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Preface

A large international conference in Electrical Engineering and Applied Computing
was held in London, U.K., 30 June–2 July, 2010, under the World Congress on
Engineering (WCE 2010). The WCE 2010 was organized by the International
Association of Engineers (IAENG); the Congress details are available at:
http://www.iaeng.org/WCE2010. IAENG is a non-profit international association
for engineers and computer scientists, which was founded originally in 1968. The
World Congress on Engineering serves as good platforms for the engineering
community to meet with each other and exchange ideas. The conferences have also
struck a balance between theoretical and application development. The conference
committees have been formed with over two hundred members who are mainly
research center heads, faculty deans, department heads, professors, and research
scientists from over 30 countries. The conferences are truly international meetings
with a high level of participation from many countries. The response to the
Congress has been excellent. There have been more than one thousand manuscript
submissions for the WCE 2010. All submitted papers have gone through the peer
review process, and the overall acceptance rate is 57%.

This volume contains fifty-five revised and extended research articles written by
prominent researchers participating in the conference. Topics covered include
Control Engineering, Network Management, Wireless Networks, Biotechnology,
Signal Processing, Computational Intelligence, Computational Statistics, Internet
Computing, High Performance Computing, and industrial applications. The book
offers the state of the art of tremendous advances in electrical engineering and
applied computing and also serves as an excellent reference work for researchers
and graduate students working on electrical engineering and applied computing.

Sio Iong Ao
Len Gelman
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Chapter 1
Mathematical Modelling for Coal Fired
Supercritical Power Plants and Model
Parameter Identification Using Genetic
Algorithms

Omar Mohamed, Jihong Wang, Shen Guo, Jianlin Wei, Bushra Al-Duri,
Junfu Lv and Qirui Gao

Abstract The paper presents the progress of our study of the whole process
mathematical model for a supercritical coal-fired power plant. The modelling
procedure is rooted from thermodynamic and engineering principles with
reference to the previously published literatures. Model unknown parameters are
identified using Genetic Algorithms (GAs) with 600MW supercritical power plant
on-site measurement data. The identified parameters are verified with different sets
of measured plant data. Although some assumptions are made in the modelling
process to simplify the model structure at a certain level, the supercritical
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coal-fired power plant model reported in the paper can represent the main features
of the real plant once-through unit operation and the simulation results show that
the main variation trends of the process have good agreement with the measured
dynamic responses from the power plants.

Nomenclature
ff Fitness function for genetic algorithms
ffr Pulverized fuel flow rate (kg/s)
h Enthalpy per unit mass (MJ/kg)
K Constant parameter
k Mass flow rate gain
m Mass (kg)
_m Mass flow rate (kg/s)
P Pressure of a heat exchanger (MPa)
_Q Heat transfer rate (MJ/s)
R Response
T Temperature (�C)
t Time (s)
s Time constant (s)
U Internal energy (MJ)
V Volume of fluid (m3)
_W Work rate or power (MW)

x Generator reactance (p.u)
y Output vector
q Density (kg/m3)
v Valve opening
d Rotor angle (rad)
h Mechanical angle (rad)
x Speed (p.u)
C Torque (p.u)

Subscripts
a Accelerating
air Air
e Electrical
d Direct axis
ec Economizer
hp High pressure turbine
hx Heat exchanger
i Inlet
ip Intermediate pressure turbine
me Mechanical
ms Main steam
m Measured

2 O. Mohamed et al.



o Outlet
out Output of the turbine
q Quadrature axis
rh Reheater
sh Superheater
si Simulated
ww Waterwall

Abbreviations
BMCR Boiler maximum continuous rate
ECON Economizer
GA Genetic algorithm
HP High pressure
HX Heat exchanger
IP Intermediate pressure
MS Main steam
RH Reheater
SC Supercritical
SH Superheater
WW Waterwall

1.1 Introduction

The world is now facing the challenge of the issues from global warming and
environment protection. On the other hand, the demand of electricity is growing
rapidly due to economic growth and increases in population, especially in the
developing countries, for example, China and India. With the consideration of
environment and sustainable development in energy, renewable energy such as
wind, solar, and tidal wave should be only resources to be explored in theory.
But the growth in demand is also a heavy factor in energy equations so the
renewable energy alone is unlikely able to generate sufficient electricity to fill the
gap in the near future. Power generation using fossil fuels is inevitable, especially,
coal fired power generation is found to be an unavoidable choice due to its huge
capacity and flexibility in load following. As a well know fact, the conventional
coal fired power plants have a huge environmental impact and lower energy
conversion efficiencies. Any new coal fired power plants must be cleaner with
more advanced and improved technologies.

