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Preface

One may say that the history of hypergeometric functions started practically
with a paper by Gauss (cf. [Gau]). There, he presented most of the prop-
erties of hypergeometric functions that we see today, such as power series,
a differential equation, contiguous relations, continued fractional expansion,
special values and so on. The discovery of a hypergeometric function has
since provided an intrinsic stimulation in the world of mathematics. It has
also motivated the development of several domains such as complex functions,
Riemann surfaces, differential equations, difference equations, arithmetic the-
ory and so forth. The global structure of the Gauss hypergeometric function
as a complex function, i.e., the properties of its monodromy and the analytic
continuation, has been extensively studied by Riemann. His method is based
on complex integrals. Moreover, when the parameters are rational numbers,
its relation to the period integral of algebraic curves became clear, and a fasci-
nating problem on the uniformization of a Riemann surface was proposed by
Riemann and Schwarz. On the other hand, Kummer has contributed a lot to
the research of arithmetic properties of hypergeometric functions. But there,
the main object was the Gauss hypergeometric function of one variable.

In contrast, for more general hypergeometric functions, including the case
of several variables, the question arises: What in fact are hypergeometric func-
tions ¢ Since Gauss and Riemann, many researchers tried generalizing the
Gauss hypergeometric function. Those which are known under the names of
Goursat, Pochhammer, Barnes, Mellin, and Appell are such hypergeometric
functions. Although these functions interested some researchers as special
objects, they didn’t attract many researchers and no significant result came
about. If anything, those expressed with the aid of some properties of hy-
pergeometric functions appeared interestingly in several situations, either in
partial or another form. The orthogonal polynomials studied in Szegd’s book,
several formulas that we can find everywhere in Ramanujan’s enormous note-
books, spherical functions on Lie groups, and applications to mathematical
physics containing quantum mechanics, are such examples. Simply, they were
not considered from a general viewpoint of hypergeometric functions.
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In this book, hypergeometric functions of several variables will be treated.
Our point of view is that the hypergeometric functions are complex integrals
of complex powers of polynomials. Most of the properties of hypergeometric
functions which have appeared in the literature up to now can be reconsidered
from this point of view. In addition, it turns out that these functions establish
interesting connections among several domains in mathematics.

One of the prominent properties of hypergeometric functions is the so-
called contiguity relations. We understand them based on the classical paper
by G. D. Birkhoff [Birl] about difference equations and their generalization.
This is an approach treating hypergeometric functions as solutions of differ-
ence equations with respect to shifts of parameters, and characterizing by
analysis of asymptotic behaviors when the parameters tend to infinity. One
sees a relation between the Padé approximation and the continued fractional
expansion. For this purpose, we use either analytic or algebraic de Rham
cohomology (twisted de Rham cohomology) as a natural form of complex
integrals. In Chapter 2, several relations satisfied by hypergeometric func-
tions will be derived and explained in terms of twisted de Rham cohomology.
There, the reader may notice that the excellent idea due to J. Hadamard
about a “finite part of a divergent integral” developed in his book [Had] will
be naturally integrated into the theory. In Chapter 4, we will construct cycles
via the saddle point method and apply the Morse theory on affine varieties
to describe the global structure of an asymptotic behavior of solutions to
difference equations.

Another prominent feature is a holonomic system of partial differential
equations satisfied by hypergeometric functions, in particular, an infinitesimal
concept called integrable connection (the Gauss—Manin connection) that has
a form of partial differential equations of the first order, and a topological
concept called monodromy that is its global realization. The latter means to
provide a linear representation of a fundamental group, in other words, a local
system on the underlying topological space. But here, what is important is not
only the topological concept but the mathematical substance that provides it.
Hypergeometric functions provide such typical examples. As a consequence,
they also help us understand the fundamental group itself.

We will treat complex integrals of complex powers of polynomials, but
the main point is not only to state general theorems in an abstract form
but also to provide a concrete form of the statements. In Chapters 3 and 4,
for linear polynomials, concrete formulas of differential equations, difference
equations, integral representations, etc. will be derived, applying the idea
from the invariant theory of general linear groups.

