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Introduction

This book presents a complete account of the foundations of the theory of
p-adic Lie groups. It moves on to some of the important more advanced
aspects. Although most of the material is not new, it is only in recent years
that p-adic Lie groups have found important applications in number theory
and representation theory. These applications constitute, in fact, an increas-
ingly active area of research. The book is designed to give to the advanced,
but not necessarily graduate, student a streamlined access to the basics of
the theory. It is almost self contained. Only a few technical computations
which are well covered in the literature will not be repeated. My hope is that
researchers who see the need to take up p-adic methods also will find this
book helpful for quickly mastering the necessary notions and techniques.
The book comes in two parts. Part A on the analytic side grew out of a
course which I gave at Münster for the first time during the summer term
2001, whereas part B on the algebraic side is the content of a course given
at the Newton Institute during September 2009.

The original and proper context of p-adic Lie groups is p-adic analysis.
This is the point of view in Part A. Of course, in a formal sense the notion
of a p-adic Lie group is completely parallel to the classical notion of a real
or complex Lie group. It is a manifold over a nonarchimedean field which
carries a compatible group structure. The fundamental difference is that
the p-adic notion has no geometric content. As we will see, a paracompact
p-adic manifold is topologically a disjoint union of charts and therefore is,
from a geometric perspective, completely uninteresting. The point instead
is that, like for real Lie groups, manifolds and Lie groups in the p-adic world
are a rich source, through spaces of functions and distributions, of interest-
ing group representations as well as various kinds of important topological
group algebras. We nevertheless find the geometric language very intuitive
and therefore will use it systematically. In the first chapter we recall what
a nonarchimedean field is and quickly discuss the elementary analysis over
such fields. In particular, we carefully introduce the notion of a locally an-
alytic function which is at the base for everything to follow. The second
chapter then defines manifolds and establishes the formalism of their tan-
gent spaces. As a more advanced topic we include the construction of the
natural topology on vector spaces of locally analytic functions. This is due
to Féaux de Lacroix in his thesis. It is the starting point for the represen-
tation theoretic applications of the theory. In the third chapter we finally
introduce p-adic Lie groups and we construct the corresponding Lie algebras.
The main purpose of this chapter then is to understand how much informa-
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vi Introduction

tion about the Lie group can be recovered from its Lie algebra. Here again
lies a crucial difference to Lie groups over the real numbers. Since p-adic Lie
groups topologically are totally disconnected they contain arbitrarily small
open subgroups. Hence the Lie algebra determines the Lie group only locally
around the unit element which is formalized by the notion of a Lie group
germ. As the length of the chapter indicates this relation between Lie groups
and Lie algebras is technically rather involved. It requires a whole range of
algebraic concepts which we all will introduce. As said before, only for a few
computations the reader will be referred to the literature. The key result is
contained in the discussion of the convergence of the Hausdorff series.

There are three existing books on the material in Part A: “Variétés
différentielles et analytiques. Fascicule de résultats” and “Lie Groups and
Lie Algebras” by Bourbaki and Serre’s lecture notes on “Lie Algebras and
Lie groups”. The first one contains no proofs, the nature of the second one is
encyclopedic, and the last one some times is a bit short on details. All three
develop the real and p-adic case alongside each other which has advantages
but makes a quick grasp of the p-adic case alone more difficult. The presen-
tation in the present book places its emphasis instead on a streamlined but
still essentially self contained introduction to exclusively the p-adic case.

