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Preface

This book is designed as a text for a second course in infinite-valued Lukasiewicz
logic and its algebras, Chang’s MV-algebras. It is also intended as a source of
reference for the more advanced readers, and is a continuation of the monograph
by Cignoli et al., “Algebraic Foundations of Many-Valued Reasoning,” which
may be used as a suitable text for a first course. I give complete versions of a
compact body of recent results and techniques, virtually proving everything that is
used throughout. So if I have accomplished my purpose, this book should be
usable for individual study.

Modern Lukasiewicz logic and MV-algebra theory draw on three principal
sources: polyhedral topology, functional analysis, and lattice-ordered abelian
groups (/-groups henceforth). This is so because

Every free MV-algebra is an algebra of [0,1]-valued piecewise linear functions f
over some unit cube, each linear piece of f having integer coefficients. Zerosets
of these functions are, on the one hand, models of formulas in Lukasiewicz
propositional logic L., and on the other hand, they are the most general rational
polyhedra contained in some cube [0, 1]".

For any MV-algebra A, regular Borel probability measures on the maximal
spectral space of A correspond to de Finetti’s coherent probability assessments
on the events represented by A, as an algebra of equivalence classes of formulas
in Lukasiewicz logic.

There is a categorical equivalence I' between MV-algebras A and unital
£-groups (G, 1), those ¢-groups having a distinguished order unit.

Just as the Z-module structure of (G, 1) is missing in the MV-algebra A =
I'(G, 1), several fundamental notions and constructs available in the framework of
MV-algebras and fLukasiewicz logic hardly make any sense for unital ¢-groups,
despite the latter are categorically equivalent to MV-algebras. Thus, the equational
definability of the class of MV-algebras gives us a way of introducing free and
finitely presented objects—while the class of unital /-groups is not even definable
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viii Preface

in first-order logic. Induction on the complexity of Lukasiewicz formulas, com-
bined with their geometric representation as McNaughton functions, is a main tool
to explore syntactic and semantic consequence in L., and the fundamental logic
property of interpolation. Formulas in L., denote continuously valued events, just
as boolean formulas denote yes-no events; coherent probability assessments on
these events yield Rényi conditionals, which would make no sense for unital
{-groups. g-complete MV-algebras provide a natural framework for generaliza-
tions of many classical results originally proved for g-complete boolean algebras,
such as the theorem of Loomis—Sikorski and Poincaré’s recurrence theorem.
Several main techniques and results of probability theory, that Carathéodory
reformulated in the language of o-complete boolean algebras, have nontrivial
MV-algebraic generalizations. Bases originate as algebraically invariant counter-
parts of disjunctive Schauder normal forms in Lukasiewicz logic; an MV-algebra
has a basis iff it is finitely presented. Classical first-order logic with identity has a
generalization to a Lukasiewicz first-order logic L., with [0,1]-valued identity.
Models of L, are suitable sets X of unit vectors in a Hilbert space #, and the
identity degree of any two vectors u,v € X is their scalar product; functions and
relations on X satisfy suitable continuity properties.

Since this book is devoted to these genuine MV-algebraic and logical topics, its
overlap with books on ¢-groups, with or without unit, is negligible.

Every chapter in this book relies on a combination of classical, as well as of
recent mathematical results, well beyond the traditional domain of algebraic logic.

The first prerequisite for a profitable reading is familiarity with the main the-
orems of Lukasiewicz logic and MV-algebra theory, notably Chang completeness
theorem, McNaughton representation of free MV-algebras, Wéjcicki’s analysis of
consequence in Lukasiewicz logic, and the properties of the I'" functor. Secondly,
the reader is assumed to have some acquaintance with a few basic facts of poly-
hedral topology and functional analysis. As is often the case in the study of
advanced mathematical topics, detailed knowledge of the proofs of all background
results is less important than knowing a place in the literature where one can go
and look—if the need ever arises to check a proof.

To help the reader, all background results used in the course of the book are
collected in two final Appendices, together with references for their proofs. The
notation (B21.50) will refer to entry 21.50 in Appendix B.

This book has grown out of lectures delivered at various universities and
summer schools during the last ten years.

