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Foreword to the second English edition

In the present edition the comments to chapters in the main text and
the References were extended and updated. During the past years the
quantum (noncommutative) generalizations of probability, mathemati-
cal statistics and information theory were substantially developed. The-
ory of quantum stochastic processes was elaborated, unifying repeated
and continuous measurement with the dynamics of open quantum sys-
tems. This material is re�ected in the book [178] where the reader can
�nd an extended bibliography. With the emergence of ideas of quantum
computation the powerful impetus got the quantum information theory
which was born more than half-century ago and shaped as an indepen-
dent scienti�c discipline in the 1990-s. This progress enhanced, in partic-
ular, recent development of asymptotic methods of quantum estimation
theory. An introduction to this circle of problems can be found in the
books [152, 170, 179].

The present edition would not be possible without the enthusiasm and
perseverance of Professor Vittorio Giovannetti and Professor Rosario Fazio
to whom the author expresses his warm gratitude. The author is grateful
to Dottoressa Luisa Ferrini, Edizioni della Normale, for her professional
and most ef�cient assistance in preparation of the manuscript.

This book is dedicated to the memory of Academician Kamil A. Valiev
who passed away in the summer 2010.

Alexander Holevo
Moscow, September 2010.



Foreword to the second Russian edition

When this book was �rst published in 1980 (the English edition appeared
in 1982 in North Holland), the author addressed it to a broad audience
of readers, both mathematicians and physicists having intention to make
them acquainted with the new prospects and possibilities which emerge
from the interaction of ideas of the mathematical statistics and the quan-
tum theory. During the past period this approach became even more de-
manded. On one side, its advantages in the questions of foundations
of quantum theory related to quantum measurements became more ap-
parent and widely acknowledged. On the other hand, one should stress
that these theoretical �ndings were not an end in itself: in modern high-
precision physical experiments researchers become able to operate with
single ions, atoms and photons which leads to potentially important ap-
plications, such as quantum communications, computation and cryptog-
raphy. Of great importance is the question of extraction of maximal possi-
ble information from the state of a given quantum system. For example,
in currently discussed proposals for quantum computing information is
written in the states of elementary quantum memory cells, qubits, and
then read off by means of quantum measurement. From the statistical
point of view, measurement gives an estimate for the quantum state – as a
whole, or for some of its parameters. In this way a new interest emerges
to quantum estimation theory, the fundamentals of which are presented
in this book.

One of essential consequences of penetration of the ideas of mathe-
matical statistics into the theory of quantum measurement is the wide use
of the mathematical notion of (non-orthogonal) resolution of the iden-
tity in the system Hilbert space (in the Western literature – POVM, pos-
itive operator-valued measures), describing the statistics of decision pro-
cedures. During the time passed resolutions of the identity became a
standard tool both in mathematical and in physical literature on quantum
measurements. All this, in my opinion, justi�es publication of the sec-
ond Russian edition of the book, moreover as the �rst one became a rare
book.
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The present edition includes Supplement discussing in some detail the
problem of hidden variables in quantum mechanics which continues to
provoke a keen interest. Moreover, the edition is complemented with
Comments re�ecting new results and achievements.

Academician K. A. Valiev
Moscow, April 2003.



Preface

The mathematical language of modern quantum mechanics is operator
theory. Operators play there a role similar to functions in classical me-
chanics, probability theory and statistics. However, while the use of func-
tions in classical theories is founded on premises which seem intuitively
quite clear, in quantum theory the situation with operators is different.

Historically the “matrix mechanics” of Heisenberg and the “wave
mechanics” of Schrödinger which gave rise to the contemporary form
of quantum theory, originated from ingenious attempts to �t mathemat-
ical objects able to re�ect some unusual (from the macroscopic point
of view) features of microparticle behavior – in particular, a peculiar
combination of continuous and discrete properties. The “probabilistic
interpretation” developed later by Born and others elucidated the mean-
ing of operator formalism by postulating rules connecting mathematical
objects with observable quantities. However a good deal of arbitrari-
ness remained in these postulates and the most convincing argument for
quantum-theoretical explanations was still the “striking” coincidence of
theoretical predictions with experimental data. This state of affairs gave
rise to numerous attempts, on one hand, to �nd classical alternatives to
quantum theory which would give an equally satisfactory description of
the experimental data, and on the other hand, to �nd out physical and
philosophical arguments for justifying the inevitability of the new me-
chanics.

Notwithstanding the impressive philosophical achievements in this
�eld there was and still is a need for the structural investigation of quan-
tum theory from a more mathematical point of view aimed at elucidating
the connections between the entities of the physical world and the ele-
ments of operator formalism. The present book is essentially in this line
of research opened by the classical von Neumann’s treatise “Mathemati-
cal Foundations of Quantum Mechanics”. However it differs from most
subsequent investigations by the strong emphasis on the statistical rather
than “logical” essence of quantum theory; it gives an account of recent



xiv Alexander Holevo

progress in the statistical theory of quantum measurement, stimulated by
the new applications of quantum mechanics, particularly in quantum op-
tics.

