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Preface

Nowaday, the progress of high-technologies allow us to handle increasingly large
datasets. These massive datasets are usually called "high-dimensional data” . At the
same time, different ways of introducing some continuum in the data appeared (use
of sophisticated monitoring devices, function-based descriptors as the density func-
tion for instance, etc). Hence, the data can be considered as observations varying
over a continuum defining a subcategory of high-dimensional data called functional
data. Statistical methodologies dealing with functional data are called Functional
Data Analysis (FDA), the "functional” word emphasizing the fact that the statistical
method takes into accound the functional feature of the data. The failure of stan-
dard multivariate statistical analyses, the numerous fields of applications as well as
the new theoretical challenges motivate an increasingly statistician community to
develop new methodologies. The huge research activity around FDA and its related
fields produces very fast progress. Then, it is necessary to propose regular snapshots
about the most recent advances in this topic.

This is the main goal of the International Workshop on Functional and Oper-
atorial Statistics (IWFOS’2011, Santander, Spain) which is the second edition of
the first successful one (IWFOS’2008, Toulouse, France) initiated by the working
group STAPH (Toulouse Mathematics Institute, France). This volume gathers peer-
reviewed contributions authored by outstanding confirmed experts as well as young
brillant researchers. The presentation of these contributions in a short (around 6
pages a contribution) and concise way makes the reading and use of this book very
easy. As a by-product, the reader should find most of representative and signifi-
cant recent advances in this field, mixing works oriented towards applications (with
original datasets, computational issues, applications in numerous fields of Sciences
- biometrics, chemometrics, economics, medicine, etc) with fundamental theoretical
ones. This volume contents a wide scope of statistical topics: change point detec-
tion, clustering, conditional density/expectation/mode/quantiles/extreme quantiles,
covariance operators, depth, forecasting, functional additive regression, functional
extremality, functional linear regression, functional principal components analy-
ses, functional single index model, functional varying coefficient models, gener-
alized additive models, hilbertian processes, nonparametric models, noisy obser-
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vations, quantiles in functions spaces, random fields, semi-functional models, sta-
tistical inference, structural tests, threshold-based procedures, time series, variable
selection, wavelet-based smoothing, etc. These statistical advances deal with nu-
merous kind of interesting datasets (functional data, high-dimensional data, lon-
gitudinal functional data, multidimensional curves, spatial functional data, sparse
functional data, spatial-temporal data) and propose very attractive applications in
various fields of Sciences: DNA minicircles, electoral behavior, electricity spot mar-
kets, electro-cardiogram records, gene expression, irradiance data (exploitation of
solar energy), magnetic resonance spectroscopy data (neurocognitive impairment),
material sciences, signature recognition, spectrometric curves (chemometrics), trac-
tography data (multiple sclerosis), etc.

Clearly, this volume should be very attractive for a large audience, like academic
researchers, graduate/PhD students as well as engineers using regularly recent sta-
tistical developments in his work.

At last, this volume is a by-product of the organization of IWFOS’2011 which
is chaired by two other colleagues: Juan A. Cuesta-Albertos (Santander, Spain)
and Wenceslao Gonzalez-Manteiga (Santiago de Compostela, Spain). Their trojan
work as well as their permanent support and enthusiasm are warmly and gratefully
thanked.

Toulouse, France Frédéric Ferraty
March 2011 The Editor and co-Chair of IWFOS’2011
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Chapter 1

Penalized Spline Approaches for Functional
Principal Component Logit Regression

A. Aguilera, M. C. Aguilera-Morillo, M. Escabias, M. Valderrama

Abstract The problem of multicollinearity associated with the estimation of a func-
tional logit model can be solved by using as predictor variables a set of functional
principal components. The functional parameter estimated by functional principal
component logit regression is often unsmooth. To solve this problem we propose
two penalized estimations of the functional logit model based on smoothing func-
tional PCA using P-splines.