I have made much use of conversations and correspondence with many friends
and colleagues. I owe a particular debt of gratitude to Ettore Casari, Roberto
Cignoli, Janusz Czelakowski, Antonio Di Nola, Sergio Doplicher, Anatolij
Dvurecenskij, Laszlé Fuchs, Andrew Glass, Marco Grandis, Petr Héjek, Charles
Holland, Toma§ Kroupa, Ioana Leustean, Jorge Martinez, Franco Montagna,
Hiroakira Ono, Beloslav Riec¢an, Constantine Tsinakis, Hans Weber, and Ryszard
Wojcicki. From the late Sauro Tulipani I learned that de Finetti’s coherence cri-
terion can be applied to events described by Lukasiewicz logic.


http://dx.doi.org/10.1007/978-94-007-0840-2_20
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I am also grateful to my former students Stefano Aguzzoli, Agata Ciabattoni,
Brunella Gerla, and Giovanni Panti.

The anonymous referee sent valuable suggestions for improvement: the first
section of Chap. 20 largely draws from his report. Leonardo Cabrer and Vincenzo
Marra read substantial parts of the manuscript. I gratefully acknowledge their
constructive suggestions and criticism.

Florence, November 2010 D. Mundici
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Notation and Terminology

The symbol = is to be read “implies”. The symbol < is to be read “iff”, which
is short for “if, and only if”. The symbols 3 and V are to be read “there is an” and
“for all”, respectively.

Z,Q, R, respectively, denote the set of integer, rational and real numbers.

By a countable set we mean a set whose cardinality is either finite or equal to
the cardinality of the set of integers.

A family F of subsets of a set X is said to have the finite intersection property if
for every finite set F|, ..., Fy of members of F the intersection F; N... N Fy is
nonempty.

For any two sets E C F we let y denote the characteristic function of E in F,
i.e., the function yz: F — {0, 1} defined by y;'(1) = E. The ambient set F will
always be clear from the context.

For every function f: F — G and E C F we let f [E denote the restriction of f to
E. For any two sets D and V we let V” be the set of all functions f: D — V. The
notation f: x — y stands for f(x) = y. Given functions f:X — Y and g: Y — Z we
denote by gf: X — Z the composite function defined by (gf)(x) = g(f(x)) for all
xeX.

For any topological space Y and subset X of ¥, we denote by cl(X) the closure of
X in Y (the latter being always clear from the context). Similarly, int(X) denotes
the interior of X.

Unless otherwise specified, the adjective linear is understood in the affine
sense.

For each n = 1,2,... we let R" be n-dimensional euclidean space. We further
let ey, ...,e, be the standard basis vectors of R”, and =, ..., w, the coordinate
(= identity = projection) functions restricted to the unit n-cube [0, 1]".

For any subset S of R” we denote by conv(S) the set of all convex combinations
of elements of S. Thus x € conv(S) iff there are xi,...,x; € S and real numbers
Ao, 2 >0such that Ay +---+ A =1 and x = Ayx; + - - - + Axxx. The set S is
said to be convex if § = conv(S).
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Xviii Notation and Terminology

A hyperplane H is a supporting hyperplane of a closed convex set T C R" if
HNT #0 and TC H" or T C H-, where H* are the two closed half-spaces
bounded by H. The set T N H is said to be a face of T. By convention, () and T are
called the improper faces of T. All other faces of T are said to be proper.

For any subset S of R" we denote by aff(S) the affine hull of S, i.e., the set of all
affine combinations in R" of elements of S. Thus x € aff(S) iff there are
Xty.o.x €S and  Af,..., 4 €R  such that A +---+4 =1 and
x=21x1+ -+ Aexg. A set {y1,...,ym} of points in R” is said to be affinely
independent if none of its elements is an affine combination of the remaining
elements.

The relative interior relint(S) of a convex set S in R” is the interior of S in the
affine hull of S.

As usual, gcd and lem denote greatest common divisor and least common
multiple.

Unless otherwise specified, in every MV-algebra considered in this book the
unit and the zero element will be distinct.

We let hom(A) denote the set of homomorphisms of the MV-algebra A into the
MV-algebra [0,1]. For every homomorphism # of A into an MV-algebra B, the
kernel ker(n) of 5, is defined by ker(y7) = n='(0).