Apart from Carbon Capture and Storage, supercritical power plants might be
the most suitable choice with consideration of the factors in environmental
enhancement, higher energy efficiency and economic growth. However, there has
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been an issue to be addressed in its dynamic responses and performance in relation
with conventional subcritical plants due to the difference in the process structure
and energy storage drum [1]. The characteristics of supercritical plants require the
considerable attention and investigation. Supercritical boilers have to be once-
through type boilers because there is not distinction between water and steam
phases in supercritical process so there is no drum to separate water steam mixture.
Due to the absence of the drum, the once-through boilers have less stored energy
and faster responses than the drum-type boilers. There are several advantages of
supercritical power plants [2, 3] over traditional subcritical plants include:

• Higher cycle efficiency (Up to 46%) and lower fuel consumption.
• Reduced CO2 emissions per unit power generation.
• Be fully integratable with CO2 capture technology.
• Fast load demand following (in relatively small load demand changes).

However, some concerns are also raised in terms of its dynamic responses with
regards to the demand for dynamic response speed. This is mainly caused by its
once-through structure, that is, there is no drum to store energy as a buffer to
response rapid changes in load demand.

The paper is to develop a mathematical model for the whole plant process to
study dynamic responses aiming at answering the questions in dynamic response
speed. From the literature survey, several models have been reported with
emphasis on different aspects of the boiler characteristics. Studying the dynamic
response and control system of once-through supercritical (SC) units can be traced
back to 1958 when work was done on a time-based simulation for Eddystone I unit
of Philadelphia Electric Company and the work was extended for simulation of
Bull run SC generation unit later in 1966 [4].

Yutaka Suzuki et al. modelled a once through SC boiler in order to improve the
control system of an existing supercritical oil-fired plant. The model was based on
nonlinear partial differential equations, and the model was validated through
simulation studies [5]. Wataro Shinohara et al. presented a simplified state space
model for SC once through boiler-turbine system and designed a nonlinear con-
troller [6]. Pressure node model description was introduced by Toshio Inoue et al.
for power system frequency simulation studies [7]. Intelligent techniques contri-
butions have yielded an excellent performance for modeling. Neural network has
been introduced to model the SC power plant with sufficiently accurate results if
they are trained with suitable data provided by operating unit [8]. However, neural
network performances are unsatisfactory to simulate some emergency conditions
of the plant because NN method depends entirely on the data used for the learning
process, not on physical laws. Simulation of SC boilers may be achieved either
theoretically based on physical laws or empirically based on experimental work. In
this paper, the proposed mathematical model is based on thermodynamic princi-
ples and the model parameters are identified by using the data obtained from a
600MW SC power plant [9]. The simulation results show that the model is
trustable to simulate the whole once-through mode of operation at a certain level
of accuracy.
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1.2 Mathematical Model of the Plant

1.2.1 Plant Description

The unit of a once-through supercritical 600MW power plant is selected for the
modelling study. The schematic view of the boiler is shown in Fig. 1.1. Water
from the feedwater heater is heated in the economizer before entering the super-
heating stages through the waterwall. The superheater consists of three sections
which are low temperature superheater, platen superheater, and final stage
superheater. The main outlet steam temperature is about 571�C at the steady state
and a pressure is 25.5 MPa. There are 2 reheating sections in the boiler for
reheating the steam exhausted from the high pressure turbine. The inlet temper-
ature of the reheater is 309�C and the outlet temperature is nearly 571�C and
average pressure is 4.16 MPa. The reheated steam is used to energize the inter-
mediate pressure turbine. The mechanical power is generated through multi-stage
turbines to provide an adequate expansion of the steam through the turbine and
subsequently high thermal efficiency of the plant.

1.2.2 Assumptions Made for Modelling

Assumptions are made to simplify the process which should be acceptable by plant
engineers and sufficient to transfer the model from its complex physical model to lead
to simple mathematical model for the research purpose. Some of these assumptions
are usually adopted for modelling supercritical or subcritical boilers [10]. Modelling
in the work reported in the paper, the following general assumptions are made:

Fig. 1.1 Schematic view of
the plant
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• Fluid properties are uniform at any cross section, and the fluid flow in the boiler
tubes is one-phase flow.