1.1 Introduction

The aim of the functional logit model is to predict a binary response variable from a
functional predictor and also to interpret the relationship between the response and
the predictor variables. To reduce the infinite dimension of the functional predictor
and solve the multicollinearity problem associated to the estimation of the functional
logit model, Escabias et al. (2004) proposed to use a reduced number of functional
principal components (pc’s) as predictor variables. A functional PLS based solution
was also proposed by Escabias et al. (2006). The problem associated with these
approaches is that in many cases the estimated functional parameter is not smooth
and therefore difficult to interpret. Different penalized likelihood estimations with
B-spline basis were proposed in the general context of functional generalized linear
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models to solve this problem (Marx and Eilers, 1999; Cardot and Sarda, 2005).
In this paper we introduce two different penalized estimation approaches based on
smoothed functional principal component analysis (FPCA). On one hand, FPCA of
P-spline approximation of sample curves is performed. On the other hand, a discrete
P-spline penalty is included in the own formulation of FPCA.

1.2 Background

Let us consider a sample of functional observations x (¢),x3 (¢), ... ,x, (¢) of a fixed
design functional variable and let y;,y,,...,y, be a random sample of a binary re-
sponse variable ¥ associated to them. Thatis, y; € {0,1},i=1,...,n. The functional

logistic regression model is given by
yi =T+ &, i=1,....n,
where 7; is the expectation of ¥ given x; () modeled as

exp{o+ Jrxi (1) B (1)dt}
1 +exp{o+ [7xi (¢) B (t)dt}’
o being a real parameter, f (¢) a parameter function, {¢&; : i = 1,...,n} independent

errors with zero mean and T the support of the sample paths x; (7).
The logit transformations can be expressed as

m=PY =1|{x(r): 1 €T} = i=1,....n,

l,-:ln{ i }za—&—/xi(t)ﬁ(t)dt, i=1,...,n (1.1)
T

177171'

A way to estimate the functional logit model is to consider that both, the sample
curves and the parameter function, admit an expansion in terms of basis functions.
Then, the functional logit model turns into a multiple logit model whose design
matrix is the product between the matrix of basis coefficients of sample paths and
the matrix of inner products between basis functions (Escabias et al., 2004). The
estimation of this model is affected by multicollinearity due to the high correlation
between the columns of the design matrix. In order to obtain a more accurate and
smoother estimation of the functional parameter than the one provided by standard
functional principal component logit regression (FPCLR), we present in this pa-
per two penalized estimation approaches based on P-spline smoothing of functional
PCA.
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1.3 Penalized estimation of FPCLR

In general, the functional logit model can be rewritten in terms of functional princi-
pal components as
L=al+Tv, (1.2)

where I' = (éij)nxp is a matrix of functional pc’s of xy (¢),...,x, (t) and 7y is the
vector of coefficients of the model.

By considering that the predictor sample curves admit the basis expansions
xi (1) = Z;’:l a;j; (1), the functional parameter can be also expressed also in terms
of the same basis, B (r) = XF_, Bx¢x (t), and the vector B of basis coefficients is

given by ﬁ = F7, where the way of computing F depends on the kind of FPCA
used to obtain the pc’s.

An accurate estimation of the parameter function can be obtained by considering
only a set of optimal principal components as predictor variables. In this paper we
select the optimal number of predictor pc’s by using a leave-one-out cross valida-
tion method that maximizes the area under ROC curve computed by following the
process outlined in Mason and Graham (2002). To obtain this area, observed and
predicted values are required. In this case, we have considered y; the i/ observed

value of the binary response and )7571) the " predicted value obtained by deleting
the i observation of the design matrix in the iterative estimation process.

Let us consider that the sample curves are centered and belong to the space L?[T]
with the usual inner product defined by < f,g >= [, f(t)g(f)dt. In the standard
formulation of functional PCA, the j* principal component scores are given by

étJZ/sz'(t)f;(t)dhi=1,...,n, (1.3)
where the weight function or factor loading f; is obtained by solving

{Maxf Var[[;x;i (t) f (r) dt]
st ||flI>=1and [ f;(t)f(t)dt=0, £=1,...,j—1.

