementation Software
	Refe	erences
Par	t II	Text Preparation
4	Tevi	t Preprocessing
٠.	4.1	Introduction
	4.2	The Preprocessing Process. 40
	4.3	Unitize and Tokenize
	15	4.3.1 N-Grams. 48
	4.4	Standardization and Cleaning
	4.5	Stop Word Removal
	15	4.5.1 Custom Stop Word Dictionaries
	4.6	Stemming and Lemmatization
	1.0	4.6.1 Syntax and Semantics
		· · · · · · · · · · · · · · · · · · ·
		4.6.2 Stemming
		4.6.2 Stemming 54 4.6.3 Lemmatization 56
	Refe	4.6.2 Stemming
5		4.6.2 Stemming 54 4.6.3 Lemmatization 56 4.6.4 Part-of-Speech (POS) Tagging 58
5		4.6.2 Stemming. 54 4.6.3 Lemmatization. 56 4.6.4 Part-of-Speech (POS) Tagging. 58 erences. 59
5	Teri	4.6.2 Stemming 54 4.6.3 Lemmatization 56 4.6.4 Part-of-Speech (POS) Tagging 58 erences 59 m-Document Representation 66
5	Terr 5.1	4.6.2 Stemming 54 4.6.3 Lemmatization 56 4.6.4 Part-of-Speech (POS) Tagging 58 erences 55 m-Document Representation 66 Introduction 66
5	Terr 5.1 5.2	4.6.2 Stemming 52 4.6.3 Lemmatization 56 4.6.4 Part-of-Speech (POS) Tagging 58 erences 59 m-Document Representation 60 Introduction 60 The Inverted Index 60

Contents xiii

		5.4.2 Global Weighting
		5.4.3 Combinatorial Weighting: Local and Global Weighting
	5.5	Decision-Making
	Refe	erences.
Par	t III	Text Analysis Techniques
6		nantic Space Representation and Latent Semantic
		ılysis
	6.1	Introduction
	6.2	Latent Semantic Analysis (LSA)
		6.2.1 Singular Value Decomposition (SVD)
		6.2.2 LSA Example
	6.3	Cosine Similarity
	6.4	Queries in LSA
	6.5	Decision-Making: Choosing the Number of Dimensions
	Refe	erences.
7		ster Analysis: Modeling Groups in Text
	7.1	Introduction
	7.2	Distance and Similarity
	7.3	Hierarchical Cluster Analysis
		7.3.1 Hierarchical Cluster Analysis Algorithm
		7.3.2 Graph Methods
		7.3.3 Geometric Methods
		7.3.4 Advantages and Disadvantages of HCA
	7.4	k-Means Clustering
		7.4.1 kMC Algorithm
		7.4.2 The kMC Process
		7.4.3 Advantages and Disadvantages of kMC
	7.5	Cluster Analysis: Model Fit and Decision-Making
		7.5.1 Choosing the Number of Clusters
		7.5.2 Naming/Describing Clusters
		7.5.3 Evaluating Model Fit
		7.5.4 Choosing the Cluster Analysis Model
	Refe	erences
8	Pro	babilistic Topic Models
	8.1	Introduction
	8.2	Latent Dirichlet Allocation (LDA)
	8.3	Correlated Topic Model (CTM)
	8.4	Dynamic Topic Model (DT)
	8.5	Supervised Topic Model (sLDA)
	8.6	Structural Topic Model (STM) 1
	8.7	Decision Making in Topic Models
		8.7.1 Assessing Model Fit and Number of Topics