The �rst three chapters give an introduction to the foundations of quan-
tum mechanics, addressed to the reader interested in the structure of
quantum theory and its relations with classical probability. In spite of
the mathematical character of the presentation it is not “axiomatic”. Its
purpose is to display the origin of the basic elements of operator formal-
ism resting, as far as possible, upon the classical probabilistic concepts.

The present revision is not an end in itself – it emerged from the so-
lution of concrete problems concerning the quantum limitations to mea-
surement accuracy, arising in applications. So far there has been no gen-
eral approach to such kind of problems. The methods of mathemati-
cal statistics adapted for classical measurements required radial quantum
modi�cation. The last chapters of the book are devoted to the recently
developed quantum estimation theory, which is an analog of the corre-
sponding branch of mathematical statistics.

We now give a more detailed account of the contents of the book. In
Chapter 1 the general concepts of state and measurement are introduced
on the basis of statistical analysis of an experimental situation. From the
very beginning this approach leads to a substantial generalization of the
Dirac-von Neumann concept of an observable. Mathematically it is re-
�ected by the occurrence of arbitrary resolutions of identity in place of or-
thogonal ones (spectral measures) and the repudiation of self-adjointness
as an indispensable attribute of an observable. In this way nonorthog-
onal resolutions of identity like the “overcomplete” system of coherent
states known in physics for rather a long time �nd their proper place in
quantum phenomenology. The new concept of quantum measurement is
central for the whole book.

The notion of statistical model exploited in Chapter 1 is quite general
and may �nd applications different from quantum theory. It gives us a
new insight into the still controversial “hidden variables” problem.

In Chapter 2 the elements of operator theory in Hilbert space are intro-
duced to provide mathematical background for the subsequent material.
As compared to standard presentations relatively much attention is paid
to nonorthogonal resolutions of identity and related questions. A novel
feature is also the introduction of the L 2 spaces of observables associ-
ated with a quantum state and playing a role similar to the Hilbert space of
random variables with �nite second moment in probability theory. These
L 2 spaces give the framework for a calculus of unbounded operators.

Of fundamental importance to quantum theory are groups of symme-
tries. In Chapter 3 elementary quantum mechanics is considered from this
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point of view. An important result of this discussion is the isolation of the
notion of covariant measurement which ties physical quantities with cer-
tain classes of resolutions of identity in the underlying Hilbert space. In
this way we construct quantum measurements canonically corresponding
to such quantities as time, phase of harmonic oscillator, angle of rotation
and joint measurement of coordinate and velocity. Allowing the broader
concept of quantum measurement enables us to resolve old troubles of
quantum theory connected with the non-existence of self-adjoint opera-
tors having the required covariance properties.

Chapter 4 is devoted to a more advanced study of covariant measure-
ments and extreme quantum limits for the accuracy of estimation of phys-
ical parameters. The latter problem becomes important in view of the
progress in experimental physics. We present a uni�ed statistical ap-
proach to “non-standard” uncertainty relations of the “angle-angular mo-
mentum” type. They appear to be related to the quantum analog of
the Hunt-Stein theorem in mathematical statistics. A general conclusion
which can be drawn from Chapter 4 is that the requirements of covariance
and optimality, i.e., extremal quantum accuracy, determine the canoni-
cal measurement of a “shift” parameter, such as angle, coordinate, time,
uniquely up to a “gauge” transformation.

An example of a situation where quantum limitations are important is
provided by optical communication. As it is known, “quantum noise” dis-
torting the signal in the optical range can be much more signi�cant than
the thermal background radiation. As in ordinary communication theory
the problem of signal estimation arises, but now it requires a speci�cally
quantum-theoretic formulation and solution.

Chapter 5 is devoted to the so-called Gaussian states which, in par-
ticular, describe radiation �elds in optical communication theory. The
presentation is intended to make maximal use of the remarkable parallel
with the Gaussian probability distributions. An important role is played
here by quantum characteristic functions.

In Chapter 6 the general inequalities for the measurement mean square
errors are derived, which are quantum analogs of the well-known Cramer-
Rao inequality in mathematical statistics. The best unbiased measure-
ments of the mean-value parameters of a Gaussian state are describ-
ed.

Needless to say, the present book cannot (and is not intended to) re-
place the standard textbooks on quantum mechanics. Most of the impor-
tant topics, such as perturbation theory, are apparently out of its scope.
Nor does it pretend to give a full account of quantum measurements. We
have discussed only those problems which concern measurement statis-
tics and do not require consideration of state changes after measurements.
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The references to the relevant work on “open” quantum systems and
quantum stochastic processes can be found in the comments.

The author’s intention was to write a book accessible to a wide circle
of readers, both mathematicians and physicists. As a result, the presenta-
tion, being in general mathematical, is rather informal and certainly not
“the most economic” from a mathematical point of view. On the other
hand, it neglects some subtleties concerning measurability etc. As a rule
a rigorous treatment can be found in the special papers refered to. The
necessary background for the whole material is knowledge of fundamen-
tals of probability theory. Mathematically the most elementary is Chapter
1 which uses mainly �nite-dimensional linear analysis. The functional
analytic minimum is given in Section 2.1-2.6 of Chapter 2, and a math-
ematically educated reader may just glance over it. On the other hand, a
reader familiar with quantum mechanics can omit the detailed discussion
of such topics as harmonic oscillators and spin in Chapter 3, included
to make the presentation self-contained, and concentrate on less familiar
things.