The weight functions f; are the solutions to the eigenequation Cf; = 4, f;, with A; =
Var|[&;] and C being the sample covariance operator defined by Cf = [¢(.,1) f (1) dt,
in terms of the sample covariance function ¢ (s,7) = %Z?:l xi (8)x; (7).

In practice, functional PCA has to be estimated from discrete time observations
of each sample curve x;(r) at a set of times {tj0,t1,...,tim; €T, i=1,...,n}. The
sample information is given by the vectors x; = (xjo, . .. ,xim,.)/, with x;; the observed
value for the /" sample path x; (¢) at time t;; (k =0, ...,m;).

When the sample curves are smooth and observed with error, least squares ap-
proximation in terms of B-spline basis is an appropriate solution for the problem
of reconstructing their true functional form. This way, the vector of basis coef-
ficients of each sample curve that minimizes the least squares error is given by
a; = (‘Di/d)i)il CDl-’x,-, with @; = (d)] (tik))mixp and a; = (ai17 oo ,a,'p)/.
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Functional PCA is then equivalent to the multivariate PCA of AP? matrix, 2
being the squared root of the matrix of the inner products between B-spline basis
functions (Ocafia et al. 2007). Then, matrix F' that provides the relation between the
basis coefficients of the functional parameter and the parameters in terms of princi-

_1
pal components is given by F' = ‘prszpx,,, where G is the matrix whose columns
are the eigenvectors of the sample covariance matrix of AY¥'/2_ This non smoothed
FPCA estimation of functional logit models with B-spline basis was performed by

Escabias et al. (2004).

1.3.1 Functional PCA via P-splines

Now, we propose a penalized estimation based on functional PCA of the P-spline
approximation of the sample curves. The basis coefficients in terms of B-splines
are computed by introducing a discrete penalty in the least squares criterion (Eilers
and Marx, 1996), so that we have to minimize (x; — ®;a;)’ (x; — ®ja;) + AdPya;,
where Py = (A4)' A4 and A9 s the differencing matrix that gives the dth-order
differences of a;. The solution is then given by a; = (®/®; + lPd)” ®@/x;, and the
smoothed parameter is chosen by leave-one-out cross validation.

Then, we carry out the multivariate PCA of A¥? matrix as explained above. The
difference between smoothed FPCA via P-splines and non smoothed FPCA is only
the way of computing the basis coefficients (rows of matrix A), with or without
penalization, respectively.

1.3.2 P-spline smoothing of functional PCA

Now we propose to obtain the principal components by maximizing a penalized
sample variance that introduces a discrete penalty in the basis coefficients of princi-
pal component weights.

The j™* principal component scores are defined as in equation (1.3) but now the
weight functions f; are obtained by solving

var[ [ x; (t) f (t)dt]
Max :
1P 2PEN(])
st |[f|2=b'Pb = 1and Py + b'Piby =0, £=1,....j—1,

where PEN,(f) = b'Pyb is the discrete roughness penalty function, b being the
vector of basis coefficients of the weight functions, f(r) = ¥F_, ik, and A the
smoothing parameter estimated by leave-one-out cross validation.

Finally, this variance maximization problem is converted into an eigenvalue prob-
lem, so that, applying the Choleski factorization LL' = ¥ + A P;, P-spline smooth-
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ing of functional PCA is reduced to classic PCA of the matrix A¥(L~')". Then,
the estimated vector 3 of basis coefficients of the functional parameter is given by
ﬁ =Fj= (L*' )' G7, where G is the matrix of eigenvectors of the sample covariance
matrix of A¥(L!).