In the world surrounding hypergeometric functions, there are several sub-
jects studying power series, orthogonal functions, spherical functions, dif-
ferential equations, difference equations, etc. in a broad scope such as real
(complex) analysis, arithmetic analysis, geometry, algebraic topololgy and
combinatorics, which are mutually related and attract researchers. This book
explains one such idea. In particular, micro-local analysis and the theory of
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holonomic D-modules developed in Japan provided considerable impacts.
In Chapter 3 of this book, we will treat a holonomic system of Fuchsian
partial differential equations over Grassmannians satisfied by the hypergeo-
metric functions, introduced by Gelfand et al., defined as integrals of complex
powers of functions as described above. But there, we will explain them only
by concrete computations. For a general theory of D-modules, we propose
that the reader consult the book written by Hotta and Tanisaki® in this se-
ries. Here, we will not treat either arithmetic aspects or the problem of the
uniformization of complex manifolds. There are also several applications to
mathematical physics such as conformal field theory, and solvable models in
statistical mechanics. For these topics, the reader may consult Appendix D
and the references in this book.

If this book serves as the first step to understanding hypergeometric func-
tions and motivate the reader’s interest towards further topics, we should say
that our aim has been accomplished.

We asked Toshitake Kohno to write Appendix D including his recent result.
We express our gratitude to him.

Lastly, our friends Takeshi Sasaki, Keiji Matsumoto and Masaaki Yoshida
gave us precious remarks and criticisms on this manuscript. We also express
our gratitude to them.

June, 1994. Kazuhiko Aomoto
Michitake Kita

1 The translation is published as [H-T-T].
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Preface to English Edtion

After the publication of the original Japanese edition, hypergeometric
functions attracted researchers both domestic and abroad, and some as-
pects are now fairly developed, for example in relation to arrangement of
hyperplanes, conformal field theory and random matrix theory. Some related
books have also been published: those by M. Yoshida [Yos3]|, which treats
the uniformaization via period matrix, by M. Saito, B. Sturmfels and N.
Takayama [S-S-T], which treats algebraic D-modules satisfied by hypergeo-
metric functions, and by P. Orlik and H. Terao [Or-Te3], which sheds light
on hypergeometric functions from viewpoint of arrangements of hyperplanes,
are particularly related to the contents of this book.

In this English edition, the contents are almost the same as the original
except for a minor revision. In particular, in spite of its importance, hyper-
geometric functions of confluent type are not treated in this book (they can
be treated in the framework of twisted de Rham theory but the situation be-
comes much more complicated). As for the references, we just added several
that are directly related to the contents of this book. For more detailed and
up-to-date references, the reader may consult the book cited above, etc.

The co-author of this book, who had been going to produce outstanding
results unfortunately passed away in 1995. May his soul rest in peace.

Finally, I am indebted to Dr. Kenji Iohara, who has taken the trouble to
translate the original version into English.

August, 2010. Kazuhiko Aomoto
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Notation

02P(C™):  the space of p-forms with polynomial coefficients
U(u) =[] Pi(w)*, Pj(u) € Cluy, . .., uy]
j=1

D:  the divisor defined by P:= P, --- P,

M :=C"\ D: a variety related to an integral representation of hypergeo-
metric functions

d: the exterior derivative

~  dP
w=dU/U = ;aj?

J
form on M

Ve :=d+wa: the covariant differential operator with respect to w
L,: the complex local system of rank 1 generated by solutions of V,h =0
LY:  the dual local system of L,
0P(xD): the space of rational p-forms having poles along D
27 (log D):  the space of logarithmic p-forms having poles along D
Opr: the sheaf of germs of holomorphic functions on M
Q28 the sheaf of germs of holomorphic p-forms on M

B the sheaf of germs of C*° p-forms on M
KR, the sheaf of germs of currents of degree p on M
S(M): the space of sections of S over M
S.(M): the space of sections with compact support of S over M
HP(M,S): the cohomology with coefficients in the sheaf S
H,(M,L,): the homology with coefficients in the local system L,
Hf;f (M, L,): the locally finite homology with coefficient L,

r:=dim H"(M, L,) = <m; 1)
a lattice L = Z* ‘
e1,...,ep: astandard basis of L e; = (0,...,T,0,...,0),1 <i<Ud.