The Dirac notation is used intensively throughout the book but with
round brackets for the inner product as accepted in mathematical litera-
ture. The angle brackets, associated with the averaging symbol in statis-
tical mechanics, are reserved for the different inner product de�ning the
correlation of a pair of observables. To denote a quantum state as well
as its density operator we use the letter S (not the usual ρ) allied to the
notation P for the classical state (probability distribution).

The author’s thanks are due to Prof. D. P. �Zelobenko and the late Prof.
Yu. M. Shirokov who read the manuscript and made useful comments.

In translating the book the author took the opportunity of improving
the presentation which concerned mainly Chapters 3, 4. Few references
were added. The author is grateful to Prof. Yu. A. Rozanov and Prof.
P. R. Krishnaiah for providing the opportunity of translating this book for
North-Holland Series in Statistics and Probability.



Chapter 1
Statistical models

1.1. States and measurements

Any theoretical model ultimately relies upon experience – the framework
for a model is constituted by the array of experimental data relevant to
the study of the object or phenomenon. Let us consider a very schematic
and general description of an experimental situation and try to trace back
the emergence of the principal components of a theoretical model.

The fundamental reproducibility condition requires at least in principle
the unrestricted possibility of repetition of an experiment. Considering a
sequence of identical and independent realizations of some experimen-
tal situation one always sees that practically the data obtained are not
identically the same but subject to random �uctuations, the magnitude of
which depends on the nature of the experiment and of the object under
investigation.

There exist large classes of phenomena, for example, planetary motion
or constant electric currents, in which these random �uctuations can be
both practically and theoretically ignored. The corresponding theories –
classical celestial mechanics and circuit theory – proceed from the as-
sumption that the parameters describing the object can be measured with
arbitrary accuracy, or, ultimately, with absolute precision. In such cases
the object is said to admit deterministic description. Such a description,
however self-contained it seems to be, is usually only an approximation
to reality, valid in so far as it agrees with the experience.

The fruitfulness of the deterministic point of view in the classical phy-
sics of the 18-19th centuries gave rise to the illusion of its universality.
However, with the penetration of experimental physics into the atomic
domain the inapplicability of the classical deterministic approach and the
relevance of statistical concepts in this domain became more and more
evident. The behavior of atomic and subatomic objects is essentially
probabilistic; an ordinary way to extract information about them is to
observe a large number of identical objects to obtain statistical data. The
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interested reader can �nd about the experimental evidence for statisti-
cal description in microphysics, which is now generally accepted, in any
contemporary tract on quantum physics.

The possibility of statistical description presumes the ful�lment of the
following statistical postulate, incorporating the previous requirement of
reproducibility: the individual results in a sequence of identical, indepen-
dent realizations of an experiment may vary, but the occurrence of one or
another result in a long enough sequence of realizations can be charac-
terized by a de�nite stable frequency. Then, abstracting from the practi-
cal impossibility of performing an in�nite sequence of realizations, one
can adopt that the results of the experiment are theoretically described by
the probabilities of various possible outcomes. More precisely, we must
distinguish an individual realization of the experiment which results in
some concrete outcome from the experiment as a collection of all its pos-
sible individual realizations. In this latter sense, the �nal results of the
experiment are theoretically described by probability distributions. The
deterministic dependence of the experimental results on the initial condi-
tions is replaced by the statistical one: the function of the initial data is
now the output probability distribution.

As an example consider a beam of identical independent particles
which are scattered by an obstacle and then registered by a photographic
plate, so that an individual particle hitting the plate causes a blackening
of the emulsion at the place of the collision. Exposing a beam which con-
sists of a large enough number of particles will result in a photographic
picture giving the visual image of the probability density for the point at
which an individual particle hits the plate. The natural light is the chaotic
�ow of an immense number of speci�c corpuscules – the photons. The
well-known optical diffraction pictures present the images of the proba-
bility density of an individual photon scattered by an aperture.

Of course, the statistical description is by no means subject to atomic
or subatomic phenomena. When investigating a system which consists
of a large number of components (e.g., a gas or a liquid) the experi-
menter has at his disposal only a very restricted set of parameters to vary
(say, pressure, volume or temperature). An immense number of param-
eters, giving a detailed description for the behavior of subsystems of the
system are out of control; their uncontrolled changes may substantially
in�uence the results of measurements. A study of these �uctuations is
essential for understanding the mechanisms of phenomena occurring in
large systems. The statistics of observations is most important in prob-
lems of information transmission, where the �uctuations in the physical
carriers of information are the source of various “noises” distorting the
signal.
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The statistical approach is often appropriate in biometrical research. In
studying the effect of a medicine, a physician can take into account a lim-
ited number of parameters characterizing his patients such as age, blood
group etc. However the effect of the treatment in each individual case will
depend not only on these “integral” parameters, but also on a number of
other internal factors which were not, or could not be taken into account.
In such cases the dependence of the effect on the “input parameters” is
not deterministic and often can be successfully described statistically.