1.4 Simulation study

We are going to illustrate the good performance of the proposed penalty approaches
following the simulation scheme developed in Ferraty and Vieu (2003) and Es-
cabias et al. (2006). We simulated 1000 curves of two different classes of sample
curves. For the first class we simulated 500 curves according to the random function
x(t) = uhy (t)+ (1 —u)hy (t) + € (¢) , and another 500 curves were simulated for the
second class according to the random function x(¢) = uh (t) + (1 —u) ks (1) + £ (2),
u and € (¢) being uniform and standard normal simulated random values, respec-
tively, and h; (1) = max{6 — |t — 11|,0},hy (t) = hy (t —4) ,h3 () = hy (r+4). The
sample curves were simulated at 101 equally spaced points in the interval [1,21].

As binary response variable, we considered Y = 0 for the curves of the first class
and Y = 1 for the ones of the second class. After simulating the data, we performed
least squares approximation of the curves, with and without penalization, in terms
of the cubic B-spline functions defined on 30 equally spaced knots of the interval
[1,21].

non smoothed FPCA FPCA via P-splines P-spline smoothed FPCA
Number pc’s 3 2 3
ROC area 0.9986 0.9985 0.9988

Table 1.1: Area under the ROC curve for the test sample with the optimum mod-
els selected by cross validation with the three different FPCA approaches (non
smoothed FPCA, FPCA via P-splines (A = 24.2) and P-spline smoothed FPCA
(A =9)).

In order to estimate the binary response Y from the functional predictor X we
have estimated three different FPCLR models by using non smoothed FPCA and
the two P-spline estimation approaches of FPCA proposed in this work. A training
sample of 500 curves (250 of each class) was considered to fit the model and a
test sample with the remaining 500 curves to evaluate the forecasting performance
of the model. The pc’s were included in the model by variability order and the
optimum number of pc’s selected by maximizing the cross validation estimation
of the area under the ROC curve. In Table 1.1 we can see that P-spline smoothed
FPCA estimation provides a slightly higher area and FPCA via P-splines requires
fewer components.
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Escabias et al. (2006) estimated the parameter function using different methods
as functional PLS logistic regression and functional principal component logit re-
gression, obtaining in both cases a non smooth estimation. In Figure 1.1 we can see
that both penalized estimations of FPCA based on P-splines provide a smooth esti-
mation of the functional parameter. This shows that using a smoothing estimation of
FPCA is required in order to obtain a smooth estimation of the functional parameter
that makes the interpretation easier. Although there are not significant differences
between the estimation of the parameter function provided by FPCA via P-splines
and P-spline smoothed FPCA, the second approach spends much more time in cross
validation procedure so that, in practice, the estimation of FPCLR based on FPCA
via P-splines is more efficient.

2.0

1.0 1.5

0.5

0.0
1

-15 -1.0 -05

Fig. 1.1: Estimated parameter function with the three different considered FPCA
estimations: non smoothed FPCA (black and continue line), FPCA via P-splines
(red and long dashed line, A = 24.2) and P-spline smoothed FPCA (blue and short
dashed line, A = 5)
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Chapter 2

Functional Prediction for the Residual Demand
in Electricity Spot Markets

German Aneiros, Ricardo Cao, Juan M. Vilar-Fernandez, Antonio
Muifioz-San-Roque

Abstract The problem of residual demand prediction in electricity spot markets
is considered in this paper. Hourly residual demand curves are predicted using non-
parametric regression with functional explanatory and functional response variables.
Semi-functional partial linear models are also used in this context. Forecasted val-
ues of wind energy as well as hourly price and demand are considered as linear
predictors. Results from the electricity market of mainland Spain are reported. The
new forecasting functional methods are compared with a naive approach.

2.1 Introduction

Nowadays, in many countries all over the world, the production and sale of elec-
tricity is traded under competitive rules in free markets. The agents involved in this
market: system operators, market operators, regulatory agencies, producers, con-
sumers and retailers have a great interest in the study of electricity load and price.
Since electricity cannot be stored, the demand must be satisfied instantaneously
and producers need to anticipate to future demands to avoid overproduction. Good
forecasting of electricity demand is then very important from the system operator
viewpoint. In the past, demand was predicted in centralized markets (see Gross and
Galiana (1987)) but competition has opened a new field of study. On the other hand
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prediction of residual demand of an agent is a valuable tool to establish good bid-
ding strategies for the agent itself. Consequently, prediction of electricity residual
demand is a significant problem in this sector.