For each k = 1,2, ..., we denote by L; the (k + 1)-element Lukasiewicz chain
{0,1/k,...,(k—1)/k,1}. This is denoted ¥, in [1, p. 8].

Reference

1. Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D. (2000). Algebraic
foundations of many-valued reasoning. Volume 7 of Trends in Logic.
Dordrecht: Kluwer.



Chapter 1
Prologue: de Finetti Coherence Criterion
and Lukasiewicz Logic

In this chapter we will see that coherent probability assessments on (not necessarily
yes—no) events, such as those given by the measurement of physical observables, are
convex combinations of valuations in Lukasiewicz propositional logic L. Besides
familiarity with [1], the only prerequisite for this chapter is some acquaintance with
the very basic properties of convex sets in euclidean space.

1.1 Events, Possible Worlds and de Finetti Coherence Criterion

Just as the measurement of an observable of a physical system in a given state outputs
a real number x—and after a suitable normalization, x can be assumed to lie in the
unit interval [0,1]—similarly a possible world assigns a (truth-)value x € [0, 1] to
any event. In particular, the value x assigned to a yes—no event X is 1 if X occurs, and
0 otherwise. If X has a continuous spectrum, our expectation “X has a large value”
is made precise by the result of the measurement/observation of X. More details will
be given in Sect. 1.6 of this chapter.

Stripping away all inessentials, given an integer n > 0 and two sets E =
{X1,..., Xy} and W C [0, l]E, let us imagine two players, Ada and Blaise, wag-
ing money on the possible occurrence of the “events” of E in the future “possible
worlds” of W. Ada, who is a mathematical bookmaker, proclaims her “betting odd”
B(X;) € [0, 1], and Blaise, the bettor, chooses a “stake” o; for each X; € E. Then
Blaise pays Ada o; - B(X;) euros (i = 1, ..., n),with the stipulation that Ada will
pay back o; - w(X;) euros in the possible world w € W where the value w(X;) is
made known. Ada is so confident in her “book™ g that Blaise is allowed to put down
a negative stake o;, should he rate S(X;) excessive. The result is a “reverse bet”:
Ada now pays Blaise |o;| - B(X;) euros, to receive |o;| - w(X;) in the possible world
w. The total balance of this bet on events X1, ..., X,, with stakes o1, ..., 0, € R,
in the possible world w is

D. Mundici, Advanced Ltukasiewicz calculus and MV-algebras, 1
Trends in Logic, 35, DOI: 10.1007/978-94-007-0840-2_1,
© Springer Science+Business Media B.V. 2011



2 1 Prologue: de Finetti Coherence Criterion and Lukasiewicz Logic

D oi(B(Xi) — w(Xy),

i=1

where money transfers are conventionally oriented so that “positive” means Blaise-
to-Ada. Ada’s book 8: E — [0, 1] would quickly lead her to financial disaster if in
every possible world this total balance is < 0. For, assuming the set W of possible
worlds is closed in [0, 1]", by suitably rescaling his stakes, Blaise might ensure a net
profit of at least one zillion euros whatever happens. Adopting the understatements
which are so common in contemporary economic theory, we give the following

Definition 1.1 Fix an integer n > 0. For any two sets £ = {Xi,..., X,} and
W C [0,1]%, we say that a map B: E — [0, 1] is W-incoherent if for some
o1, ...,0, € R the inequality >/, 0;(B(X;) — w(X;)) < 0 holds for all w € W.
Otherwise, B is W-coherent.

1.2 Coherence and Valuations in Lukasiewicz Logic

Theorem 1.4 will establish a first connection between coherent assessments and
valuations in Lukasiewicz logic. The theorem will be continued in Theorem 10.7.

In preparation for these results, for each n = 1,2,..., we let FORM, de-
note the set of formulas (X1, ..., X,,) whose variables are contained in the set
{X1,..., Xn}; ¥ is the same as a formula in boolean logic, except that conjunction
and disjunction are written as © and @ instead of A and V. As is well known, the
lattice connectives A and V in Lo, are different from the basic connectives ® and .

We will write « — B as an abbreviation of —«a @ S. As usual, @ <> 8 stands for
(0> B OB —a.