These two examples show that the origin of �uctuations in results of
measurement may be uncertainty in the values of some “hidden vari-
ables” which are beyond the control of the experimenter. The nature
of randomness in atomic and subatomic phenomena is still not so clear,
though the relevance of the statistical approach is con�rmed here by more
than half a century experience of applications of quantum theory. We
shall not touch here the issues concerning the nature of randomness in
microscopic phenomena, but we shall comment on some mathematical
aspects of the relevant “problem of hidden variables” in the Supplement.
The main attention we shall pay here to the consequences of the statistical
postulate irrespective of the nature of the object under consideration. We
shall see that already on this very general level the notions of the state and
the measurement arise, which play a basic role, in particular, in quantum
theory.

In any experiment one can distinguish the two main stages. At the
�rst stage of preparation a de�nite experimental set-up is settled, some
initial conditions or “input data” of the experiment are established. At the
following stage of the experiment the “prepared” object is coupled to a
measuring device, resulting in these or the other output data (Figure 1.1).

Conventionally, one may conceive the object as a “black box” at the “in-
put” of which one can impose some initial conditions S̃. After the object
has been de�nitely prepared, some measurement is performed, resulting
in the output data u. These data may be of arbitrary nature; they may be
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discrete if the measuring device registers the occurrence of some events,
e.g., the presence or absence of some particles; they may be represented
by a scalar or vector quantity, if the measuring device has one or several
scales; at last the result of a measurement may be a picture of a whole
trajectory, as in a bubble chamber. To give a uniform treatment for all
these possibilities we assume that the outcomes of measurement form a
measurable space U with the σ -�eld of measurable subsets A (U ). In
the concrete cases we shall deal with, U will be usually a domain in the
real n-dimensional space Rn with the Borel σ -�eld generated by open
sets (or by multi-dimensional intervals). A measurable subset B ⊂ U
corresponds to the event: the result of the measurement u lies in B.

According to the statistical postulate, a result of an individual mea-
surement can be considered as a realization of a random variable taking
values in U . Let μS̃(du) be the probability distribution of this random
variable. The subscript S̃ re�ects the dependence of the statistics of the
measurement upon the preparation procedure, i.e., the initial conditions
of the experiment, so that

μS̃(B) = Pr{u ∈ B|S̃}, B ∈ A (U )

is the conditional probability of obtaining a result u ∈ B under the initial
condition S̃. The map S̃ → μS̃(du) gives a complete statistical descrip-
tion for the results of the measurement. It should be stressed, however,
that such a description does not contain indications either on a concrete
mechanism of the measurement, or on its consequences for the object.
From this point of view one should not distinguish between the measur-
ing procedures giving the same statistics μS̃ under the same condition S̃
however different their practical implementation may be. Thus the map
S̃ → μS̃ refers to this whole class of measuring procedures.

Similarly the initial conditions S̃1 and S̃2 are indiscernible from the
point of view of the results of measurements if μS̃1

= μS̃2
for any map

S̃ → μS̃ describing a measurement. We shall join the indiscernible
preparation procedures S̃ in the equivalence classes S = [S̃] which will
be called states. Denote by S the set of all possible states. Since the
probability distribution μS̃ is the same for all S̃ from the class S, it is a
function of classes, μS̃ = μS . The map S → μS transforming states
S ∈ S into the probability distributions on the space of outcomes U will
be called a measurement (with values in U ).

The set S and the maps S → μS enjoy an important structural prop-
erty. Let {Sα} be a �nite collection of states. Consider an in�nite se-
quence of individual experiments in each of which the object is prepared
in some of the states Sα, the occurrence of different values of α being
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characterized by a probability distribution {pα}. This may re�ect �uc-
tuations in the values of some parameters in the preparation procedure.
Let one and the same measurement be performed in each individual ex-
periment. Then by the statistical postulate and the elementary properties
of probabilities the occurrence of an outcome u will be described by the
probability distribution μ(du) =∑

α pαμSα
(du). The situation described

above can be considered as a special way of state preparation (mixing)
when the value of the parameter α is not �xed but is chosen according to
the prior distribution {pα}. Denoting such “mixed” state by

S = S({Sα}, {pα}) (1.1.1)

we have for any measurement S → μS

μS(du) =
∑

a

pαμSα
(du). (1.1.2)

Thus, we are led to adopt that for any �nite set of states {Sα} ⊂ S and
any probability distribution {pα} there is uniquely de�ned “mixed” state
S({Sα}, {pα}), which is characterized by (1.1.2). Then it turns out that
the set of the states can be naturally identi�ed with a convex set in a
linear space, such that S({Sα}, {pα}) =∑

α pα Sα. The exact formulation
requires some knowledge in convexity presented in the next section.

1.2. Some facts about convex sets

Let S1, . . . , Sn be the elements of a linear space L, and p1, . . . , pn a set
of real numbers satisfying

p j ≥ 0, j = 1, . . . , n;
n∑

j=1

p j = 1,

i.e., a �nite probability distribution. Then the element

S =
n∑

j=1

p j S j

is called a convex combination of Sj with the coef�cients (weights) {p j }.
The convex hull of a set K ⊂ L is the collection of all convex com-
binations of all �nite subsets {Sj } ⊂ K. A set S is called convex if it
coincides with its convex hull, i.e., if it contains convex combination of
any �nite subset of its elements. For two elements S0, S1, their convex
combinations form the segment [S0, S1]:

{S : S = p0S0 + p1S1; p0, p1 ≥ 0, p0 + p1 = 1}.
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It is easy to see that the set S is convex if and only if together with any
two elements S0, S1, it contains the segment [S0, S1].