Residual demand curves have been considered previously in the literature. In
each hourly auction, the residual demand curve is defined as the difference of the
combined effect of the demand at any possible price and the supply of the gener-
ation companies as a function of price. Consequently 24 hourly residual demand
curves are obtained every day. These curves are useful tools to design optimal of-
fers for companies operating in a day-ahead market (see Baillo et al. (2004) and Xu
and Baldick (2007)). We focus on one day ahead forecasting of electricity residual
demand curves. Therefore, for each day of the week, 24 curve forecasts need to be
computed.

This paper proposes functional and semi-functional nonparametric and partial
linear models to forecast electricity residual demand curves. Forecasted wind energy
as well as forecasted hourly price and demand are incorporated as explanatory vari-
ables in the model. Nonparametric regression estimation under dependence is a use-
ful tool for time series forecasting. Some relevant work in this field include Hirdle
and Vieu (1992), Hart (1996) and Hérdle, Liitkepohl and Chen (1997). Other papers
more specifically focused on prediction using nonparametric techniques are Carbon
and Delecroix (1993), Matzner-Lober, Gannoun and De Gooijeret (1998) and Vilar-
Ferndndez and Cao (2007). The literature on methods for time series prediction in
the context of functional data is much more limited. The books by Bosq (2000) and
Ferraty and Vieu (2006) are comprehensive references for linear and nonparamet-
ric functional data analysis, respectively. Faraway (1997) considered a linear model
with functional response in a regression setup. Antoch et al. (2008) also used func-
tional linear regression models to predict electricity consumption. Antoniadis, Pa-
paroditis and Sapatinas (2006) proposed a functional wavelet-kernel approach for
time series prediction and Antoniadis, Paparoditis and Sapatinas (2009) studied a
method for smoothing parameter selection in this context. Aneiros-Pérez and Vieu
(2008) have dealt with the problem of nonparametric time series prediction using
a semi-functional partial linear model and Aneiros-Pérez, Cao and Vilar-Fernandez
(2010) used Nadaraya-Watson and local linear methods for functional explanatory
variables and scalar response in time series prediction. Finally, Cardot, Dessertaine
and Josserand (2010) use semi-parametric models for predicting electricity con-
sumption and Vilar-Fernandez, Cao and Aneiros (2010) use also semi-functional
models with scalar response to predict next-day electricity demand and price.

The remaining of this paper is organized as follows. In Section 2, a mathematical
description of the functional nonparametric model is given. The semi-functional
partial linear model is presented in Section 3. Section 4 contains some information
about the data and the empirical study concerning one-day ahead forecasting of
electricity residual demand curves in Spain. The references are included at the final
section of the paper.
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2.2 Functional nonparametric model

The time series under study (residual demand curve) will be considered as a realiza-
tion of a discrete time functional valued stochastic process, { ¥ (p)},cz, observed

for p € [a,b). For a given hour, r, (r € {1,...,24}) of day t, the values of %t(r) (p)
indicate the energy that can be sold (positive values) or bought (negative values) at

price p and the interval [a,b) is the range for prices. We first concentrate on predict-

(r)
n+1

For simplicity the superindex r will be dropped off.

In the following we will assume that the sequence of functional valued random
variables {; (p)},c is Markovian. We may look at the problem of predicting the
future curve Y+ (p) by computing nonparametric estimations, m (), of the au-
toregression function in the functional nonparametric (FNP) model

ing the curve y, "/, (p), after having observed a sample of values { %i(r) ( p)}

i=12,...,n

xi+1(.):m(xi)+ei+l(.)7 i=1,....n, (21)

which states that the values of the residual demand at day i+ 1 is an unknown
nonparametric function of the residual demand at the previous day plus some error
term. These errors g (e) are iid zero mean functional valued random variables. Thus,
m (xn) gives a functional forecast for ), (o).