xiv Contents

		8.7.2	Model Validation and Topic Identification
		8.7.3	When to Use Topic Models
	Refe	rences.	
9	Clas	sificatio	on Analysis: Machine Learning Applied to Text
	9.1		action
	9.2		eneral Text Classification Process
	9.3	Evalua	iting Model Fit
		9.3.1	Confusion Matrices/Contingency Tables
		9.3.2	Overall Model Measures
		9.3.3	Class-Specific Measures
	9.4	Classif	fication Models
		9.4.1	Naïve Bayes
		9.4.2	<i>k</i> -Nearest Neighbors (kNN)
		9.4.3	Support Vector Machines (SVM)
		9.4.4	Decision Trees
		9.4.5	Random Forests
		9.4.6	Neural Networks
	9.5	Choosi	ing a Classification
		9.5.1	Model Fit
	Refe	rences.	
10	Mod	leling T	ext Sentiment: Learning and Lexicon Models
	10.1	_	con Approach
	10.2		nine Learning Approach
	10.2	10.2.1	Naïve Bayes (NB)
		10.2.2	
		10.2.3	
	10.3		ment Analysis Performance: Considerations
			Evaluation
	Refe		
Par	t IV	Comm	nunicating the Results
11	Stor	vtelling	Using Text Data
-	11.1	•	duction
	11.2		ng Stories About the Data
	11.3		ing the Story
		11.3.1	Storytelling Framework
		11.3.2	
	11.4		nizations as Storytellers
		11.4.1	United Parcel Service.
		11.4.2	
	11.5		Storytelling Checklist
			Storyteining Checkrist
	INCIL	TOHICOS.	

Contents xv

12	Visua	alizing Analysis Results
	12.1	Strategies for Effective Visualization
		12.1.1 Be Purposeful
		12.1.2 Know the Audience
		12.1.3 Solidify the Message
		12.1.4 Plan and Outline
		12.1.5 Keep It Simple
		12.1.6 Focus Attention
	12.2	Visualization Techniques in Text Analytics
		12.2.1 Corpus/Document Collection-Level Visualizations
		12.2.2 Theme and Category-Level Visualizations
		12.2.3 Document-Level Visualizations
	Refer	rences
Par	t V	Text Analytics Examples
13	Senti	ment Analysis of Movie Reviews Using R
	13.1	Introduction to R and RStudio
	13.2	SA Data and Data Import.
	13.3	Objective of the Sentiment Analysis
	13.4	Data Preparation and Preprocessing
		13.4.1 Tokenize
		13.4.2 Remove Stop Words
	13.5	Sentiment Analysis.
	13.6	Sentiment Analysis Results
	13.7	Custom Dictionary
	13.8	Out-of-Sample Comparison
	Refe	rences.
14	Later	nt Semantic Analysis (LSA) in Python
	14.1	Introduction to Python and IDLE
	14.2	Preliminary Steps
	14.3	Getting Started
	14.4	Data and Data Import
	14.5	Analysis
	Furth	er Reading
15	Lear	ning-Based Sentiment Analysis Using RapidMiner
	15.1	Introduction
	15.2	Getting Started in RapidMiner
	15.3	Text Data Import
	15.4	Text Preparation and Preprocessing
	15.5	Text Classification Sentiment Analysis
	Refer	rence

xvi	Contents

16	SAS	Visual Text Analytics	263
	16.1	Introduction	263
	16.2	Getting Started	264
	16.3	Analysis	266
	Furth	er Reading	282
Ind	ex		283

About the Authors

Murugan Anandarajan is a Professor of MIS at Drexel University. His current research interests lie in the intersections of crime, IoT, and analytics. His work has been published in journals such as *Decision Sciences*, *Journal of Management Information Systems*, and *Journal of International Business Studies*. He co-authored eight books, including *The Internet and Workplace Transformation* (2006) and its follow-up volume, *The Internet of People, Things and Services* (2018). He has been awarded over \$2.5 million in research grants from various government agencies including the National Science Foundation, the US Department of Justice, the National Institute of Justice, and the State of PA.

Chelsey Hill is an Assistant Professor of Business Analytics in the Information Management and Business Analytics Department of the Feliciano School of Business at Montclair State University. She holds a BA in Political Science from the College of New Jersey, an MS in Business Intelligence from Saint Joseph's University, and a PhD in Business Administration with a concentration in Decision Sciences from Drexel University. Her research interests include consumer product recalls, online consumer reviews, safety and security, public policy, and humanitarian operations. Her research has been published in the *Journal of Informetrics* and the *International Journal of Business Intelligence Research*.

Tom Nolan completed his undergraduate work at Kenyon College. After Kenyon, he attended Drexel University where he graduated with an MS in Business Analytics. From there, he worked at Independence Blue Cross in Philadelphia, PA, and Anthem Inc. in Houston, TX. Currently, he works with all types of data as a Data Scientist for Mercury Data Science.