Lazard discovered in the 1960s a purely algebraic approach to p-adic
Lie groups. Unfortunately his seminal paper is notoriously difficult to read.
Part B of this book undertakes the attempt to give an account of Lazard’s
work again in a streamlined form which is stripped of all inessential general-
ities and ramifications. Lazard proceeds in an axiomatic way starting from
the notion of a p-valuation ω on a pro-p-group G. After some preliminaries
in the fourth chapter this concept is explained in chapter five. It will not be
too difficult to show that any p-adic Lie group has an open subgroup which
carries a p-valuation. Lazard realized that, vice versa, any pro-p-group with
a p-valuation (and satisfying an additional mild condition of being “of finite
rank”) is a compact p-adic Lie group in a natural way. The technical tool
to achieve this important result is the so called completed group ring Λ(G)
of a profinite group G. It is the appropriate analog of the algebraic group
ring of a finite (or, more generally, discrete) group in the context of profinite
groups. In the presence of a p-valuation ω Lazard develops a technique of
computation in Λ(G), which as such is a highly complicated and in general
noncommutative algebra. All of this will be presented in the sixth chapter.
In the last chapter seven we go back to Lie algebras. Being a p-adic Lie group
a pro-p-group G with a p-valuation of finite rank ω has a Lie algebra Lie(G)
over the field of p-adic numbers Qp. By inverting p and a further completion
process the completed group ring Λ(G) can be enlarged to a Qp-Banach
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algebra ΛQp(G,ω) which turns out to be naturally isomorphic to a certain
completion of the universal enveloping algebra of Lie(G). This is another
one of Lazard’s important results. It provides us with a different route to
construct Lie(G) which is independent of any analysis. In fact, it does better
than that since it leads to a natural Lie algebra over the ring over p-adic
integers Zp associated with the pair (G,ω). This means that the algebraic
theory, via this notion of a p-valuation, makes the connection between Lie
group and Lie algebra much more precise than the analytic theory was able
to do. The final question addressed in the last chapter is the question on
the possibility of varying the p-valuation on the same group G. Using the
newly established direct connection to the Lie algebra this problem can be
transferred to the latter. There it eventually becomes a problem of convexity
theory which is much easier to solve. This, in particular, allows to prove the
very useful technical fact that there always exists a p-valuation with ratio-
nal values. Its most important consequence is the result that the completed
group ring Λ(G) of any (G,ω) of finite rank is a noetherian ring of finite
global dimension. This is why completed group rings of p-adic Lie groups
have become important in number theory (where they are applied to Galois
groups G), and why they deserve further systematic study in noncommuta-
tive algebra.

This is the first textbook in the proper sense on Lazard’s work. The
book “Analytic Pro-p-Groups” by Dixon, du Sautoy, Mann, and Segal has a
completely different perspective. It is written entirely from the point of view
of abstract group theory. Moreover, it does not mention Lazard’s concept
of a p-valuation at all but replaces it by an alternative axiomatic approach
based on the notion of a uniformly powerful pro-p-group. This approach is
very conceptual as well but also less flexible and more restrictive than the
one by Lazard which we follow.

It is a pleasure to thank J. Coates for persuading me to undertake this
lecture series at the Newton Institute and to write it up in this book, the
audience for the valuable feedback, the Newton Institute for its hospitality
and support, and T. Schoeneberg for a careful reading of Part B.

Münster, February 2011 Peter Schneider
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Part A

p-Adic Analysis and Lie

Groups



Chapter I

Foundations

1 Ultrametric Spaces

We begin by establishing some very basic and elementary notions.

Definition. A metric space (X, d) is called ultrametric if the strict triangle
inequality

d(x, z) ≤ max(d(x, y), d(y, z)) for any x, y, z ∈ X

is satisfied.

Examples will be given later on.

Remark. i. If (X, d) is ultrametric then (Y, d |Y × Y ), for any subset
Y ⊆ X, is ultrametric as well.

ii. If (X1, d1), . . . , (Xm, dm) are ultrametric spaces then the cartesian prod-
uct X1 × · · · × Xm is ultrametric with respect to

d((x1, . . . , xm), (y1, . . . , ym)) := max(d1(x1, y1), . . . , dm(xm, ym)).

Let (X, d) be an ultrametric space in the following.

Lemma 1.1. For any three points x, y, z ∈ X such that d(x, y) �= d(y, z) we
have

d(x, z) = max(d(x, y), d(y, z)).

Proof. We may assume that d(x, y) < d(y, z). Then

d(x, y) < d(y, z) ≤ max(d(y, x), d(x, z)) = max(d(x, y), d(x, z)).

The maximum in question therefore necessarily is equal to d(x, z) so that

d(x, y) < d(y, z) ≤ d(x, z).