An abstract set S is called mixture space if there is a rule by which
to any �nite unordered collection {Sα} of elements of S and any �nite
probability distribution {pα} there corresponds a unique element S({Sα},
{pα}) ∈ S called the mixture of the states Sα with weights pα. It is as-
sumed that mixing the collection consisting of copies of one and the same
element S0 gives again S0, i.e., if Sα ≡ S0 for all α, then S({Sα}, {pα}) =
S0. An example of mixture space is a convex set with the convex combi-
nation as the mixture.

Let F be a map from a mixture space S into a linear space. The map
is called af�ne if for any mixture S({Sα}, {pα})

F(S({Sα}, {pα})) =
∑

α

pα F(Sα).

The set of af�ne maps is nonempty, since the map which sends any S ∈ S
into a constant vector b is af�ne. Clearly, the image of a convex set under
an af�ne map is again convex. In linear space there is a close connection
between af�ne and linear maps: namely, any af�ne map F of a convex set
S ⊂ L has the form F(T ) = A(T )+b, T ∈ S, where A is a linear map
de�ned on L. In particular, any af�ne functional (i.e., map with values
on the real line R) is up to an additive constant a restriction to S of a
linear functional on L.

A mixture space is called separated if for any two S1, S2 ∈ S there is
an af�ne functional ϕ on S such that ϕ(S1) �= ϕ(S2).

An example of a separated mixture space is the set of states of Sec-
tion 1.1. Indeed, for any measurement S → μS and any subset B ∈
A (U ) the functional S → μS(B) is af�ne by (1.1.2). By construction,
for any two states S1 and S2 there exists a measurement S → μS such
that μS1 �≡ μS2 , i.e., μs1(B) �= μS2(B) for some B. The following sim-
ple statement shows that the set of states can be considered as a convex
subset in a linear space, with the convex combinations as mixtures.

Proposition 1.2.1. For any separated mixture space S there is a one-to-
one af�ne map of S onto a convex subset of a linear space.

Proof. Let A(S) be the linear space of all af�ne functional on S and
L = A(S)′ the dual space of all linear functionals on A(S). For each
S ∈ S introduce Ŝ ∈ L, putting

Ŝ(ϕ) = ϕ(S), ϕ ∈ L.



7 Probabilistic and Statistical Aspects of Quantum Theory

The map S→ Ŝ is af�ne, since∑
j

p j Ŝ j (ϕ) =
∑

j

p jϕ(Sj ) = ϕ(S({Sj }, {p j }))

= Ŝ({Sj }, {p j })(ϕ),

and it is one-to-one since Ŝ1(ϕ) = Ŝ2(ϕ) implies ϕ(S1) = ϕ(S2) for all
af�ne functionals ϕ. This proves the proposition.

The most simple example of a convex set in an n-dimensional simplex,
which is de�ned as a convex hull of n + 1 points S0, . . . , Sn in a space
of dimension ≥ n, such that vectors S0S1, . . . , S0Sn are linearly indepen-
dent. For n = 1 this is a segment, for n = 2 a triangle, for n = 3 a
tetrahedron (Figure 1.2). The points S0, . . . , Sn are the vertices of the
simplex.

The basic role in the theory of convex sets plays the notion of extreme
point. The point S is an extreme point of a convex set S, if it is not an
interior point of a segment, lying completely in S; that is, it cannot be
represented in the form S = p0S0+ p1S1, where p0, p1 > 0, p0+ p1 = 1;
S0, S1 ∈ S and S0 �= S1. For example, the extreme points of a simplex are
its vertices. In a �nite-dimensional space the following statement holds.

Theorem 1.2.2. Any compact (i.e., bounded and closed) set S coincides
with the convex hull of the set of its extreme points.

In general, there may be several ways to represent a point S of a convex
set S as a convex combination of extreme points. The representation is
unique for any point S ∈ S if and only if S is a simplex.

Theorem 1.2.2, the de�nition and the characteristic property of a sim-
plex can be generalized also to the in�nite-dimensional case, but a care-
ful treatment of these problems would require much more space; on the
other hand, the �nite-dimensional picture presented above will suf�ce for
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understanding the following sections. Therefore we consider only one
in�nite-dimensional example, which we shall substantially need later.

Let P(�) be the collection of all probability distributions on a mea-
surable space �. This set is convex, since any “mixture” of probability
distributions Pj (dω) is again a probability distribution on �

P(A) =
∑

j

p j Pj (A), A ∈ A (�).

To any point ω ∈ � there corresponds the δ-distribution, concentrated at
ω,

δω(A) =
{

1, A 
 ω,

0, A �
 ω.