List of Abbreviations

ANN Artificial neural networks

BOW Bag-of-words CA Content analysis

CTM Correlated topic model df Document frequency

DM Data mining

DTM Document-term matrix

HCA Hierarchical cluster analysis idf Inverse document frequency

IoT Internet of Things

KDD Knowledge discovery in databases

KDT Knowledge discovery in text

kMC k-means clustering kNN k-nearest neighbors LDA Latent Dirichlet allocation

LSA Latent semantic analysis
LSI Latent semantic indexing

NB Naive Bayes

NLP Natural language processing

NN Neural networks OM Opinion mining

pLSI Probabilistic latent semantic indexing

RF Random forest SA Sentiment analysis

sLDA Supervised latent Dirichlet allocation

STM Structural topic model

SVD Singular value decomposition SVM Support vector machines

TA Text analytics

TDM Term-document matrix

tf Term frequency

tfidf Term frequency-inverse document frequency

TM Text mining

List of Figures

Fig. I.I	Text analytics timeline	3
Fig. 1.2	Frequency of text analytics articles by year	4
Fig. 1.3	Word cloud of the titles and abstracts of articles	
	on text analytics	5
Fig. 1.4	Article frequency by industry for top 25 industry	
	classifications	6
Fig. 1.5	Word cloud of text analytics job titles	7
Fig. 1.6	Word cloud of the skills required for text analytics jobs	7
Fig. 1.7	Guide to the text analytics process and the book	9
Fig. 2.1	Content analysis framework	17
Fig. 2.2	Features of deductive inference	18
Fig. 2.3	Manifest and latent variables	18
Fig. 2.4	Deductive and inductive coding approaches	21
Fig. 2.5	Four open coding strategies	22
Fig. 2.6	The three-step inductive inference process	22
Fig. 3.1	Four initial planning considerations	28
Fig. 3.2	Text analytics planning tasks	31
Fig. 3.3	Three characteristics of good research problems	31
Fig. 3.4	Quality dimensions of text data	34
Fig. 3.5	Simple random sampling	36
Fig. 3.6	Systematic sampling	37
Fig. 3.7	Stratified sampling	37
Fig. 3.8	Choosing the analysis method based on the focus	
	of the analysis	38
Fig. 4.1	Hierarchy of terms and documents	46
Fig. 4.2	Example document collection	47
Fig. 4.3	The text data pre-processing process	48

xxii List of Figures

Fig. 4.4	Tokenized example documents	49
Fig. 4.5	Cleansed and standardized document collection	51
Fig. 4.6	Documents after stop word removal	52
Fig. 4.7	Document 9 tokenized text before and after stemming	55
Fig. 4.8	Stemmed example document collection	55
Fig. 4.9	Document 9 before and after stemming and lemmatization	56
Fig. 4.10	Lemmatized example document collection	57
Fig. 5.1	Basic document-term and term-document matrix layouts	64
Fig. 5.2	Heat map visualizing the term-document matrix	66
Fig. 5.3	Document frequency weighting	69
Fig. 5.4	Global frequency weighting	70
Fig. 5.5	Inverse document frequency weighting	71
Fig. 6.1	Two-dimensional representation of the first five documents	
	in term space for the terms <i>brown</i> and <i>dog</i>	78
Fig. 6.2	Three-dimensional representation of the ten documents in term	
	space for the terms <i>brown</i> , <i>coat</i> and <i>favorite</i>	79
Fig. 6.3	SVD process in LSA, based on Martin and Berry (2007)	80
Fig. 6.4	Terms and documents in three-dimensional LSA vector space	84
Fig. 6.5	Terms and documents of a two-dimensional LSA solution across the first two dimensions	85
Fig. 6.6	Rotated plot of the query and Document 6 vectors	
C	in three-dimensional LSA vector space	89
Fig. 6.7	Scree plot showing variance explained by number of	
	singular vectors	90
Fig. 7.1	Visualization of cluster analysis	94
Fig. 7.2	Two-dimensional representation of terms in document space	05
Fig. 7.3	for Documents 3 and 6	95
118. 7.0	Documents 1, 3, and 7	96
Fig. 7.4	fluffy and brown in document space for Documents 3 and 6	96
Fig. 7.5	Dendrogram example with cluster groupings	98
Fig. 7.6	HCA algorithm.	99
Fig. 7.7	Single linkage document—HCA example	100
Fig. 7.8	Complete linkage document HCA example	101
_	Centroid linkage document—HCA example	102
Fig. 7.10	Ward's method for linking documents—HCA example	102
Fig. 7.11	kMC algorithm	104
_	k-Means process example plot	105
	<i>k</i> -Means initial cluster seed designation of <i>cat</i> , <i>coat</i> , and <i>hat</i>	105
_	Cluster assignments based on cluster seeds for a three-cluster	100
115. /.17	solution	107