More generally, for any set X' of variables, we denote by FORMy the set of
formulas whose variables are among those of X. For each formula ¢ we let var(¢)
be the set of variables occurring in ¢. For any set ® € FORMy we also use the
notation var(®) for J{var(y) | ¢ € ®}.

As usual, when writing formulas we assume that — is more binding than ©, and
the latter is more binding than &.

Definition 1.2 A valuation (of FORM,, in £.4,) is a function V: FORM,, — [0, 1]
such that

V(—¢)=1-V(¢)
Vg @ y) =V(p)® V() =min(l, V(¢) + V(¥))
Vg O¢) =V(p) O V() =max(0, V() + V() — 1).
We let VAL, denote the set of valuations of FORM,,. For each w = (wy, ..., wy) €

[0, 11" = [0, 111Xt Xn} we let V,, be the only valuation of VAL,, such that V,,(X;) =
w; foralli =1,...,n. Thus,w =V, [ {X1,..., X,}.
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More generally, for any set X of variables, VAL y denotes the set of valuations
V: FORMy — [0, 1]. A formula ¢ is a tautology if V(¢) = 1 for all valuations
V € VALyur(g)- To signify that v is a tautology we write - 1.

Definition 1.3 Foreveryn = 1,2, ... and nonempty set ¥ C [0, 1]* we define
ThY = {¢y ¢ FORM,, | V,,(¢y) =1 forall we Y} (1.1)

For any set ® € FORM_y and V € VAL y we say that V satisfies ® if V() = 1 for
ally € ®.Ifthereisavaluation V satisfying ® we say that & is satisfiable. Otherwise
® is unsatisfiable. When @ is a singleton {¢} we define the (un)satisfiability of
formula ¢ in the obvious way.

As usual, by a convex combination C of valuations V1, ..., V, € VAL, we mean
a function C € RFORMx of the form

COP) = MVI() + -+, V, (%) forall v € FORM,,

where A1, ..., A, are real coefficients > O whose sum is 1. In general, C is not a
valuation.
Foranyn =1,2,...and set E = {X1, ..., X,,} we will freely identify

[0, 11 = [0, 1115 = [0, 17".

Theorem 1.4 For any set E = {X1, ..., X,}, closed nonempty set W C [0, 11%,
and map f: E — [0, 1] the following conditions are equivalent:

(i) B is W-coherent.
(ii) There do not exist o1, ..., 0, € R such that 3}, 0;(B(X;) — v(X;)) < —1
forallv e W.
(iii) B is a convex combination of points in W, in symbols, B € conv(W), (equiva-
lently, B is a convex combination of at most n + 1 points in W).

@iv) B =C | {Xy, ..., X,} for some convex combination C in RFORM, of valua-
tions, all satisfying Th W.
~v) B =D | {X1,...,Xn} for some convex combination D of at most n + 1

valuations Vy, ..., V, € VAL,, each V; satisfying Th W.

Proof of (1% ii< iii) The implication (i=-ii) is trivial. For the converse, let us
assume condition (i) fails for B = (B(X1), ..., B(X,)) € R" = RE. Using the
notation o for scalar product in R”, for some ¢ = (cy,...,c;) € R" we have
co(f—v)<Oforallv = (v(Xy1),...,uv(X,)) € W. Since W is closed, for some
€ > 0 the continuous function x — ¢ o (f — x) attains its maximum value —e at
some point in W. Then the n-tuple (oy,...,0,) € R" given by 0; = 2¢;/e is a
counterexample to (ii).

(ili=>1) Evidently, each v € W is a W-coherent map. We claim that W-coherence
is preserved by convex combinations in RE of elements vy, ..., vy, € W.

Otherwise, (absurdum hypothesis) for some 0 < A1, ..., A, with Z;flzl Aj=1
the convex combination ¢ = Z’J": { Ajv; is W-incoherent. There are real numbers
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o1, ...,0y, such that Z?:l oi(c(X;) —v(X;)) < O, for all v € W. In particu-
lar, foreach j = 1,...,m, >} 0i(c(X;) — vj(X;) < 0, i.e, >/ oic(Xi) <
> 0ivj(X;). It follows that

n

Ry (ZUiC(Xi)) <A (Z Uivf(xi))
= i=1

i=1 j=1

ie.,

n n n n
D oic(Xi) < D0 D v (Xi) = D oie(Xi),
i=1 1 i=1

=1 j=

which is impossible. Having thus settled our claim, we have proved (iii=1).