We deduce that

d(x, z) ≤ max(d(x, y), d(y, z)) ≤ d(x, z).

P. Schneider, p-Adic Lie Groups,
Grundlehren der mathematischen Wissenschaften 344,
DOI 10.1007/978-3-642-21147-8 1, © Springer-Verlag Berlin Heidelberg 2011
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4 I Foundations

Let a ∈ X be a point and ε > 0 be a positive real number. We call

Bε(a) := {x ∈ X : d(a, x) ≤ ε}

the closed ball and

B−
ε (a) := {x ∈ X : d(a, x) < ε}

the open ball around a of radius ε. Any subset in X of one of these two kinds
is simply referred to as a ball . As the following facts show this language has
to be used with some care.

Lemma 1.2. i. Every ball is open and closed in X.

ii. For b ∈ Bε(a), resp. b ∈ B−
ε (a), we have Bε(b) = Bε(a), resp. B−

ε (b) =
B−

ε (a).

Proof. Obviously B−
ε (a) is open and Bε(a) is closed in X. We first consider

the equivalence relation x ∼ y on X defined by d(x, y) < ε. The corre-
sponding equivalence class of b is equal to B−

ε (b) and hence is open. Since
equivalence classes are disjoint or equal this implies B−

ε (b) = B−
ε (a) when-

ever b ∈ B−
ε (a). It also shows that B−

ε (a) as the complement of the other
open equivalence classes is closed in X.

Analogously we may consider the equivalence relation x ≈ y on X defined
by d(x, y) ≤ ε. Its equivalence classes are the closed balls Bε(b), and we
obtain in the same way as before the assertion ii. for closed balls. It remains
to show that Bε(a) is open in X. But by what we have established already
with any point b ∈ Bε(a) its open neighbourhood B−

ε (b) is contained in
Bε(b) = Bε(a).

The assertion ii. in the above lemma can be viewed as saying that any
point of a ball can serve as its midpoint. By way of an example we will see
later on that also the notion of a radius is not well determined.

Lemma 1.3. For any two balls B and B′ in X such that B ∩ B′ �= ∅ we
have B ⊆ B′ or B′ ⊆ B.

Proof. Pick a point a ∈ B ∩ B′. As a consequence of Lemma 1.2.ii. the
following four cases have to be distinguished:

1. B = B−
ε (a), B′ = B−

δ (a),

2. B = B−
ε (a), B′ = Bδ(a),
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3. B = Bε(a), B′ = B−
δ (a),

4. B = Bε(a), B′ = Bδ(a).

Without loss of generality we may assume that ε ≤ δ. In cases 1, 2, and 4
we then obviously have B ⊆ B′. In case 3 we obtain B ⊆ B′ if ε < δ and
B′ ⊆ B if ε = δ.

Remark. If the ultrametric space X is connected then it is empty or consists
of one point.

Proof. Assuming that X is nonempty we pick a point a ∈ X. Lemma 1.2.i.
then implies that X = Bε(a) for any ε > 0 and hence that X = {a}.

Lemma 1.4. Let U =
⋃

i∈I Ui be a covering of an open subset U ⊆ X by
open subsets Ui ⊆ X; moreover let ε1 > ε2 > · · · > 0 be a strictly descending
sequence of positive real numbers which converges to zero; then there is a
decomposition

U =
⋃

j∈J

Bj

of U into pairwise disjoint balls Bj such that :

(a) Bj = Bεn(j)
(aj) for appropriate aj ∈ X and n(j) ∈ N,

(b) Bj ⊆ Ui(j) for some i(j) ∈ I.

Proof. For a ∈ U we put

n(a) := min{n ∈ N : Bεn(a) ⊆ Ui for some i ∈ I}.

The family of balls J := {Bεn(a)
(a) : a ∈ U} by construction has the proper-

ties (a) and (b) and covers U (observe that for any point a in the open set
Ui we find some sufficiently big n ∈ N such that Bεn(a) ⊆ Ui). The balls in
this family indeed are pairwise disjoint: Suppose that

Bεn(a1)
(a1) ∩ Bεn(a2)

�= ∅.