• In the heat exchanger, the pipes for each heat exchanger are lumped together to
form one pipe.

• Only one control volume is considered in the waterwall.
• The dynamic behaviour of the air and gas pressure is neglected.

1.2.3 The Boiler Model

1.2.3.1 Heat Exchanger Model

The various heat exchangers in the boiler are modelled by the principles of mass
and energy balances. The sub-cooled water in the economizer is transferred
directly to a supercritical steam through the waterwall without passing the evap-
oration status. The equations are converted in terms of the derivatives (or variation
rates) pressure and temperature of the heat exchanger. The mass balance equation
of the heat exchanger (control volume) is:

dm

dt
¼ _mi � _mo ð1:1Þ

For the constant effective volume, Eq. 1.1 will be:

V
dq
dt
¼ _mi � _mo

The density is a differentiable function of two variables which can be the
temperature and pressure inside the control volume, thus we have:

V
oq
oP

�
�
�
�
T

� dP

dt
þ oq

oT

�
�
�
�
P

� dT

dt

� �

¼ _mi � _mo

The energy balance equation:

dUhx

dt
¼ _Qhx þ _mihi � _moho

Also,

dUhx

dt
¼ V h

oq
oP

�
�
�
�
T

� dP

dt
þ oq

oT

�
�
�
�
P

� dT

dt

� �

þ
�

q
oh
oP

�
�
�
�
T

� dP

dt
þ oh

oT

�
�
�
�
P

� dT

dt

� ��

� V
dP

dt
V h

oq
oP

�
�
�
�
T

� dP

dt
þ oq

oT

�
�
�
�
P

� dT

dt

� �

þ
�

q
oh

oP

�
�
�
�
T

� dP

dt
þ oh

oT

�
�
�
�
P

� dT

dt

� ��

� V
dP

dt
_Qhx þ _mihi � _moho ð1:2Þ
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Combining (1.1) and (1.2) to get the pressure and temperature state derivatives,

_P ¼
_Qhxþ _miHi � _moHo

s
ð1:3Þ

_T ¼ C _mi � _moð Þ � D _P ð1:4Þ
Where:

Hi ¼ hi � h�
qoh

oT

�
�
P

oq
oT

�
�
P

 !

ð1:5Þ

Ho ¼ ho � h�
qoh

oT

�
�
P

oq
oT

�
�
T

 !

ð1:6Þ

s ¼ V q
oh

oP

�
�
�
�
T

�
qoq

oP

�
�
T
:oh
oT

�
�
P

oq
oT

�
�
P

� 1

 !

ð1:7Þ

C ¼ 1

V oq
oT

�
�

P

ð1:8Þ

D ¼
oq
oP

�
�
T

oq
oT

�
�

P

ð1:9Þ

The temperature of the superheater is controlled by the attemperator. Therefore,
the input mass flow rate to the superheater is the addition of the SC steam and the
water spray from the attemperator. The amount of attemperator water spray is
regulated by opening the spray valve which responds to a signal from the PI
controller. This prevents the high temperature fluctuation and ensures maximum
efficiency over a wide range of operation.

1.2.3.2 Fluid Flow

The fluid flow in boiler tubes for one-phase flow is :

_m ¼ k �
ffiffiffiffiffiffiffi

DP
p

ð1:10Þ

Equation 1.10 is the simplest mathematical expression for fluid flow in boiler
tubes. The flow out from the reheater and main steam respectively are:

_mrh ¼ K 01
Prh
ffiffiffiffiffiffi
Trh
p vrh ð1:11Þ

_mms ¼ K 02
Pms
ffiffiffiffiffiffiffi
Tms
p vms ð1:12Þ

The detailed derivation of (1.11) and (1.12) can be found in [11].
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1.2.4 Turbine/Generator Model

1.2.4.1 Turbine Model

The turbine is modeled through energy balance equations and then is combined
with the boiler model.