We shall suppose, without loss of generality, that the σ -�eld A (�) sep-
arates points of �, i.e., for any two ω1, ω2 ∈ � there is A ∈ A (�) such
that ω1 ∈ A; ω2 /∈ A. Then the correspondence ω → δω is one-to-one.
The δ-distributions are precisely the extreme points of P(�). For any
P ∈ P(�)

P(A) =
∫

�

δω(A)P(dω), A ∈ A (�). (1.2.3)

This representation is a continual analog of a �nite convex combination
with respect to extreme points, the role of weights p j is played by the
probability distribution P(dω). The representation (1.2.3) is unique; so
that the convex set P(�) has the property, characteristic of a simplex in
the �nite-dimensional case, and we shall keep this name for P(�).

If the space � consists of n points, � = �n (A (�n) being the Boolean
�eld of subsets of �n), the set

Pn =
{

P = [p1, . . . , pn] : p j ≥ 0,

n∑
j=1

p j = 1

}
is clearly an (n−1)-dimensional simplex with the vertices [1,0,. . . ,0], . . .,
[0, . . . , 0, 1]. It will be convenient for us to represent P by the diagonal
n × n-matrix

P =
⎡⎢⎣p1 0

. . .

0 pn

⎤⎥⎦ .

Then the characteristic properties of P take the form

P ≥ 0, Tr P = 1, (1.2.4)

where Tr denotes the trace, i.e., the sum of diagonal elements of a matrix.
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If X is a random variable on �n with the values x1, . . . , xn , then putting

X =
⎡⎢⎣x1 0

. . .

0 xn

⎤⎥⎦
we get that the expectation of X with respect to the probability distribu-
tion P is equal to

n∑
j=1

p j x j = Tr P X. (1.2.5)

Consider the set On of random variables, satisfying 0 ≤ x j ≤ 1, i.e.,

0 ≤ X ≤ I (1.2.6)

where I is the unit n × n-matrix. Then On is a convex set – a unit hyper-
cube, the extreme points being its vertices, represented by the matrices X
for which x j is either 0 or 1. Such matrices satisfy X2 = X , so that the
extreme points of On are the idempotent (projection) matrices.

This elementary consideration leads naturally to the following con-
struction which is of principal interest in connection with quantum theory.
We can consider (complex) n × n-matrices as operators acting in the n-
dimensional unitary space H of column-vectors ϕ = [ϕ1], ψ = [ψ1], . . .
The inner product of ϕ and ψ is de�ned by: (ϕ|ψ) = ∑

ϕ jψ j . We
shall use Dirac’s notation |ϕ), |ψ), . . . for column-vectors ϕ, ψ, . . . and
(ϕ|, (ψ |, . . . for the Hermitean conjugated row-vectors ϕ∗, ψ∗, . . . The
symbol for the inner product is then simply a graphic junction of symbols
for the factors (ϕ| and |ψ). The “outer” product |ψ)(ϕ| is then the n× n-
matrix with the components [ψ jϕk]. If ψ is the unit vector, (ψ |ψ) = 1,
then Sψ = |ψ)(ψ | is the matrix of the (orthogonal) projection on the
vector ψ .

The �nite-dimensional spectral theorem says that for any Hermitean
n×n-matrix X there is a complete orthonormal system of vectors {e j ; j =
1, . . . , n}, in which X has the diagonal form

X =
n∑

j=1

λ j |e j )(e j |, (1.2.7)

where λ j are the eigenvalues of X , which are real. It follows that e j is an
eigenvector of X corresponding to the eigenvalue λ j .

In (1.2.7) the λ j ’s are not necessarily different. Denote by x1, . . . , xm

(m ≤ n) the distinct eigenvalues of X numbered in the increasing order,
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and by Ek = ∑ |e j )(e j | (the sum extends over all e j belonging to λk)
the matrix of projection onto the invariant subspace of X , correspond-
ing to the eigenvalue λk . Then we have a different form of the spectral
representation

X =
m∑

k=1

xk Ek . (1.2.8)

Consider the set Sn of all Hermitean n× n-matrices S = [s jk] satisfying
the conditions

S ≥ 0, Tr S = 1, (1.2.9)

which have the same form as (1.2.4). By the �nite-dimensional spectral
theorem

S =
n∑

j=1

λ j Sψ j , (1.2.10)

where λ j are the eigenvalues of S, and Sψ j = |ψ j )(ψ j | are the mutu-
ally orthogonal projections on the unit eigenvectors of S. The condition
(1.2.7) implies that the eigenvalues of S ∈ Sn constitute a probability
distribution

λ j ≥ 0,

n∑
j=1

λ j = 1.

In particular, 0 ≤ λ j ≤ 1 and (1.2.10) implies

S − S2 =
n∑

j=1

λ j (1− λ j )Sψ j ≥ 0,

with the sign of equality attained if and only if S = Sψk for some ψk , i.e.,
if S is a one-dimensional projection.

Proposition 1.2.3. The set Sn in convex, its extreme points being pre-
cisely one-dimensional projections.

Proof. The �rst part of the statement follows from the fact that the condi-
tions (1.2.9), de�ning Sn sustain forming convex combinations. To prove
that any one-dimensional projection S is an extreme point of Sn , assume
that

S = p0S0 + p1S1;
p0, p1 > 1, p0 + p1 = 1.
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Taking square of this equality, subtracting and using the inequality S ≥
S2 for S ∈ Sn , we obtain

S − S2 = p0(S0 − S2
0)+ p1(S1 − S2

1)+ p0 p1(S0 − S1)
2

≥ p0 p1(S0 − S1)
2.