(i=viii) Let us suppose 8 & conv(W). Since W is compact, by (B21.50) so is its
convex hull conv(W). Then the classical separation argument (B21.51) yields a real
number £ > 0, together with vectors a, b € R” and a hyperplane H = a' +b C R”
suchthata o B —a o w < —& for all w € conv(W). Here a # 0 and a denotes
the hyperplane {x € R" | a o x = 0}, i.e., the orthogonal complement of a. The
stakes 0; = a; /&, (i = 1, ..., n) show that (ii) is false, whence a fortiori, § is not
W-coherent. The parenthetical remark in (iii) follows from Carathéodory theorem
(B21.55).

Also the equivalence (iv<v) follows from Carathéodory theorem.

The proof that (iv<»iii) requires the introduction of additional material on
Lukasiewicz logic £.o and free M V-algebras, to be used throughout the book.

1.3 McNaughton Functions and Free MV-Algebras

Forn = 1,2,..., a McNaughton function f: [0,1]" — [0, 1] is a continuous
piecewise linear function all of whose linear pieces have integer coefficients. In
other words, f is continuous and there are linear (affine) polynomials /y, ..., [; with
integer coefficients such that for each x € [0, 1]* thereisi =1, ..., k with f(x) =
l; (x). We denote by M ([0, 1]") the MV-algebra of all McNaughton functions over
[0, 1]". More generally, for any nonempty ¥ C [0, 1]” we will denote by M (Y) the
MV-algebra of restrictions to Y of the functions in M ([0, 1]").

We say that formulas ¢, v € FORM, are equivalent, in symbols, ¢ = v, if
V(¢) = V(¥) for all valuations V € VAL,. We denote by /= the equivalence

class of ¥. The dependence onn = 1, 2, ... will always be clear from the context.
Theorem 1.5 Foreachi =1, ...,n, letmw;: [0,1]" — [0, 1] be the ith coordinate
function.

(1) The set FORM,, /= of equivalence classes of formulas of FORM,, equipped
with the MV-algebraic operations inherited from the connectives —, © and
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@, coincides with the free MV-algebra FREE, over the free generating set
{(X1/=,.... Xu/=1}

(i1) The map X; /= +> m; uniquely extends to a homomorphism ¢ of FREE, into
M([0, 17).

(iii) In fact, t is an isomorphism of FREE,, onto M([0, 11%).

@iv) For each € FORM,, let

A~

v =1y/=) (1.2)
denote the McNaughton function represented by \r. Then
Y(w) = Vo () forall we [0, 11" (1.3)
(V) For every nonempty set Y C [0, 11" and formula € FORM,,
v eThY & ¥ (y)=1 forall y €Y. (1.4)

Proof A proof of (i) is obtainable from [1, 4.4.4, 4.5.5]. The universal property of
free MV-algebras immediately yields (ii). By Chang completeness theorem (A21.17),
¢ is one—one. By McNaughton theorem (A21.48), ¢ is onto M ([0, 1]"*). This proves
(iii). Arguing by induction on the number of connectives in v, one routinely verifies
(1.3) and settles (iv). Finally, (v) is a direct consequence of (iv). m]

Definition 1.6 For any set of formulas ® € FORM,, the set Mod(®) C [0, 1]"
is defined by Mod(®) = {w € [0,1]" | Vy,(¢p) = 1forall¢p € ®}. For 6 €
FORM,, instead of Mod({6}) we write Mod(6), or even Mod,x,, .. x,1(0), if clarity
so demands.

Thus a formula ¢ € FORM,, is satisfiable iff Modx,
a tautology iff Modx,

.....

,,,,, x,}(¢) is nonempty; ¢ is
x,1(¢) = [0, 1]". Further, from (1.3) we have

,,,,,

Mod(9) = 6~ (1). (1.5)

1.4 ® I ¢, ¥ is a Consequence of ®

The following fundamental result will find repeated use throughout this book:

Theorem 1.7 Foralln = 1,2,...and0, ¢ € FORM,, the following conditions are
equivalent:

(1) Every valuation V € VAL, satisfying 6 also satisfies ¢;
(i) Mod(#) < Mod(¢);
(iii) For some integer k > 0 the formula 0% — ¢ is a tautology, where 6% is short
for 060---00
—_—————

k occurrences of 6
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(iv) For some integer k > 0 the formula

0—->O@—->0O—>---—>0O—->0—>9¢) ) (1.6)

k occurrences of 6

is a tautology.