List of Figures xxiii

Fig. 7.15	First iteration cluster assignment and calculated centroids	107
Fig. 7.16	Ward's method hierarchical cluster analysis solutions	
	for $k = 2, 3, 4, 5, 6$, and $7 \dots$	110
Fig. 7.17		111
Fig. 7.18	Silhouette plot for Ward's method hierarchical clustering	
	analysis	112
Fig. 8.1	LSA and topic models (Griffiths et al. 2007, p. 216)	118
Fig. 8.2	Plate representation of the random variables in the LDA model (Blei 2012, p. 23)	119
Fig. 8.3	Top ten terms per topic, four-topic model	120
Fig. 8.4	Plate representation of the random variables in the CTM model	120
8	(Blei et al. 2007, p. 21)	121
Fig. 8.5	Expected topic proportions of four categories in the	
	CTM model with no covariates	121
Fig. 8.6	CTM topic correlation plot	122
Fig. 8.7	Plate diagram of DT model (Blei and Lafferty 2006, p. 2)	123
Fig. 8.8	Plate representation of the sLDA model (McAuliffe and Blei 2008, p. 3).	123
Fig. 8.9	Plate diagram representation of the structural topic model	
C	(Roberts et al. 2013, p. 2)	125
Fig. 8.10	Top ten terms in topics for STM model	125
Fig. 8.11	Dog type content across topics	126
Fig. 8.12	Four measures across a number of topics, <i>k</i> , for 2–30 LDA topics	127
Fig. 8.13	Topic frequency and the five most probable terms per topic	128
Fig. 9.1	Classification analysis process	133
Fig. 9.2	Sample contingency table with two classifications, Yes and No	133
Fig. 9.3	Contingency table example	134
Fig. 9.4	Two-dimensional representation of support vector machine	
	classification of ten documents (Sebastiani 2002)	141
Fig. 9.5	Splitting criteria for decision trees	142
Fig. 9.6	Decision tree created from training data using deviance	
T: 0.5	as the splitting criteria	143
Fig. 9.7	Random forest plot of the importance of variables	145
Fig. 9.8	Neural network example with one hidden layer and three classes	146
Fig. 10.1	Levels of sentiment Analysis	152
	Sample of positive and negative words that coincide	
-	and are consistent across the four lexicons	154
Fig. 10.3	Positive review example: text preparation and preprocessing	155
Fig. 10.4		156
Fig. 10.5	Ambiguous review example: text preparation and preprocessing.	157
Fig. 10.6	Word clouds of positive and negative words in review sample	158