By Lemma 1.3 we may assume that Bεn(a1)
(a1) ⊆ Bεn(a2)

(a2). But then
Lemma 1.2.ii. implies that Bεn(a2)

(a1) = Bεn(a2)
(a2) and hence Bεn(a1)

(a1) ⊆
Bεn(a2)

(a1). Due to the minimality of n(a1) we must have n(a1) ≤ n(a2),
resp. εn(a1) ≥ εn(a2). It follows that Bεn(a1)

(a1) = Bεn(a2)
(a1) = Bεn(a2)

(a2).
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As usual the metric space X is called complete if every Cauchy sequence
in X is convergent.

Lemma 1.5. A sequence (xn)n∈N in X is a Cauchy sequence if and only if
limn→∞ d(xn, xn+1) = 0.

For a subset A ⊆ X we call

d(A) := sup{d(x, y) : x, y ∈ A}

the diameter of A.

Lemma 1.6. Let B ⊆ X be a ball with ε := d(B) > 0 and pick any point
a ∈ B; we then have B = B−

ε (a) or B = Bε(a).

Proof. The inclusion B ⊆ Bε(a) is obvious. By Lemma 1.2.ii. the ball B is
of the form B = B−

δ (a) or B = Bδ(a). The strict triangle inequality then
implies ε = d(B) ≤ δ. If ε = δ there is nothing further to prove. If ε < δ we
have B ⊆ Bε(a) ⊆ B−

δ (a) ⊆ B and hence B = Bε(a).

Let us consider a descending sequence of balls

B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · ·

in X. If X is complete and if limn→∞ d(Bn) = 0 then we claim that
⋂

n∈N

Bn �= ∅.

If we pick points xn ∈ Bn then (xn)n∈N is a Cauchy sequence. Put x :=
limn→∞ xn. Since each Bn is closed we must have x ∈ Bn and therefore
x ∈

⋂
n Bn.

Without the condition on the diameters the intersection
⋂

n Bn can be
empty (compare the exercise further below). This motivates the following
definition.

Definition. The ultrametric space (X, d) is called spherically complete if
any descending sequence of balls B1 ⊇ B2 ⊇ · · · in X has a nonempty
intersection.

Lemma 1.7. i. If X is spherically complete then it is complete.

ii. Suppose that X is complete; if 0 is the only accumulation point of the
set d(X × X) ⊆ R+ of values of the metric d then X is spherically
complete.
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Proof. i. Let (xn)n∈N be any Cauchy sequence in X. We may assume that
this sequence does not become constant after finitely many steps. Then the

εn := max{d(xm, xm+1) : m ≥ n}

are strictly positive real numbers satisfying εn ≥ εn+1 and εn ≥ d(xn, xn+1).
Using Lemma 1.2.ii. we obtain Bεn(xn) = Bεn(xn+1) ⊇ Bεn+1(xn+1). By
assumption the intersection

⋂
n Bεn(xn) must contain a point x. We have

d(x, xn) ≤ εn for any n ∈ N. Since the sequence (εn)n converges to zero this
implies that x = limx→∞ xn.

ii. Let B1 ⊇ B2 ⊇ · · · be any decreasing sequence of balls in X. Obviously
we have d(B1) ≥ d(B2) ≥ · · · . By our above discussion we only need to
consider the case that infn d(Bn) > 0. Our assumption on accumulation
points implies that d(Bn) ∈ D(X × X) for any n ∈ N and then in fact
that the sequence (d(Bn))n must become constant after finitely many steps.
Hence there exists an m ∈ N such that 0 < ε := d(Bm) = d(Bm+1) = · · · .
By Lemma 1.6 we have, for any n ≥ m and any a ∈ Bn, that

Bn = B−
ε (a) or Bn = Bε(a).