(v) For some integer k > QO there is a sequence of formulas oy, . . . , k41 such that
oy =0, axr1 = ¢, and foreach i = 1, ...,k + 1 either «; is a tautology, or
there are p,q € {0, ..., i — 1} such that o is the formula o, — a;.

(vi) For some integer k > 0 there is a sequence of formulas «, . . . , ag+1 such that
oy = 6, agy1 = @, and for eachi = 1,...,k + 1 either «; is a tautology
in FORM,, or there are p,q € {0, ...,i — 1} such that ay is the formula
oap = .

Proof (i<-ii) By Definition 1.6.

(ili>iv) One promptly verifies that the two formulas (1.6) and ok — ¢ are
equivalent.

(vei) Follows from [1, 4.5.2, 4.6.7].

(ve&iv) Follows from [1, 4.6.4].

(vi=v) Trivial.

(iv=-vi) By induction on &, one verifies that ¢ can be obtained as the final formula
ak+1 of asequence «, . . ., ok as in (v), only needing the assumed tautology (1.6).

O

Definition 1.8 For X a set of variables, # # ® € FORM_y, and ¥ a formula, we
write ® - i [read: “i is a (syntactic) consequence of @] if there is an integer
k> 0andaset{¢,..., ¢} C & suchthat (¢; ©--- O @)X — V¥ is a tautology.

By Chang completeness theorem together with Theorem 1.7(iii<>v), this defini-
tion is promptly seen to agree with the definition of syntactic consequence given in
[1,4.3.2].

Corollary 1.9 For every set X of variables, nonempty set ® C FORMy, and
arbitrary formula r, the following conditions are equivalent:

(a) ©F .

(b) There is an integer k > 0 and a sequence @1, . .., ¢pp € O such that the formula
¢1 — (2 — (@3 = - = (Pk—1 = (¢ — ¥))--+)) is a tautology.

(c) For some integer t > O there is a sequence of formulas By, ..., B; such that
B: = Y and for each i = 1, ...t either B; € ®, or B; is a tautology, or there
are p,q € {1,...,i — 1} such that B, is the formula B, — B;.

(d) For some integer t > 0 there is a sequence of formulas B, ..., B: such that
B: = Y and for eachi = 1,...,t either B; € ®, or B; is a tautology in
FORM xUvar(y), or there are p,q € {1, ...,i — 1} such that B is the formula
Bp — Bi-



1.4 @+ ¢, ¢ is a Consequence of 7

Proof This easily follows from Theorem 1.7(iii<> - - - <vi). O

In the particular case when ® = {¢} we write ¢ + ¢ instead of {¢} - . If
O ={g1,... ., ¢}, then®P -y iff $y O--- O EYiff gy A~ AN Y.

Corollary 1.10 Foralln =1,2,...and ¢, ¥, 0 € FORM,,
OF¢ <y iff ¢ | Mod®) = | Mod(6).

Proof Combine (1.2-1.5) with Theorem 1.7, and note that, by definition of —,
OF¢ — yiff ¢ | Mod(@) < ¢ | Mod(6). O

1.5 Lindenbaum Algebras, End of Proof of Theorem 1.4

Definition 1.11 Fix n = 1,2, ... and suppose ® C FORM, is satisfiable. Then
for any ¢,y € FORM, we write ¢ =¢ v iff ® - ¢ <« . For each formula
¢ € FORM, we denote by ¢/=¢ the =¢-equivalence class of ¢. The set of =¢-
equivalence classes forms an MV-algebra FORM,, /=4, called the Lindenbaum al-
gebra of ® and denoted LIND . Thus,

LINDg = E% |y e FORMn] . (1.7)

In case & = {0} for some 6 € FORM,,, we write LIND instead of LIND4,, and
=y instead of =.