The work done by high pressure and intermediate pressure turbines are:

_Whp ¼ _mms � hms � houtð Þ ð1:13Þ

_Wip ¼ _mrh � hrh � houtð Þ ð1:14Þ

The mechanical power of the plant:

Pme ¼ _Whp þ _Wip ð1:15Þ

Up to Eq. 1.14, the boiler-turbine unit is model in a set of combined equations
and can be used for simulation if we assume that the generator is responding
instantaneously. However, the dynamics of the turbines’ speeds and torques must
be affected by the generator dynamics and injecting the mechanical power only
into the generator model will not provide this interaction between the variables. To
have a strong coupling between the variables in the models of the turbine-gen-
erator, torque equilibrium equations for the turbine model are added to the turbine
model:

_xhp ¼
1

Mhp
Chp � Dhpxhp � KHIðhhp � hipÞ
� 	

ð1:16Þ

_hhp ¼ xbðxhp � 1Þ ¼ ðxhp � 1Þ ð1:17Þ

_xip ¼
1

Mip
Cip � DipxipþKHIðhhp � hipÞ � KIGðhhp � hgÞ
� 	

ð1:18Þ

_hip ¼ xbðxip � 1Þ ¼ ðxip � 1Þ ð1:19Þ

Note that, for two-pole machine: hg ¼ d

1.2.4.2 Generator Model

The generator models are reported in a number of literatures; a third order non-
linear model is adopted in our work [12]:

_d ¼ Dx ð1:20Þ

JD _x ¼ Ca ¼ Cm � Ce � DDx ð1:21Þ
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_e0q ¼
1

T 0do

EFD � e0q � xd � x0d

 �

id
� 


ð1:22Þ

Ceðp:u) � Peðp:u) � V

x0d
e0q sin dþ V2

2
1
xq
� 1

x0d

� �

sin 2d ð1:23Þ

1.3 Model Parameter Identification

1.3.1 Identification Procedures

The parameters of the model which are defined by the formulae from (1.3) to (1.7)
and the other parameters of mass flow rates’ gains, heat transfer constants, turbine,
and generator parameters are all identified by Genetic Algorithms in a sequential
manner. Even though some of these parameters are inherently not constant, these
parameters are fitted directly to the actual plant response to save time and effort.
Various data sets of boiler responses have been chosen for identification and
verification. First, the parameters of pressure derivatives equations are indentified.
Then, the identification is extended to include the temperature equations, the
turbine model parameters and finally generator model parameters.

The measured responses which are chosen for identification and verification
are:

• Reheater pressure.
• Main SC steam pressure.
• Main SC steam temperature.
• Mass flow rate of SC steam from boiler main outlet to HP turbine.
• Mass flow rate of reheated steam from reheater outlet to the IP turbine.
• Turbine speed.
• Infinite bus frequency.
• Generated power of the plant.

In recent years, Genetic Algorithms optimization tool has been widely used for
nonlinear system identification and optimization due to its many advantages over
conventional mathematical optimization techniques. It has been proved that the
GAs tool is a robust optimization method for parameters identification of sub-
critical boiler models [13]. Initially, the GAs produces random values for all the
parameters to be identified and called the initial population. Then, it calculates the
corresponding fitness function to recopy the best coded parameter in the next
generation. The GAs termination criteria depend on the value of the fitness
function. If the termination criterion is not met, the GA continues to perform the
three main operations which are reproduction, crossover, and mutation. The fitness
function for the proposed task is:
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ff ¼
XN

n¼1

Rm � Rsið Þ2 ð1:24Þ

The fitness function is the sum of the square of the difference between measured
and simulated responses for each of the variables mentioned in this section. N is
the number of points of the recorded measured data, The load-up and load-down
data have been used for identification. The changes are from 30% to 100% of load
and down to 55% to verify the model derived. The model is verified from a ramp
load up data and steady state data to cover a large range of once-through operation.
The model has been also verified by a third set of data. The GAs parameters setting
for identification are listed below:

Generation: 100
Population type: double vector
Creation function: uniform
Population size: 50–100
Mutation rate: 0.1
Mutation function: Gaussian
Migration direction: forward
Selection: stochastic uniform

Figure 1.2 shows some of the load-up identification results. It has been
observed that the measured and simulated responses are very well matched for the
power generated and they are also reasonably matched for the temperature. Some
parameters of the boiler model are listed in Table 1.1 and for heat transfer rates are
listed in Table 1.2.

1.3.2 Model Parameter Verification

The validation of the proposed model has been performed using a number of data
sets which are the load down and steady state data. Figure 1.3 shows some of the
simulated verification results (load-down and steady state simulation). From the
results presented, it is obvious that the model response and the actual plant
response are well agreed to each other.