a completely integrable holomorphic connection



Xvi Notation

¢
v=(v1,...,) € L,y = HVZ',\V| ZI/Z'

|J| =n for a set oflndlces {jl,...,jn}
For x = (z1,...,m¢) € C*, a¥ = ai* -z}
Z: the sum is taken over v € Z&,

(vie) =Ty +¢)/T(7), v+ ¢ ¢ Lo

LY := Homy(L,Z): the dual lattice of L

G(n+1,m+1): Grassmannian of (n + 1)-dimensional subspaces of C™*+!
T0o -+ Tom Tojo -+ Toj,

Forz = | : S, x(o - gn) = det :
Tno - Tom Tnjo *** Tnj,

= Uocjocr<juzmilo -~ Jn) = 0}
En+1,m+ L;ap,...,am) =E(n+1,m+1;a): the system of hypergeo-
metric differential equations of type (n+ 1, m + 1; «)

C[z] = Clz1, ..., zm): the ring of polynomials
C(z) = C(z1,...,2m): the rational function field of z1,. ..,z
C[[z]] = C][[#15- - -, 2m]]: the ring of formal power series
C((z)) = C((z1, ..., 2m)): the ring of formal Laurent series
GL,,(C(z)): the group of the regular matrices of order n with components
in C(2)
GL(C((2))): the group of the regular matrices of order n with components
in C((2))
M, (C(2)):  the algebra of the matrices of order m with components in C(z)
aill *
By = = € GL,(C) »: a Borel subgroup of GL,,(C)
0 Amm
1 *
Unp = A= . € GL,,(C) p: a maximal unipotent Lie subgroup
0 1
of GL,,(C)

Fm :=GLy,(C)/B,, : a flag manifold

Ay = GLp(C)/Uy, :  a principal affine space

A(0;e) ={z € C| |z] <e}: theopen disk of center at the origin with radius
€

Rz,Jz:  the real and imaginary part of a complex number z

argz: an argument of z

G,,:  the mth symmetric group

X(M) :  the Euler characteristic of M

Pz ) = / U-op
¥
T,T;: shift operators



Chapter 1

Introduction: the Euler—Gauss
Hypergeometric Function

The binomial series

(1+x)a:Za(a—l)...(a—n—kl)xn, o] <1

n!
n=0

is the generating function of binomial coefficients (z _olezb-lazntl)

n!

A hypergeometric function can be regarded as a generating analytic function
of more complicated combinatorial numbers which generalizes the binomial
series. By studying its analytic structure, it provides us with information
such as relations among combinatorial numbers and their growth. The aim of
this book is to treat hypergeometric functions of several variables as complex
analytic functions. Hence, we assume that the reader is familiar with basic
facts about complex functions.

I'n)=n—-1)!=1-2-----(n—1),n=1,2,3,- - satisfies the recurrence
formula I'(n + 1) = nI'(n) and I'(1) = 1. Conversely, these two properties
determine I'(n) uniquely. A question arises “Can we extend the function I'(z)
for all z € C?” The answer is “No,” if we do not restrict ourselves to z € Z.
But, if the behavior of I'(z + m) is given as m — 400, I'(2) itself can be
determined by considering I'(z + 1), I'(z +2),--- , ['(z+m), -+ (m € Zxo).
That is, I'(z) can be determined by its behavior at infinity. As a phenomenon
in analysis, it sometimes happens that a function or a vector is determined
by its behavior at infinity. Such a situation is called a limit point and this is
our basic idea to treat hypergeometric functions in this book.

In this Introduction, we shall study basic properties of the Euler—Gauss
hypergeometric functions from several viewpoints. For detailed subjects, we
may refer to the well-known books like [AAR], [Ca], [Erl], [Mag], [O]], [Sh],
[W-W], [Wat] etc. See also [I-K-S-Y] for a historical overview of analytic
differential equations. First, we start from an infinite-product representation
of the I'-function.