Lemma 1.12 Let 6 = 0(Xy,...,X,) be a satisfiable formula. Then the map
A @/=¢ > @ [ Mod(0) is an isomorphism of LINDg onto M(Mod(0)).

Proof 1f 1& [ Mod(®) # ¢ | Mod(#) then by (1.5), V() = 1 and V,, () #
V(@) forsomew € [0, 1]?, whence Mod(#) € Mod(yy <> ¢). By Theorem
1.7, 6 ¥ v < ¢, and hence /=y # ¢/=p, thus showing that A is a ho-
momorphism. Next suppose /=9 # 0, ie., 8 ¥ —y. Again by Theorem 1.7,
Mod(#) € Mod(—v). In other words, for some valuation V,, we have V,,(0) = 1
and V(=) # 1. Thus Vi, (¥) > 0, whence O(w) = 1 and ¥ (w) > 0. As a
consequence, 1/} [ Mod(0) # 0, and A is one—one. Finally, let g € M(Mod(9)),
and write g = & [ Mod(#) for some & € M([0, 1]"). By McNaughton theorem
(A21.48), we can write h = 1/Af for some formula ¢ (X1, ..., X;), and conclude that
g = M(¥/=p), which shows that A is onto M (Mod(6)). O

Lemma 1.13 For any z € [0, 11" and open neighborhood N of z there is a function
g € M([0, 171") such that g(z) = 0 and g(y) = 1 for each y € [0, 1]" \ N.

Proof There is an open cube N’ such thatz € N'N[0, 1]* € N, and whose faces are
given by equations of the form x; = r; for suitable rationals r;. By (A21.18) there is
a function f € M([0, 1]") vanishing precisely on the closure of N’. The continuity
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of f ensures that for some € > 0 we constantly have f > € over the compact set
[0, 17" \ N. For all suitably large m the McNaughton functiong = f & --- @ f (m
times) will constantly take the value 1 on [0, 1]* \ N. O

Lemma 1.14 For every nonempty closed subset W of [0, 11", W = Mod(Th W).

Proof Since Mod(ThW) = {x € [0,1]" | V(@) = 1forallé® € Th W}, the
inclusion W C Mod(Th W) is trivial.

For the converse inclusion, arguing by induction on the number of connectives in
¥ € FORM,, and using Lemma 1.12 together with (1.3 and 1.4), we obtain

v eThW & V() =1 forall x e W
@@(x):l forall x e W
SYIW=1,

whence Th W = {¢y € FORM, | x[Af | W = 1}. Therefore,

x € Mod(ThW) & V(@) =1 forall & € ThW
& 0(x)=1 forall 6 € ThW
Sxe ﬂ{é—l(l) | 6 € Th W}.

Suppose x € [0, 1]" \ W. Since W is closed, Lemma 1.13 yields an open neigh-
borhood N of x disjoint from W, together with a formula v € FORM,, such that
V(y) =1forally € [0,1]"\ N 2 W. Thus ¢ € ThW and x & Mod(y/) = {y €
[0, 171" | lﬂ(y) = 1}. A fortiori, x ¢ Mod(Th W), whence W D> Mod(Th W), as
required to complete the proof. O

Conclusion of the proof of Theorem 1.4.: By Lemma 1.14, 8 € conv(W) iff B isthe
restrictionto {X1, ..., X, } of aconvex combination of valuations all satisfying Th W.
We have proved (iii<> iv) in Theorem 1.4. The proof of the theorem is complete.

O

1.6 Remarks

Definition 1.1 is a generalization of de Finetti’s notion of coherent assessment for
yes—no events, ([2, Sect. 7, p. 308], [3, pp. 6-7]). Item (ii) in Theorem 1.4 is de Finetti’s
alternative definition of incoherent assessment [4, footnote page 87]. Lemma 1.13
was first proved in [5, 4.17]. Theorem 1.4 was first proved in [6].

Theorem 1.7 and Corollary 1.9 combine results by Hay [7] and W¢jcicki [8] with
Pogorzelski’s Local Deduction Theorem [9]. Wdjcicki proved that the equivalence
(i<»iii) no longer holds in general if 6 is replaced by an infinite set of formulas
[8, Theorem 2]. The generalization of Theorem 1.7 for arbitrary sets of formu-
las in each finite-valued Lukasiewicz logic was also established by Wojcicki (see
[8, Lemma 1], [10, 4.3.3]).
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See [11] for a geometric representation of the consequence relation .
Note that in [1, 4.6.8], Lindenbaum algebras are only defined for sets of formulas
in the set of variables {X |, X», ...}.