xxiv List of Figures

Fig.	10.7	Examples of Accurate and Inaccurate Predictions using NB	159
Fig.	10.8	Examples of accurate and inaccurate predictions using SVM	160
Fig.	10.9	Examples of accurate and inaccurate predictions using	
		logistic regression	162
Fig.	11.1	Questions to ask to identify the key components of the analysis.	168
Fig.	11.2	Storytelling framework	171
Fig.	12.1	Strategies for text analytics visualizations	179
	12.2	Heat map visualization	181
_	12.3	Word cloud of dog descriptions in the shape of a paw	182
Fig.	12.4	Plots of top terms in first four LSA dimensions	183
Fig.	12.5	Two dendrogram versions of the same HCA solution	184
Fig.	12.6	Top ten terms per topic, four-topic model	185
Fig.	12.7	Plot of expected topic proportions over time	186
Fig.	12.8	Two versions of the same document network plot	187
Fig.	12.9	Word clouds of positive and negative words in review sample	188
Fig.	12.10	Five-star word cloud of reviews	188
Fig.	13.1	RStudio IDE	194
Fig.	13.2	RStudio workspace with imdb dataframe in the global	105
T21 .	12.2	environment	195
_	13.3	Table formatted data using the view function.	196
_	13.4	Frequency of negative (0) and positive (1) reviews	196
_	13.5	Diagram of an inner join between stop words and sentiments	201
rig.	13.6	Number of classifications per matching stop	201
E: ~	12.7	word and lexicon lists	201
Fig.	13.7	Diagram of a left join between imdb and the aggregated lexicons	204
Fig.	14.1	Python IDLE Shell file	223
Fig.	14.2	Python IDLE script and .py file	224
Fig.	14.3	NLTK downloader	226
Fig.	14.4	First two latent factors in 25-factor LSA solution	234
Fig.	14.5	Variance explained for increasing <i>k</i> values	235
Fig.	14.6	First two latent factors in 25-factor LSA solution with	237
Ei e	147	tfidf weighting	
_	14.7	Scree plot for up to 25 latent factors	239
_	14.8	Top 10 terms by weight for dimension 1	240
rıg.	14.9	Top 10 terms in first four LSA dimensions	242
_	15.1	RapidMiner welcome screen	244
_	15.2	Main RapidMiner view	245
Fig.	15.3	RapidMiner view with operations, process, and parameters	
		panels	245
Fig.	15.4	Marketplace extension drop-down menu	246

List of Figures xxv

Fig. 15.5	Text Processing extension	246
Fig. 15.6	Read CSV node	247
Fig. 15.7	Data import wizard	248
Fig. 15.8	Tab delimited text	248
Fig. 15.9	Row name designations	249
Fig. 15.10	Data type designations	249
Fig. 15.11	Read CSV connection to Results port	250
Fig. 15.12	Read CSV results	250
Fig. 15.13	Process Documents from Data operator	251
Fig. 15.14	Process Documents from Data operator warning	251
Fig. 15.15	Tokenize operator	252
Fig. 15.16	Tokenize operator results	252
Fig. 15.17	Transform Cases operator	253
Fig. 15.18	Filter Stop words (English) operator	253
Fig. 15.19	Filter Tokens (by Length) operator	254
Fig. 15.20	Stem (Porter) operator	254
Fig. 15.21	Process Documents operator results	255
Fig. 15.22	Term and document frequency node connections	255
Fig. 15.23	Term and document frequency results	256
Fig. 15.24	Term occurrences sorted in descending order	256
Fig. 15.25	Document Occurrences sorted in descending order	257
Fig. 15.26	Validation operator	257
Fig. 15.27	Validation node view drop-down	258
	kNN operator	258
	Apply model and performance operators in validation view	259
Fig. 15.30	kNN results contingency table	259
Fig. 15.31	Remove kNN operator	260
Fig. 15.32	Naïve Bayes operator	260
Fig. 15.33	Naïve Bayes results contingency table	260
Fig. 16.1	SAS Viya Welcome page	265
Fig. 16.2	Data import option for data management	265
Fig. 16.3	The Available option shows the dataset loaded	266
Fig. 16.4	First 13 rows in the dataset	266
Fig. 16.5	Assigning the text variable role	267
Fig. 16.6	Customizing the pipeline	267
Fig. 16.7	Default pipeline available on VTA	268
Fig. 16.8	Predefined concepts available	269
Fig. 16.9	Options available for text parsing	269
	Topic node options	270
	Run pipeline icon to implement the analysis	271
	The pipeline tasks completed	272
	Predefined concepts <i>nlpPerson</i>	272
	List of kept and dropped terms	273
Fig. 16.15	Results of topic analysis	273