Since S is a one-dimensional projection, then S = S2, which implies that
S0 = S1. Therefore S is an extreme point.

To prove the converse consider the spectral representation (1.2.10).
Since Sψ j ∈ Sn and Sψ j �= Sψk for j �= k, then for an extreme point
S of Sn the sum (1.2.10) can have only one nonzero term. Therefore
S = Sψ j for some ψ j , which proves the proposition.

The relation (1.2.10) is one of many possible representations of S as a
convex combination of the extreme points.

We consider also the convex set Xn of all Hermitean n × n-matrices
X , satisfying (1.2.6), and show that the extreme points of this set are the
(orthogonal) projections, i.e., (Hermitean) matrices satisfying X2 = X .
The proof of the statement that every projection is an extreme point is the
same as in Proposition 1.2.3. To prove the converse, write the spectral
decomposition of the matrix X in the form (1.2.8) with 0 ≤ xk ≤ 1
where xk are the distinct eigenvalues of X , Ek is the projection onto the
invariant subspace of X , corresponding to the eigenvalue xk . Since x1 <

· · · < xm , then using in (1.2.8) the Abel transform and taking into account
the equality E1 + · · · + Em = I , we have

X = (1− x1) · 0+
m−1∑
k=1

(xk − xk+1) · E ′k + xm · I,

where E ′k = E1 + · · · + Ek . Since the projections 0, I and E ′k belong
to Xn and the coef�cients are nonnegative and sum to 1, then this is a
convex combination of distinct projections. If X is an extreme point,
then the sum can have only one nonzero term, and the matrix X must be
a projection.

The difference between the sets Pn and Sn (correspondingly, between
On and Xn) is that in the latter case we consider all Hermitean matrices,
satisfying (1.2.9) (correspondingly (1.2.6)), while in the former case only
the diagonal matrices. We could consider as well a commuting family of
matrices which can be simultaneously diagonalized. Therefore the latter
case may be called the “noncommutative” analog to the former; de�ning
the mean value by (1.2.5) one may treat S ∈ Sn as a “noncommutative
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probability distribution”, and a Hermitean matrix X as a “noncommuta-
tive random variable”. We shall see this connection to be deeper than a
pure formal analogy.

We took the complex matrices because of their relevance to quantum
theory, but the real matrices can be treated similarly.

At the end of this section we consider in some detail the structure of
the convex set Sn in the simplest “noncommutative” case, n = 2. Any
matrix S ∈ S2 can be represented as

S = 1

2

[
1+ θ3 θ1 − iθ2

θ1 + iθ2 1− θ3

]
, (1.2.11)

where θ1, θ2, θ3 are the real numbers called the Stokes parameters. The
condition S ≥ 0 is equivalent to the inequality θ2

1 + θ2
2 + θ2

3 ≤ 1. Thus,
S2 as a convex set can be represented by the unit ball in the three-
dimensional real vector space; the extreme points are the matrices for
which the vector [θ1, θ2, θ3] lies on the sphere θ2

1 + θ2
2 + θ2

3 = 1.
If n > 2, then the set Sn is a proper subset of the unit ball in the

(n2 − 1)-dimensional real vector space, and it cannot be represented so
explicitly.

1.3. De�nition of a statistical model

Motivated by consideration in Section 1.1, we de�ne a statistical model1

as a pair (S,M) where S is a convex set and M is a class of af�ne maps
of S into the collections of probability distributions on some measurable
spaces U . The elements of S are called states, and the elements of M
measurements. The problem of theoretical description of an object or a
phenomenon satisfying the statistical postulate can then be described as
a problem of construction of an appropriate statistical model. In more
detail, the construction must �rst give a mathematical description of the
set S of theoretical states and the set M of theoretical measurements and
second, prescribe the rules for correspondence between the real proce-
dures of preparation and measurement and the theoretical objects, i.e., an
injection of the experimental data into the statistical model.

The probability theory and statistics deal with the models in which the
set of the states S has the speci�cally simple structure. The statistical
model of quantum theory is drastically different. We shall consider these
models in detail in the following sections.

1 The concept of statistical model will be considered in the Supplement in greater detail.
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In this chapter we shall often simplify our consideration by using only
the measurements with a �nite number of outcomes. In such a case
the space U is �nite and the probability distribution of the results of the
measurement is described by a �nite collection of real af�ne functionals
{μS(u); u ∈ U } on S, satisfying

μS(u) ≥ 0, u ∈ U ;
∑
u∈U

μS(u) = 1. (1.3.12)

Here μS(u) is the probability of the result u when the state is S. For any
B ⊂ U

μS(B) =
∑
u∈B

μS(u).

Technically this case is much simpler than the continual one, being still
suf�cient to expose the essential features of the theory. In practice such
measurements correspond to the procedures resulting in some classi�ca-
tion of the data. Furthermore, one can easily imagine a �nitely-valued
approximation of a measurement with a continual space of the outcomes
U by making a partition of U into a �nite number of “small” pieces.

A two-valued measurement is called a test. Denoting one of the results
of the test by 0, and the other by 1 we get that any test can be described
by de�ning only one function on S, say μS(1), the probability of getting
1, since μS(0) = 1−μS(1). The probability μS(1) is an af�ne functional
on S satisfying 0 ≤ μS(1) ≤ 1.