1.4 Concluding Remarks

A mathematical model for coal fired power generation with the supercritical boiler
has been presented in the paper. The model is based on thermodynamic laws and
engineering principles. The model parameters are identified using on-site operating
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data recorded. The model is then verified by using different data sets and the
simulation results show a good agreement between the measured and simulated
data. For future work, the model will be combined with a nonlinear mathematical
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Table 1.1 Heat exchanger
parameter

HX Hi Ho C D

ECON 10.2 13.6 2.1e-6 -3.93
WW 12.2 13.3 -1.2e-6 -0.1299
SH 20.5 45.9 1e-6 -3.73
RH 19.8 22.0 -1e-6 -17.9

Table 1.2 Heat transfer rate s1(s) Kec Kww Ksh Krh

9.3 5.7785 7.78 23.776 21.43
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model of coal mill to obtain a complete process mathematical model from coal
preparation to electricity generation. It is expected that the mill local control system
should have great contributions in enhancing the overall control of the plant.
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Chapter 2
Sequential State Computation Using
Discrete Modeling

Dumitru Topan and Lucian Mandache

Abstract In this paper we present a sequential computation method of the state
vector, for pre-established time intervals or punctually. Based on discrete circuit
models with direct or iterative companion diagrams, the proposed method is
intended to a wide range of analog dynamic circuits: linear or nonlinear circuits
with or without excess elements or magnetically coupled inductors. Feasibility,
accessibility and advantages of applying this method are demonstrated by the
enclosed example.

2.1 Introduction

The discretization of the circuit elements, followed by corresponding companion
diagrams, leads to discrete circuit models associated to the analyzed analog cir-
cuits [1–3]. Using the Euler, trapezoidal or Gear approximations [4, 5], simple
discretized models are generated, whose implementation leads to an auxiliary
active resistive network. In this manner, the numerical computation of desired
dynamic quantities becomes easier and faster. Considering the time constants of
the circuit, the discretization time step can be adjusted for reaching the solution
optimally, in terms of precision and computation time.
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The discrete modeling of nonlinear circuits assumes an iterative process too, that
requires updating the parameters of the companion diagram at each iteration and each
integration time step [5, 6]. If nonzero initial conditions exist, they are computed
usually through a steady state analysis performed prior to the transient analysis.

The discrete modeling can be associated to the state variables approach [6, 7],
as well as the modified nodal approach [5, 8], the analysis strategy being chosen in
accordance with the circuit topology, the number of the energy storage circuit
elements (capacitors and inductors) and the global size of the circuit.

The known computation algorithms based on the discrete modeling allow the
sequential computation, step by step, along the whole analysis time, of the state
vector or output vector directly [5, 9, 10]. In this paper, one proposes a method that
allows computing the state vector punctually, at the moments considered signifi-
cant for the dynamic evolution of the circuit. Thus, the sequential computation for
pre-established time subdomains is allowed.

2.2 Modeling Through Companion Diagrams

The time domain analysis is performed for the time interval [t0, tf], bounded by the
initial moment t0 and the final moment tf. It can be discretized with the constant
time step h, chosen sufficiently small in order to allow using the Euler, trapezoidal
or Gear numerical integration algorithms [1–5]. One can choose t0 = 0 and
tf = wh, where w is a positive integer.

The analog circuit analysis using discrete models requires replacing each circuit
element through a proper model according to its constitutive equations. In this
way, if the Euler approximation is used, the discretization equations and the
corresponding discrete circuit models associated to the energy storage circuit
elements are shown in Table 2.1, for the time interval ½nh; ðnþ 1Þh� ; h\w.

The tree capacitor voltages uC and the cotree inductor currents iL [7, 8] are
chosen as state quantities, assembled in the state vector x. The currents IC of the
tree capacitors and the voltages across the cotree inductors UL are complementary
variables, assembled in the vector X.

At the moment t ¼ nh, the above named vectors are partitioned as:

xn ¼ un
C

inL

� �

; Xn ¼ In
C

Un
L

� �

ð2:1Þ

with obvious significances of the vectors un
C; inL; In

C; Un
L.