xxvi List of Figures

Fig. 16.16	Most relevant terms associated with topics and their use	
	in documents	274
Fig. 16.17	Category definition: code and validation	275
Fig. 16.18	Category rule validated over a sample document	275
Fig. 16.19	Example of matched documents in the disease/condition	
	category	276
Fig. 16.20	Explore and Visualize Data selection for advanced analysis:	
	main menu	277
Fig. 16.21	Add Data Source selection	278
Fig. 16.22	Tile by category and color by frequency percent selected	
	under Roles	278
Fig. 16.23	Category popularity visualization Treemap	279
Fig. 16.24	Category popularity visualization Treemap after removing	
	missing values	279
Fig. 16.25	Category popularity visualization: line charts	279
Fig. 16.26	Category popularity visualization: pie charts	280
Fig. 16.27	Word by keywords and color by frequency percent selected	
	under Roles	280
Fig. 16.28	Word cloud of key terms in the dataset	281
Fig. 16.29	Visualizations can be customized through the <i>Ontions</i> tag	281

List of Tables

Table 4.1	Document 9 related words, POS, and lemmatization for the word fluffy	56
Table 4.2	Document 9 related words, POS, and lemmatization	
	for the word favorite	57
Table 5.1	Unprocessed and preprocessed text	62
Table 5.2	Inverted index for dcument collection	62
Table 5.3	Document frequency of the term brown	63
Table 5.4	Term-postings frequency table for the term <i>brown</i>	63
Table 5.5	Term-document matrix example	65
Table 5.6	Log frequency matrix	67
Table 5.7	Binary frequency matrix	68
Table 5.8	tfidf-weighted TDM	72
Table 6.1	The LSA space	83
Table 6.2	Cosine similarity measures for <i>fluffy</i> , in descending order	86
Table 6.3	Term-term cosine similarity measures	87
Table 6.4	Cosine values between the query (brown, pink, tan)	
	and documents in descending order by cosine similarity value .	88
Table 7.1	Distance matrix of terms	97
Table 7.2	Distance matrix of documents	97
Table 7.3	<i>Tfidf</i> term values for Documents 3 and 6	105
Table 7.4	Squared distance from cluster seeds	106
Table 7.5	Squared distance from terms to cluster centroids	108
Table 9.1	Naïve Bayes contingency table	138
Table 9.2	Goodness of fit measures, naïve Bayes model	138
Table 9.3	1NN testing document actual classifications, 1NN	
	documents and 1NN predicted classifications	139
Table 9.4	Contingency table, kNN classification, $k = 1$ (1NN)	139

xxviii List of Tables

Table 9.5	Goodness of fit measures, k-nearest neighbors, $k = 1 \dots$	140
Table 9.6	Support vector machines contingency table	141
Table 9.7	Goodness of fit measures, SVM	142
Table 9.8	Decision tree confusion matrix	143
Table 9.9	Goodness of fit measures, decision tree	143
Table 9.10	Random forest contingency table	144
Table 9.11	Goodness of fit measures, random forest	144
Table 9.12	Neural network contingency matrix with five hidden nodes	
	in one hidden layer	146
Table 9.13	Goodness of fit measures, neural network with five hidden	
	nodes in one hidden layer	147
Table 9.14	Classification model accuracy	147
Table 10.1	Positive review word-, sentence-, and document-level sentiment	155
Table 10.2	Negative review word- and document-level sentiment	156
Table 10.3	Ambiguous review word and document-level sentiment	158
Table 10.4	Naïve Bayes contingency matrix classification analysis	159
Table 10.5	SVM contingency matrix classification analysis	160
Table 10.6	Logistic regression contingency matrix classification analysis.	161
Table 10.7	Examples of consistent accurate and inaccurate predictions across	
	learning methods for negative and positive sentiments	163
Table 13.1	Misclassified sentiment reviews with actual and predicted	
	sentiment	206
Table 13.2	Reviews with 10, including review number, text,	
	and sentiment labels	211
Table 13.3	Reviews with time, including review number, text,	
	and sentiment labels	211

Chapter 1 Introduction to Text Analytics

1

Abstract In this chapter we define text analytics, discuss its origins, cover its current usage, and show its value to businesses. The chapter describes examples of current text analytics uses to demonstrate the wide array of real-world impacts. Finally, we present a process road map as a guide to text analytics and to the book.