Moreover, which of the two equations holds is independent of the choice
of a by Lemma 1.2.ii. Case 1: We have Bn = Bε(a) for any n ≥ m and
any a ∈ Bn. It immediately follows that Bn = Bm for any n ≥ m and
hence that

⋂
n Bn = Bm. Case 2: There is an � ≥ m such that B� = B−

ε (a)
for any a ∈ B�. For any n ≥ � and any a ∈ Bn ⊆ B� we then obtain
B−

ε (a) = B� ⊇ Bn ⊇ B−
ε (a) so that B� = Bn and hence

⋂
n Bn = B�.

Exercise. Suppose that X is complete, and let B1 ⊃ B2 ⊃ · · · be a decreas-
ing sequence of balls in X such that d(B1) > d(B2) > · · · and infn d(Bn) > 0.
Then the subspace Y := X\(

⋂
n Bn) is complete but not spherically complete.

Lemma 1.8. Suppose that X is spherically complete; for any family (Bi)i∈I

of closed balls in X such that Bi ∩ Bj �= ∅ for any i, j ∈ I we then have⋂
i∈I Bi �= ∅.

Proof. We choose a sequence (in)n∈N of indices in I such that:

– d(Bi1) ≥ d(Bi2) ≥ · · · ≥ d(Bin) ≥ · · · ,

– for any i ∈ I there is an n ∈ N with d(Bi) ≥ d(Bin).

The proof of Lemma 1.6 shows that Bi = Bd(Bi)(a) for any a ∈ Bi. Our
assumption on the family (Bi)i therefore implies that:
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– Bi1 ⊇ Bi2 ⊇ · · · ⊇ Bin ⊇ · · · ,

– for any i ∈ I there is an n ∈ N with Bi ⊇ Bin .

We see that ⋂

i∈I

Bi =
⋂

n∈N

Bin �= ∅.

2 Nonarchimedean Fields

Let K be any field.

Definition. A nonarchimedean absolute value on K is a function

| | : K −→ R

which satisfies :

(i) |a| ≥ 0,

(ii) |a| = 0 if and only if a = 0,

(iii) |ab| = |a| · |b|,

(iv) |a + b| ≤ max(|a|, |b|).

Exercise. i. |n · 1| ≤ 1 for any n ∈ Z.

ii. | | : K× −→ R×
+ is a homomorphism of groups; in particular, |1| =

|−1| = 1.

iii. K is an ultrametric space with respect to the metric d(a, b) := |b − a|;
in particular, we have |a + b| = max(|a|, |b|) whenever |a| �= |b|.

iv. Addition and multiplication on the ultrametric space K are continuous
maps.

Definition. A nonarchimedean field (K, | |) is a field K equipped with a
nonarchimedean absolute value | | such that :

(i) | | is non-trivial, i. e., there is an a ∈ K with |a| �= 0, 1,

(ii) K is complete with respect to the metric d(a, b) := |b − a|.
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The most important class of examples is constructed as follows. We fix
a prime number p. Then

|a|p := p−r if a = pr m
n with r,m, n ∈ Z and p � |mn

is a nonarchimedean absolute value on the field Q of rational numbers. The
corresponding completion Qp is called the field of p-adic numbers. Of course,
it is nonarchimedean as well. We note that |Qp|p = pZ ∪ {0}. Hence Qp is
spherically complete by Lemma 1.7.ii. On the other hand we see that in the
ultrametric space Qp we can have Bε(a) = Bδ(a) even if ε �= δ. To have
more examples we state without proof (compare [Se1] Chap. II §§1–2) the
following fact. Let K/Qp be any finite extension of fields. Then

|a| := [K:Qp]
√
|NormK/Qp

(a)|p

is the unique extension of | |p to a nonarchimedean absolute value on K.
The corresponding ultrametric space K is complete and spherically complete
and, in fact, locally compact.

In the following we fix a nonarchimedean field (K, | |). By the strict
triangle inequality the closed unit ball

oK := B1(0)

is a subring of K, called the ring of integers in K, and the open unit ball

mK := B−
1 (0)

is an ideal in oK . Because of o×K = oK \mK this ideal mK is the only maximal
ideal of oK . The field oK/mK is called the residue class field of K.