K. Aomoto et al., Theory of Hypergeometric Functions, Springer Monographs 1
in Mathematics, DOI 10.1007/978-4-431-53938-4_1, © Springer 2011



2 1 Introduction: the Euler—Gauss Hypergeometric Function

1.1 I'-Function

1.1.1 Infinite-Product Representation Due to Euler

Consider a meromorphic function ¢(z) over C satisfying the difference
equation

plz+1) =zp(z), zeC. (1.1)
From this, we obtain
p(z) =27 p(z +1) (1.2)
=2 tz+ 1) (24 N=1)"tp(z + N),

for any natural number N. Take the limit N +— 4o00: if we assume that an
asymptotic expansion of ¢(z) as |z| — +o0 has the form

o(z) = e *2*72(2m)? {1 +0 <i> } (1.3)

2]

in the sector —7 +6 < argz < 7 —0 (0 < 0 < §) (here O (ﬁ), called

the Landau symbol, is a function asymptotically at most equivalent to ﬁ),
applying (1.3) to ¢(z + N), we obtain

o(2) = (27)2 N'l_ig_looz_l(z +1)7! (1.4)

ez N=1) e N+ N)#+N=3

Now, an asymptotic expansion of the I'-function ¢(z) = I'(z) as Rz — +oo
is given by the Stirling formula ([W-W] Chapl2 or [Er2])

I'(z) :e—zzz—%(zw)%{1+é+m}, (1.5)

—rT+d<argz<m—0.

In particular, we have
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(24 N)*HN=h = N=+N=3 (1+i)Z+N_% (1.7)
1 1
= N*tN=3¢7 (1 ~=1)-
w(vo(s))
By the formula
m (1424 +—— —logN) = (1.8)
N o 2 N_1 ®%)77 '

(v is Euler’s constant), the right-hand side of (1.4) becomes

2m)7 lim 2 'z+1)"' (2 + N=1)"te > Nz + N)*tN-2 (1.9)

Ni—+o00
—1
: F(N) z —vz - z —=
— i o N e L (g ) e =16,
I1 (= +3J) =1
J=0

which coincides with an infinite-product representation of I'(z).

1.1.2 I'-Function as Meromorphic Function

Similarly, if a meromorphic solution 1 (z) of the difference equation (1.1) has
an asymptotic expansion as |z| — 400

P(z) = e *(—2)* 2™V (2m) "2 {1 +0 <|17|>} (1.10)
in the sector § < argz < 2w — §, by the formulas
P(z) =(z—1)---(z = N)¢(z = N), (1.11)
iz N _ ni4e-N [ Z 3tz=N
(N — 2) =N (1 N)

1 1
:N§+z—N z (1 -
“(reo(x)

we obtain
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W(z) = e VeV 12 H (1 - 5) 7 (1.12)
j=1

eﬂ\/ju
ri-—z)

In this way, the function e™~1#/I'(1 — z) can be characterized as a mero-
morphic solution of (1.1) having the asymptotic behavior (1.10).

1.1.3 Connection Formula

Now, the ratio P(z) = 1(z)/¢(z) is a periodic function satisfying P(z+1) =
P(z) that can be expressed by the Gauss formula
T —1z

P2)= — = VIR (1.13)

() I(1—2) T
_ 627”/_122 H <1 _ _2> .
j=1 J

The relation

¥(z) = P(2)p(2) (1.14)

provides a linear relation between two solutions of (1.1) that each of them has
an asymptotic expansion as Rz — 400 or —oo, called a connection relation,
and the problem to find this relation is called a connection problem, and P(z)
is called a connection coefficient or a connection function. Any connection
function is periodic.