Events and possible worlds from physical systems. As anticipated in Sect. 1.1,
the final part of this chapter is devoted to giving “events” and “possible worlds” a
sufficiently general definition within the commutative C*-algebraic formulation of
classical physical systems. This also works for quantum physical systems, by just
removing the commutativity axiom [12, pp. 362, 378].

Readers not interested in the C*-algebraic sources of events and possible worlds
may safely skip the remainder of this section.

Let C be the C*-algebra of a classical physical system S. We denote by Cg, the
set of self-adjoint elements of C. Any element of C, represents an observable of S.
Further, we write S for the set of real-valued normalized positive linear functionals
on Cs,. By [13, VIII, 2.1 and pp. 224-225], C can be identified with the C*-algebra
C (%) of all complex-valued continuous functions over the compact Hausdorff space
¥ of maximal ideals of C. Under this identification, X is the space of all possible
phases of S, and Cg, is the set of all real-valued continuous functions on X.

Csa typically includes such observables as position, energy, momentum, and each
element of S is thought of as a convenient mathematical counterpart of a “mode
of preparation” of S. The Riesz representation theorem (B21.64) yields a one—one
correspondence between S and the set of regular Borel probability measures on X.
For any p € S and A € Cg, the real number p(A) is said to be the expectation value
of the observable A whenever S is prepared in mode p.

Letnow E = {Xy, ..., X,,;} beaset of nonzero positive elements of Cg,. Under our
standing identification, each X; is a continuous function over X such that f(x) > 0
for all x € X. Let sup X; denote the sup norm of X;. As explained in [12, pp.
363-369], each preparation mode p € S determines a map w,: E — [0, 1] by the
stipulation w,(X;) = p(X;)/(sup X;). The set W = {w,, | p € &} is closed in the
m-cube [0, 11E. Intuitively, the “event” X; occurs if “the value of the observable X;
is high,” and the “possible world” w, € W gives a precise “truth-value” in [0, 1] to
this event.

Altogether, C*-algebras have extensive capabilities to model events and possible
worlds.
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Chapter 2
Rational Polyhedra, Interpolation,
Amalgamation

One can hardly understand the fine structure of finitely presented (especially of
finitely generated free and projective) MV-algebras without a working knowledge
of the basic properties of rational polyhedra and their regular triangulations. The
simplexes of these triangulations provide the volume elements of the integrals that
evaluate the average truth-value of formulas and compute the invariant Rényi con-
ditional introduced later in this book. Rational polyhedra are the genuine algebraic
varieties of the formulas of Lukasiewicz logic: for, the zeroset of a McNaughton
function of n variables is the most general possible rational polyhedron P contained
in [0, 1]*, n = 1,2, .... This chapter is an elementary introduction to rational poly-
hedra and their subdivisions into regular triangulations. The observation that rational
polyhedra are preserved under projections onto rational hyperplanes gives us a way of
proving the (deductive) interpolation property of L, and the amalgamation property
of MV-algebras.

2.1 Rational Polyhedra, Complexes, Fans

Fixn = 1,2,.... Apoint y € R" is said to be rational if all its coordinates are
rational numbers. A rational hyperplane H inR" isaset H = {x e R" | hox =k},
for some nonzero 1 € Q" and k € Q. Equivalently, 0 # 4 € Z" and k € Z. When
k = 0 we say that H is homogeneous. The two closed halfspaces H+ and H~ of R"
determined by H are said to be rational.

For any rational point y = (y1,...,y,) € Q" we denote by den(y) the least
common denominator of its coordinates, and we say that den(y) is the denominator
of y. The integer vector

5= (den(y) - y1, ..., den(y) - yn, den(y)) = den(y)(y, 1) € Z""!

is called the homogeneous correspondent of y. Then y is primitive, that is, minimal
(as a nonzero integer vector) along its ray (3) = {Ay € R"T! | A > 0} = Rxoy.
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