Keywords Text analytics · Text mining · Data mining · Content analysis

1.1 Introduction

Recent estimates maintain that 80% of all data is text data. A recent article in *USA Today* asserts that even the Internal Revenue Service is using text, in the form of US citizens' social media posts, to help them make auditing decisions. The importance of text data has created a veritable industry comprised of firms dedicated solely to the storage, analysis, and extraction of text data. One such company, Crimson Hexagon, has created the world's largest database of text data from social media sites including one trillion public social media posts spanning more than a decade.²

1.2 Text Analytics: What Is It?

Hearst (1999a, b) defines text analytics, sometimes referred to as text mining or text data mining, as the automatic discovery of new, previously unknown, information from unstructured textual data. The terms text analytics and text mining are often used interchangeably. Text mining can also be described as the process of deriving

¹Agency breaking law by mining social media. (2017, 12). USA Today, 146, 14–15.

² http://www.businessinsider.com/analytics-firm-crimson-hexagon-uses-social-media-to-predict-stock-movements-2017-4

high-quality information from text. This process involves three major tasks: information retrieval (gathering the relevant documents), information extraction (unearthing information of interest from these documents), and data mining (discovering new associations among the extracted pieces of information).

Text analytics has been influenced by many fields and has made significant contributions to many disciplines. Modern text analytics applications span many disciplines and objectives. In addition to having multidisciplinary origins, text analytics continues to have applications in and make advancements to many fields of study. It intersects many research fields, including:

- · Library and information science
- Social sciences
- · Computer science
- Databases
- Data mining
- Statistics
- Artificial intelligence
- Computational linguistics

Although many of these areas contributed to modern day text analytics, Hearst (1999a, b) posited that text mining came to fruition as an extension of data mining. The similarities and differences between text mining and data mining have been widely discussed and debated (Gupta and Lehal 2009; Hearst 2003). Data mining uses structured data, typically from databases, to uncover "patterns, associations, changes, anomalies, and significant structures" (Bose 2009, p. 156). The major difference between the two is the types of data that they use for analysis. Data mining uses structured data, found in most business databases, while text mining uses unstructured or semi-structured data from a variety of sources, including media, the web, and other electronic data sources. The two methods are similar because they (i) are equipped for handling large data sets; (ii) look for patterns, insight, and discovery; and (iii) apply similar or the same techniques. Additionally, text mining draws on techniques used in data mining for the analysis of the numeric representation of text data.

The complexities associated with the collection, preparation, and analysis of unstructured text data make text analytics a unique area of research and application. Unstructured data are particularly difficult for computers to process. The data itself cover a wide range of possibilities, each with its own challenges. Some examples of the sources of text data used in text mining are blogs, web pages, emails, social media, message board posts, newspaper articles, journal articles, survey text, interview transcripts, resumes, corporate reports and letters, insurance claims, customer complaint letters, patents, recorded phone calls, contracts, and technical documentation (Bose 2009; Dörre et al. 1999).

1.3 Origins and Timeline of Text Analytics

Text-based analysis has its roots in the fields of computer science and the social sciences as a means of converting qualitative data into quantitative data for analysis. The field of computer science is in large part responsible for the text analytics that we know today. In contrast, the social sciences built the foundation of the analysis of text as a means of understanding literature, discourse, documents, and surveys. Text analytics combines the computational and humanistic elements of both fields and uses technology to analyze unstructured data text data by "turning text into numbers." The text analytics process includes the structuring of input text, deriving patterns within the structured data, and evaluating and interpreting the output.

Figure 1.1 presents a timeline of text analytics by decade. In the 1960s, computational linguistics was developed to describe computer-aided natural language processing (Miner et al. 2012). Natural language processing techniques are outlined in Chaps. 5 and 6. During this decade, content analysis, the focus of Chap. 2, emerged in the social sciences as a means of analyzing a variety of content, including text and media (Krippendorff 2012).

In the late 1980s and early 1990s, latent semantic indexing, or latent semantic analysis, introduced in Chap. 6 arrived as a dimension reduction and latent factor identification method applied to text (Deerwester et al. 1990; Dumais et al. 1988). At this time, knowledge discovery in databases developed as a means of making sense of data (Fayyad et al. 1996; Frawley et al. 1992). Building on this advancement, Feldman and Dagan (1995) created a framework for text, known as knowledge discovery in texts to do the same with unstructured text data.