In our context this approach consists on estimating the autoregression functional,
m, using hourly residual demand curves and apply this estimated functional to the
last observed day.

Whereas the Euclidean norm is a standard distance measure in finite dimensional
spaces, the notion of semi-norm or semi-metric arises in this infinite-dimensional
functional setup. Let us denote by ¢ = { f : C — R} the space where the functional
data live and by d(e,e) a semi-metric associated with ¢ . Thus (J¢,d) is a semi-
metric space (see Ferraty and Vieu (2006) for details).

A Nadaraya-Watson type estimator (see Nadaraya (1964) and Watson (1964)) for
m in (2.1) is defined as follows

n—1
M () = S wi (X xi) xi+1(e), (2.2)
=1

where the bandwidth 2 > 0 is a smoothing parameter,

L K(dQx)/h)
wi (0 xi) = K (O xg)/h)

(2.3)

and the kernel function K : [0,00) — [0,e0) is typically a probability density function
chosen by the user.

The choice of the kernel function is of secondary importance. However, both the
bandwidth and the semi-metric are relevant aspects for the good asymptotic and
practical behavior of (2.2).
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A key role of the semi-metric is that related to the so called “curse of dimension-
ality”. From a practical point of view the “curse of dimensionality” can be explained
as the sparsness of data in the observation region as the dimension of the data space
grows. This problem is specially dramatic in the infinite-dimensional context of
functional data. More specifically, Ferraty and Vieu (2006) have proven that it is
possible to construct a semi-metric in such a way that the rate of convergence of
the nonparametric estimator in the functional setting is similar to that of the finite-
dimensional one. It is important to remark that we use a semi-metric rather than a
metric. Indeed, the “curse of dimensionality” would appear if a metric were used
instead of a semi-metric.

In functional data it is usual to consider semi-metrics based on semi-norms. Thus,
Ferraty and Vieu (2006) recommend, for smooth functional data, to take as semi-
norm the L, norm of some g-th derivative of the function. For the case of rough data
curves, these authors suggest to construct a semi-norm based on the first ¢ functional
principal components of the data curves.

2.3 Semi-functional partial linear model

Very often there exist exogenous scalar variables that may be useful to improve
the forecast. For the residual demand prediction this may be the case of the hourly
wind energy in the market and the hourly price and demand. Although these values
cannot be observed in advance, one-day ahead forecasts can be used to anticipate
the values of these three explanatory variables. Previous experience also suggests
that an additive linear effect of these variables on the values to forecast might occur.
In such setups, it seems natural to generalize model (2.1) by incorporating a linear
component. This gives the semi-functional partial linear (SFPL) model:

Xi+1 (.) = XiT+1ﬁ (.) er(Xl) +£i+l (.) ) i= 17 ceen, (24)
where Xx; = (x“,...,xip)T € R? is a vector of exogenous scalar covariates and
B(e)=(Bi(e),...,B,(e))T is a vector of unknown functions to be estimated.

Now, based on the SFLP model,Awe may look at the problem of predicting
Xn+1(®) by computing estimations 3 and m () of B and m()) in (2.4), respec-
tively. Thus, XZHB(o) +7i (x,) gives the forecast for y,,. (o).

An estimator for f3 (e) based on kernel and ordinary least squares ideas was pro-
posed in Aneiros-Pérez and Vieu (2006) in the setting of independent data. More
specifically, recall the weights wy,(), ;) defined in the previous subsection and
denote X, = (I — Wh)X and ih = (I—Wh))(, with W, = (Wh(XhXj))lgi,jgnfl,
X = (xij)1<i<n—1,1<j<p and x (8) = (x2(®),..., xn ()7, the estimator for 3 is de-
fined by

B (o) = (XIX,) " 'X] 7 (o). (2.5)