1.2 Power Series and Higher Logarithmic Expansion

1.2.1 Hypergeometric Series

Consider the convergent series

2 F1(a, B,7;0) = ZM

n
< (vin)n! g% y#0,-1,-2,...  (1.15)
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on the unit disk A(0;1) = {z € C;|z| < 1} ((a; n)=ala+1) - (a+n-1),
the Pochhammer symb011>. Here and after, we abbreviate o F;(a, 3,7v; x) as

F(a, B,7;x), which is called the Euler—Gauss hypergeometric function, or
simply Gauss’ hypergeometric function. Setting G = =y, we get

F(o, 8, 8;2) = Z (a;n)x” =(1-z)"7

n!
n=0

and the specialization « = 8 =1, 7 = 2 yields
F(1,1,2;x) ix_: log(1 — z).
—n

Moreover, setting a = v = 1 and taking the limit 5 +— oo, we obtain an
elementary analytic function

z
e =1lim F(1,6,1;= ).
i 7 (10,15

1.2.2 Gauss’ Differential Equation

= F(«, 8,; ) satisfies the following second-order Fuchsian linear differen-
tial equation:

d%y

Ey=z(1-12)— T2

In fact, it is sufficient to substitute y in (1.16) by (1.15). This is called Gauss’

differential equation. Here, E = F(x, %) is a second-order Fuchsian differen-

tial operator. Conversely, assume that y can be expanded as a holomorphic
power series around the origin in the form

+{y- (a—i—ﬁ—l—l)x}j—i —afy =0. (1.16)

oo
y=> an", ag=1 (1.17)
n=0

Comparing the coefficients of 2™, for y to be a solution of (1.16), we get the
recurrence relation

(n+ 1Dy +n)ansr = (n+ a)(n + Ban,

i.e.,

L For n <0, we set (a;n) = (a+n)~t - (a—1)" 1
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Ap41 = %ana n Z Oa (118)

which implies that y coincides with F'(«, 3,~; x). In this way, F(«, 8, v; x) can
be characterized as a unique solution of (1.16) which is holomorphic around
the origin and which gives 1 at z = 0.

1.2.3 First-Order Fuchsian Equation

Setting y = y1, xi—z = y2f3, (1.16) can be transformed into the autonomous

first-order Fuchsian equation

w )= () () (1.19)

(0 B (0 0
AO_(Ol—’y)’ Al_(—a 'y—a—ﬂ—l)'

This equation describes the horizontal direction of an integrable connection
([De]), called the Gauss—Manin connection, over the complex projective line
P!(C) = CY{co} which admits singularities at z = 0,1, co.

where we set

1.2.4 Logarithmic Connection

Let a, b be two different points of C \ {0,1}. By a theory of linear ordinary
differential equations, one can extend the solutions of equation (1.16) analyt-
ically along a path ¢ connecting a and b. Moreover, this extension depends
only on the homotopy class of the path connecting a and b. This is the prop-
erty known as the uniqueness of analytic continuation. From this, it follows
that the function F(«, 3,~;z), a priori defined on A(0; 1), is extended ana-
lytically to a single-valued analytic function on the universal covering X of
the complex one-dimensional manifold X = C\ {0,1}. Let us think about
expressing this extension more explicitly.

Now, we introduce parameters Ay = 3, Ao = v —a — 1, A3 = —a. Then,
(1.19) can be rewritten in the form of a linear Pfaff system

Y1 Y1
d = (A0 A20 N30 . 1.20
(yz) (A101 + A2B2 + A303) (Z&) ( )

Here,
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01 00

01 = (0 0> dlogx + <0 _1> dlog(x — 1), (1.21)
00 00

Oy = (0 _1) dlogx + (0 1) dlog(z — 1), (1.22)
00 00

03 = (0 1) dlogx + (_1 0) dlog(z — 1), (1.23)

are logarithmic differential 1-forms. We integrate (1.20) along a smooth curve
o connecting 0 and x. By the fact that y; = 1 and y» = 0 at x = 0, we obtain
an integral form of (1.20):

(z;) - (é) + /0””@191 + Aol + Agfs) (Z;) . (1.24)

1.2.5 Higher Logarithmic Expansion

Solving (1.24) by Picard’s iterative methods (cf. [In]), y1 and y2 can be ex-
pressed as convergent series of A1, A2, A3 around the origin of C3:

Y1 = L¢(l‘) + Z Z /\il T )\irLil"'ir(x)’ (1'25)

r=11<i1,...,ir<3

oo
= D AL (@), (1.26)
r=11<i1,...,ir<3

Here, L;,..;, (), L} _; () are the analytic functions on X defined, along the

1l
path o, by the recurrence relations:



!