For the magnetically coupled inductors, the discretized equations and the
companion diagram are shown in Table 2.1, where the following notations were
used:

Rnþ1
11 ¼

L11

h
; Rnþ1

12 ¼
L12

h
; enþ1

1 ¼ L11

h
in
1 þ

L12

h
in
2;

Rnþ1
22 ¼

L22

h
; Rnþ1

21 ¼
L21

h
; enþ1

2 ¼ L22

h
in
2 þ

L21

h
in
1:

ð2:2Þ

16 D. Topan and L. Mandache



T
ab

le
2.

1
D

is
cr

et
e

m
od

el
in

g
of

th
e

en
er

gy
st

or
ag

e
el

em
en

ts

E
le

m
en

t
S

ym
bo

l
D

is
cr

et
iz

ed
ex

pr
es

si
on

s
C

om
pa

ni
on

di
ag

ra
m

T
re

e
ca

pa
ci

to
r

CI

Cu

S
C

/
1

=
unþ

1
C
¼

un C
þ

hS
Inþ

1
C

1+n CI
hS

1+n Cu

n Cu

E
xc

es
s

ca
pa

ci
to

r
Ci

C
U

S
C

/
1

=
inþ

1
C
¼

1 hS
U

nþ
1

C
�

U
n C

�
�

1+
n Ci

hS

1+
n C

U

n C
U

hS1

C
ot

re
e

in
du

ct
or

Γ
=

/1
L

L
U

Li
inþ

1
L
¼

in L
þ

hC
U

nþ
1

L

n Li

Γh

1+n L
U

n Li

E
xc

es
s

in
du

ct
or

Γ
=

/1
L

L
u

LI
unþ

1
L
¼

1 hC
Inþ

1
L
�

In L

�
�

1+
n LI

Γh/
1

n LI
hΓ1

1+n L
u

M
ag

ne
ti

ca
ll

y
co

up
le

d
in

du
ct

or
pa

ir
1

1
+n

U * *
1

2
+n

U

1
1

+n i

1
2

+n i
12L

21
L

11L 22
L

1 2

'1

'2

U
nþ

1
1
¼

R
11

inþ
1

1
�

R
11

in 1

þ
R

12
inþ

1
2
�

R
12

in 2

U
nþ

1
2
¼

R
21

inþ
1

1
�

R
21

in 1

þ
R

22
inþ

1
2
�

R
22

in 2

1
1

+
n

U

1
1

+
n i

11
R

1 2

'1

'2

1
1

+
n

e
1

2
12

+
n i

R

1
2

+
n

U

1
2

+
n i

22
R

1
2

+
n

e
1

1
21

+
n i

R

2 Sequential State Computation Using Discrete Modeling 17



For nonlinear circuits, the state variable computation at the moment
t ¼ ðnþ 1Þh requires an iterative process that converges towards the exact
solution [4, 5]. A second upper index corresponds to the iteration order (see
Table 2.2). Similar results to those of Tables 2.1 and 2.2 can be obtained using the
trapezoidal [5, 11] or Gear integration rule [4, 5].

2.3 Sequential and Punctual State Computation

The treatment with discretized models assumes substituting the circuit elements
with companion diagrams, which consist in a resistive model diagram. It allows
the sequential computation of the circuit solution.