Let S → μS(du) be a measurement with an arbitrary space of results
U . Then to any B ∈ A (U ) there corresponds the test S → {μS(B),
μS(B)}, the result of which is 0 if u ∈ B and is 1 if u ∈ B. (B denotes
the complement of the set B). Thus, any measurement can be considered
as a collection of tests (satisfying apparent compatibility conditions).

1.4. The classical statistical model

We have seen in Section 1.1 that the notion of state refers to the initial
conditions of the experiment. Here we shall adopt that these conditions
can be formally described by the points ω of some set �, which will be
called phase space.

To take into account the possibility of variations in the initial data dur-
ing the repetitions of an experiment, or uncertainties in some parameters
in the preparation procedure we shall consider also the probability distri-
butions on �. To do this we must accept that � is a measurable space
with a σ -�eld A (�); we assume that A (�) separates the points of �.

Any probability distribution P on � will be called classical state. It
should be interpreted as a statistical description of the preparation stage.
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To any ω ∈ � corresponds the pure state described by the δ-distribution
δω(A), A ∈ A (�). According to Section 1.2 the collection P(�) of all
classical states is the convex set of the most simple structure, the simplex,
and the pure states are its extreme points.

A measurement with values in U is described by an af�ne map

P → μP(du) (1.4.13)

which transforms the set of classical states P(�) into the set of prob-
ability distribution P(U ). Denote by Mω(du) the probability distribu-
tion of the given measurement with respect to a pure state δω, so that
Mω(du) = μδω

(du), and consider the mixture of the pure states

P(dω) =
∑

α

pαδωα
(dω).

Since (1.4.13) is af�ne, the probability distribution of the results with
respect to this state will be given by

μP(B) =
∫

Mω(B)P(dω), B ∈ A (U ). (1.4.14)

Under some additional assumptions this relation will be valid for any
classical state P . We shall not discuss this question and simply restrict
our attention to measurements P → μP , which have the form (1.4.14)
where Mω(du) is a conditional probability distribution on U 2. While P
describes the uncertainty in the initial conditions of the experiment, the
probability distribution Mω(du) characterizes the disturbance due to the
measuring device. The relation (1.4.14) shows how these two sources
of uncertainty enter into the overall measurement statistics. We shall
denote by M both the conditional probability distribution {Mω(du)} and
the corresponding measurement (1.4.13).

The classical statistical model which we are going to de�ne is based on
the assumption of complete observability, according to which the values
of any parameters of the object can be established with absolute precision.
To give a precise formulation we introduce the following de�nition. The
measurement M = {Mω(du)} is called deterministic if for any ω ∈ �

and B ∈ A (U ) either Mω(B) = 0 or Mω(B) = 1. This means that if
the object is in a pure state, then for any B ∈ A (U ) the result of the

2 This means that for any ω ∈ �, Mω(du) is a probability distribution on U , and for any B ∈A (U ),
Mω(B) is a measurable function of ω.
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measurement u is either in B or not in B with probability 1. This can be
written in the following form

Mω(B)2 = Mω(B), B ∈ A (U ). (1.4.15)

The nature of this condition can be made clear by discussing �nitely-
valued measurements. LetM = {Mω(u); u ∈ U } be such a measurement,
where Mω(u) is the probability of the outcome u if the object is in the
pure state δω. These probabilities satisfy

Mω(u) ≥ 0,
∑

u

Mω(u) = 1; ω ∈ �. (1.4.16)

If M is deterministic measurement, then Mω(u) is equal to either 0 or 1.
Introducing the indicator of a set F ⊂ � as the function 1F(ω), which
is equal to 1 on F and 0 outside F , we have Mω(U ) = 1�(u)

(ω), where
�(u) = {ω : Mω(u) = 1}. It follows from (1.4.16) that the sets �(u) for
different values of u do not intersect, and the union of all �(u) is equal to
�; this is expressed by saying that the sets {�(u)} form a decomposition
of the set �. Therefore for any ω there is a unique u = u(ω) such that
Mω(u(ω)) = 1. For any B ⊂ U

Mω(B) =
∑
u∈B

Mω(u) = 1B(u(ω)). (1.4.17)

The function ω → u(ω) is a random variable on � with values in U ;
the relation (1.4.17) establishes the one-to-one correspondence between
the deterministic measurements and the random variables with values in
U . To make this connection more transparent consider a random variable
X (ω) on � taking values in a �nite subset {x} of the real line R. Let �(x)

be the subset of � on which X (ω) is equal to x , then

X (ω) =
∑

X

x · 1�(x)
(ω) =

∑
x

x Mω(x). (1.4.18)

Thus, to the random variable X there corresponds the unique determinis-
tic measurementM = {Mω(x)} such that X takes a value x if and only if
x is the result of the measurementM.

The case of continuous random variables is technically much more
involved but the conclusion is essentially the same: under some regular-
ity conditions the relation (1.4.17) establishes the one-to-one correspon-
dence between the random variables and the deterministic measurements.

We can now formalize the requirement of the complete observability
by adopting the following de�nition. The classical statistical model is a