Qin-- iy

/
Ls;, ...,

Lige-i

1 Introduction: the Euler—Gauss Hypergeometric Function

(@) =0
/ dlogz - Lj,.; (), r=1
0
L3iy..i,(r) =0, r>1
— [ dlog(z —1)Liy...i, (z), r>1
0
-1
dlog (x > i (@), T >1
x
xr
— dlog(z — 1) Ljy...i. ()
0
x
+ [ dlogaz-Li, ; (z), r>1.
0

(1.27)
(1.28)
(1.29)

(1.30)

(1.31)

(1.32)

The series of functions L;,..;, (), Lj,..; (r) appearing here has been studied
by Lappo-Danilevsky and Smirnov ([La], [Sm]) in detail, and the functions are
called hyper logarithms by them. Today, these functions, which are analytic
functions on X , are also called polylogarithms or higher logarithms. By the

way, as we have
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Li(x) = La(x) = La(x) =0
Li(x) = Ly(x) =0, Lj(z) = —log(l —x)

Lyi(x) = Lai(x) = L3i(z) = Li2(z) = Laa(z)

T Jog(1 —
Lig(a) = Slog* (1~ 2),  Lyy(a) = —3 log*(1 — ) + °g<x “) g,
0
*log(l—=
Ly(o) = [ 220,
1 [“log*(1 — )
L = -
113(2) 2/0 —da,

1 ["log?(1 — @  log(1 —
Lm(x):_i/ Mdﬂ/ dﬁ(/ de),
0 T o Z 0 T

etc., from (1.25), we obtain the expansion

T log(l —x)

d 1.

F(aaﬂa’y;:ﬂ) = 1_)‘1>\3/
0

1 ? log?(1 —
+5 AN (0 = Aa) / e l=2)y,

0 X

—|—)\1/\3(/\2—)\3)/ d—x(/ Mdl‘)—F
o T 0 T

In particular, the function

o n

_/w logl—a) , _ S (1.34)
0 x n

n=1

is called a di-logarithm or the Abel—Rogers—Spence function ([Lew]) and
some interesting arithmetic properties are known. In general, L;,...; (z) and
L; .., (x) are expressed in terms of iterated integrals a la K.T.-Chen with
logarithmic differential 1-forms dlogx and dlog(z — 1), and are extended to
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higher-dimensional projective spaces ([Ch], [A05]). See also Remark 3.12 in
§ 3.8 of Chapter 3.

1.2.6 D-Module

One can re-interpret (1.16) as follows. Denoting the sheaf of holomorphic
functions on X by O and of the ring of holomorphic differential operators
by D (for sheaves, see, e.g., [Ka]), y gives a local section of O around a
neighborhood of each point xyp of X. Now, one can apply to y a partial
differential operator P(x, %) which is a section of D,,, a germ of D at x,
and one obtains a morphism

Dy, — Oq,

w w

P(e ) (e )y -

A necessary and sufficient condition for the equality

P (x %) y=0 (1.36)

to be satisfied is that P can be rewritten in the form

Pl )= t) 5 () 0)

(Q (ac, %) € on) in a neighborhood of zg, and a morphism (1.35) induces a
homomorphism of D,-modules

Dauy/DuoE — Og,
w w

1.38)
d d (
P (x, %) — P (ac, %) Y,

i.e., an element of Homp, (Dy,/Ds,E, Ox,). From such a viewpoint, one ob-
tains a structure of D-modules satisfied by hypergeometric functions. But
here, we do not discuss such a structure further. For a more systematic treat-
ment, see, e.g., [Pha2], [Kas2], [Hot].
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1.3 Integral Representation Due to Euler and Riemann
([AAR], [W-W])

1.3.1 Kummer’s Method

Let us rewrite some of the factors which have appeared in coefficients of the
power series (1.15) as the Euler integral representation. Assuming fa > 0,
R(y — ) > 0, we have

Z; (1.39)

and by the binomial expansion

oo )\.