Data mining emerged in the 1990s as the analysis step in the knowledge discovery in databases process (Fayyad et al. 1996). In the 1990s, machine learning methods, covered in Chaps. 7 and 9, gained prominence in the analysis of text data (Sebastiani 2002). Around that time, text mining became a popular buzzword but lacked practitioners (Hearst 1999a, b). Nagarkar and Kumbhar (2015) reviewed text mining-related publications and citations from 1999 to 2013 and found that the number of publications consistently increased throughout this period.

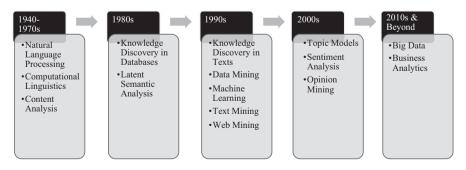


Fig. 1.1 Text analytics timeline

Building on a probabilistic form of latent semantic analysis (Hofmann 1999) introduced the late 1990s, topic models, discussed in Chap. 8, were created in the early 2000s with the development of the latent Dirichlet allocation model (Blei et al. 2002, 2003). Around the same time, sentiment analysis (Nasukawa and Yi 2003) and opinion mining (Dave et al. 2003), the focus of Chap. 10, were introduced as methods to understand and analyze opinions and feelings (Liu 2012).

The 2010s were the age of big data analytics. During this period, the foundational concepts preceding this time were adapted and applied to big data. According to Davenport (2013), although the field of business analytics has been around for over 50 years, the current era of analytics, Analytics 3.0, has witnessed the widespread use of corporate data for decision-making across many organizations and industries. More specifically, four key features define the current generation of text analytics and text mining: foundation, speed, logic, and output. As these characteristics indicate, text analysis and mining are data driven, conducted in real time, rely on probabilistic inference and models, and provide interpretable output and visualization (Müller et al. 2016). According to *IBM Tech Trends Report* (2011), business analytics was deemed one of the major trends in technology in the 2010s (Chen et al. 2012).

One way to better understand the area of text analytics is by examining relevant journal articles. We analyzed 3,264 articles, 2,315 published in scholarly journals and 949 published in trade journals. In our article sample, there are 704 journals, 187 trade journals and 517 scholarly journals. Each article belongs to one or more article classifications. The articles in our sample have 170 distinct classifications based on information about them such as industry, geographical location, content, and article type. Figure 1.2 displays the total number of text analytics-related

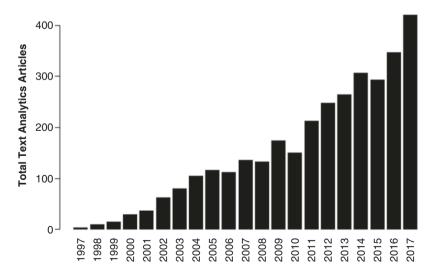


Fig. 1.2 Frequency of text analytics articles by year

articles over time. As the figure illustrates, there has been a considerable growth in the publications since 1997, with 420 articles about text mining published in 2017.

1.4 Text Analytics in Business and Industry

Text analytics has numerous practical uses, including but not limited to email filtering, product suggestions, fraud detection, opinion mining, trend analysis, search engines, and bankruptcy predictions (Talib et al. 2016). The field has a wide range of goals and objectives, including understanding semantic information, text summarization, classification, and clustering (Bolasco et al. 2005). We explore some examples of text analytics and text mining in the areas of business and industry. Text analytics applications require clear, interpretable results and actionable outcomes to achieve the desired result. Indeed, the technique can be used in almost every business department to increase productivity, efficiency, and understanding.

Figure 1.3 is a word cloud depicting the most popular terms and phrases in the text analytics-related articles' abstracts and titles. As the figure shows, research and applications in this area are as diverse as the area's history. The close relationship between data mining and text analytics is also evident in the figure.

Fig. 1.3 Word cloud of the titles and abstracts of articles on text analytics