Table 2.2 Iterative discrete modeling

Element Iterative dynamic
parameter

Companion diagram Notations in the companion
diagram

i

u

)(ˆ iuu =

Rnþ1;m ¼ o u
o i

� �

i¼inþ1;m 1,1 ++ mni
mnR ,1+

mne ,1+

1,1 ++ mnu

Rnþ1;m ¼ Rnþ1;m

enþ1;m ¼ unþ1;m � Rnþ1;m�
inþ1;m

i

u

q

)(ˆ quu =

Cnþ1;m ¼ o q
o u

� �

u¼unþ1;m

Rnþ1;m ¼ hSnþ1;m

enþ1;m ¼ unþ1;m � hSnþ1;m�
inþ1;m

i

u

ϕ

)(ˆ iϕϕ =

Lnþ1;m ¼ o u
o i

� �

i¼inþ1;m Rnþ1;m ¼ 1
h

Lnþ1;m

enþ1;m ¼ unþ1;m � 1
h

Lnþ1;m�

inþ1;m

i

u

)(ˆ uii =

Gnþ1;m ¼ o i
o u

� �

u¼unþ1;m

1,1 ++ mni

mnG ,1+

mnj ,1+

1,1 ++ mnu

Gnþ1;m ¼ Gnþ1;m

jnþ1;m ¼ inþ1;m � Gnþ1;m�
unþ1;m

i

u

q

)(ˆ uqq =

Snþ1;m ¼ o u
o q

� �

q¼qnþ1;m Gnþ1;m ¼ 1
h

Cnþ1;m

jnþ1;m ¼ inþ1;m � 1
h

Cnþ1;m�

unþ1;m

i

u

ϕ

)(ˆ ϕii =

Cnþ1;m ¼ o i
ou

� �

u¼unþ1;m

Gnþ1;m ¼ hCnþ1;m

jnþ1;m ¼ inþ1;m � hCnþ1;m�
unþ1;m
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2.3.1 Circuits Without Excess Elements

If the given circuit does not contain capacitor loops nor inductor cutsets [7, 8], the
discretization expressions associated to the energy storage elements (Table 2.1,
lines 1 and 3), using the notations (2.1), one obtains

xnþ1 ¼ xn þ h
S 0
0 C

� �

Xnþ1; ð2:3Þ

where S is the diagonal matrix of capacitor elastances and C is the matrix of
inductor reciprocal inductances.

Starting from the companion resistive diagram, the complementary variables
are obtained as output quantities [5, 10, 11] of the circuit

Xnþ1 ¼ E xn þ F unþ1; ð2:4Þ

where E and F are transmittance matrices, and unþ1 is the vector of input quan-
tities [7, 8] at the moment t ¼ ðnþ 1Þh.

From (2.3) and (2.4) one obtains an equation that allows computing the state
vector sequentially, starting from its initial value x0 ¼ xð0Þ until the final value
xw ¼ xðwhÞ:

xnþ1 ¼M xn þ N unþ1; ð2:5Þ

where

M ¼ 1þ h
S 0
0 C

� �

E; ð2:6Þ

1 being the identity matrix, and

N ¼ h
S 0
0 C

� �

F: ð2:7Þ

Starting from Eq. 2.5, through mathematical induction, the useful formula is
obtained as

xn ¼Mnx0 þ
Xn

i¼1

Mn�kN uk; ð2:8Þ

where the upper indexes of the matrix M are integer power exponents. The for-
mula (2.8) allows the punctual computation of the state vector at any moment
t ¼ nh, if the initial conditions of the circuit and the excitation quantities are
known.

If a particular solution xpðtÞ of the state equation exists, it significantly sim-
plifies the computation of the general solution xðtÞ. Using the Euler numerical
integration method, one obtains [5]:
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xnþ1 ¼M xn � xn
p

� �

þ xnþ1
p : ð2:9Þ

The sequentially computation of the state vector implies the priory construction
of the matrix E, according to Eqs. 2.6 and 2.9. This action requires analyzing an
auxiliary circuit obtained by setting all independent sources to zero in the given
circuit.

Starting from Eq. 2.9, the expression

xn ¼Mn x0 � x0
p

� �

þ xn
p ð2:10Þ

allows the punctual computation of the state vector.

2.3.2 Circuits with Excess Elements

The excess capacitor voltages [8, 11], assembled in the vector UC, as well as the
excess inductor currents [5, 7, 8], assembled in the vector IL, can be expressed in
terms of the state variables and excitation quantities, at the moment t ¼ nh:

Un
C

In
L

� �

¼ K1 0
0 K2

� �

xn þ K01 0
0 K02

� �

un; ð2:11Þ

where the matrices K1; K
0

1 and K2; K
0

2 contain voltage and current ratios
respectively.

Using the Table 2.1, the companion diagram associated to the analyzed circuit
can be obtained, whence the complementary quantities are given by:

Xnþ1 ¼ E xn þ E1
Un

C
In

L

� �

þ F un; ð2:12Þ

the matrices E; E1 and F containing transmittance coefficients.
Considering Eqs. 2.11 and 2.12, the recurrence expression is obtained from

(2.5), allowing the sequential computation of the state vector:

xnþ1 ¼M xn þ N unþ1 þ N1 un; ð2:13Þ

where

M ¼ 1þ h
S 0

0 C

� �

Eþ E1Kð Þ;

N ¼ h
S 0

0 C

� �

F; N1 ¼ h
S 0

0 C

� �

E1K0;

K ¼
K1 0

0 K2

� �

; K0 ¼
K01 0

0 K02

� �

:

ð2:14Þ
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