S A — o <,
n!

n=0

from (1.15), we obtain

Flo, 8,7 ) = %/0 w1 —u) ! (1.40)
S n, .n /[37
{Z%u x ( ’ )}d

— F(V) lua—l —u y—a—1 —ur -6 ”
- F(a)rw—a)/o 1 =w) (1~ ua)

with the interchange of limit and integral. Here, for that the domain of the
integral can avoid the singularity of (1 — ux)™?, we assume |z| < 1. This
method of finding an elementary integral representation is by Kummer. The
integral (1.40) has been studied by Riemann in detail ([Ril], [Ri2]), and one
of our purposes is to extend this integral to higher-dimensional cases and to
reveal systematically the structure of generalized hypergeometric functions.
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1.4 Gauss’ Contiguous Relations and Continued
Fraction Expansion

1.4.1 Gauss’ Contiguous Relation

The functions F'(a, 8,v;x) and F(a + 11, 8 + la,y + l3; z) obtained by shift-
ing the parameters a, 8, by integers (l1,l2,l3 € Z) are linearly related. In
particular, the following formulas are referred to as Gauss’ contiguous rela-
tions [Pel:

F(a, B,v;2) = Fla, B+ 1,7+ 1) (1.41)

—M.TF(Q+1,§+1”V—|—2,£L’),

Yy +1)

F(a,8,7;7) = Fla+1,8,v+ 1;1) (1.42)

_Bly—a) .
7(7_1_1);1017‘(cu+1,ﬂ+1,’y+2,x).

Indeed, one can check these formulas by expanding F(a, 8,v;x), F(«a, 5 +
1,v+ L;z), Fla+ 1,8,y + L;z), Fla + 1,84 1,7 + 2;x) as power series
in = with the aid of (1.15) and comparing the coefficients of each term. For
example, by (1.15), the coefficient of 2™ (n > 1) in the right-hand side of
(1.41) is given by

(n)(B+1Ln) aly=F)(a+lin-1)(F+1n-1)

(y+Lnn!t (41 (v+2n—1)(n—1)!
~ (n)(B+1n—1) o M= 0)
T (v+Linn {ﬂ+ v }
_ (n)(B;n)
(v;n)n!

and as the constant term is 1, the right-hand side of (1.41) is equal to the
left-hand side of (1.41). By (1.41), we have

F(avﬁvry?x)
Fla, 0+ 1,7+ 1;2)

_q,_ =P Fla+1lB+1,y+21)
v+ )T FleB+1y+ L)

(1.43)

On the other hand, by (1.42), we obtain
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(1.44)

1.4 Gauss’ Contiguous Relations and Continued Fraction Expansion

Fla,+ 1,7+ 1;2)
Fla+1,8+ 1,7+ 2;z)
B+1)(y—a+1) Fla+1,8+2,v+3;1)
Fla+1,8+1,v+42x)

I Yy Yooy

Using symbols expressing continued fractions such as aj:l—c’ = aj:’J, at

(DGt |
(1.45)

a :I:%j:g, it follows from (1.43), (1.44) that
+1)(y+2)
F(o+1,8+19+2;2)

Flofoye) ot

Fla,f+ 1Ly +1;2) 1 Flat1,B+2,713:z)

By the shift («, 8,7) — (a+1, 8+1,v+2), we can repeat this transformation
several times, namely, we obtain the finite continued fraction expansion

(1.46)

F(a,ﬂ,'y,x) _ axr
)‘”W’

Fla,+1,v+ 1L,z

agy X |
+ F(a+v,8+v,v+2v;z) 5
F(a+v,f4+v+1,v+2v+1;x)

B+v)(y—a+v)
(v +2v—1)(y +2v)

_(a+r)(y=B+v)
(v+2)(y+2v+1)

a2y

a2u+1 =
Since the left-hand side of (1.46) is holomorphic in a neighborhood of z = 0,
it can be expanded as a power series in x. The infinite continued fraction

expansion
al1x asT
LwﬁJ+ﬁH+~~:1+mx—mwﬁ+~-

makes sense as a formal power series at x = 0.

1.4.2 Continued Fraction Expansion

_ aw|  agw|
) = 1+,T,+/T,+

The identity
F(Oé, ﬁv 77 'T)
Fla,B+ 1,7+ Lz

(1.47)