Exercise 2.1. i. If the residue class field oK/mK has characteristic zero
then K has characteristic zero as well and we have |a| = 1 for any
nonzero a ∈ Q ⊆ K.

ii. If K has characteristic zero but oK/mK has characteristic p > 0 then
we have

|a| = |a|
− log |p|

log p
p for any a ∈ Q ⊆ K;

in particular, K contains Qp.

A nonarchimedean field K as in the second part of Exercise 2.1 is called
a p-adic field .
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Lemma 2.2. If K is p-adic then we have

|n| ≥ |n!| ≥ |p|
n−1
p−1 for any n ∈ N.

Proof. We may obviously assume that K = Qp. Then the reader should do
this as an exercise but also may consult [B-LL] Chap. II §8.1 Lemma 1.

Now let V be any K-vector space.

Definition. A (nonarchimedean) norm on V is a function ‖ ‖ : V −→ R

such that for any v, w ∈ V and any a ∈ K we have:

(i) ‖av‖ = |a| · ‖v‖,

(ii) ‖v + w‖ ≤ max(‖v‖, ‖w‖),

(iii) if ‖v‖ = 0 then v = 0.

Moreover, V is called normed if it is equipped with a norm.

Exercise. i. ‖v‖ ≥ 0 for any v ∈ V and ‖0‖ = 0.

ii. V is an ultrametric space with respect to the metric d(v, w) := ‖w−v‖;
in particular, we have ‖v +w‖ = max(‖v‖, ‖w‖) whenever ‖v‖ �= ‖w‖.

iii. Addition V × V
+−−→ V and scalar multiplication K × V −→ V are

continuous.

Lemma 2.3. Let (V1, ‖ ‖1) and (V2, ‖ ‖2) let two normed K-vector spaces;
a linear map f : V1 −→ V2 is continuous if and only if there is a constant
c > 0 such that

‖f(v)‖2 ≤ c · ‖v‖1 for any v ∈ V1.

Proof. We suppose first that such a constant c > 0 exists. Consider any
sequence (vn)n∈N in V1 which converges to some v ∈ V1. Then (‖vn − v‖1)n

and hence (‖f(vn)−f(v)‖2)n = (‖f(vn−v)‖2)n are zero sequences. It follows
that the sequence (f(vn))n converges to f(v) in V2. This means that f is
continuous.

Now we assume vice versa that f is continuous. We find a 0 < ε < 1
such that

Bε(0) ⊆ f−1(B1(0)).

Since | | is non-trivial we may assume that ε = |a| for some a ∈ K. In other
words

‖v‖1 ≤ |a| implies ‖f(v)‖2 ≤ 1
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for any v ∈ V1. Let now 0 �= v ∈ V1 be an arbitrary nonzero vector. We find
an m ∈ Z such that

|a|m+2 < ‖v‖1 ≤ |a|m+1.

Setting c := |a|−2 we obtain

‖f(v)‖2 = |a|m · ‖f(a−mv)‖2 ≤ |a|m < c · ‖v‖1.

Definition. The normed K-vector space (V, ‖ ‖) is called a K-Banach space
if V is complete with respect to the metric d(v, w) := ‖w − v‖.

Examples. 1) Kn with the norm ‖(a1, . . . , an)‖ := max1≤i≤n |ai| is a
K-Banach space.

2) Let I be a fixed but arbitrary index set. A family (ai)i∈I of elements in
K is called bounded if there is a c > 0 such that |ai| ≤ c for any i ∈ I.
The set

�∞(I) := set of all bounded families (ai)i∈I in K

with componentwise addition and scalar multiplication and with the
norm

‖(ai)i‖∞ := sup
i∈I

|ai|

is a K-Banach space.

3) With I as above let

c0(I) := {(ai)i∈I ∈ �∞(I) : for any ε > 0 we have |ai| ≥ ε

for at most finitely many i ∈ I}.

It is a closed vector subspace of �∞(I) and hence a K-Banach space
in its own right. Moreover, for (ai)i ∈ c0(I) we have

‖(ai)i‖∞ = max
i∈I

|ai|.

For example, c0(N) is the Banach space of all zero sequences in K.

Remark. Any K-Banach space (V, ‖ ‖) over a finite extension K/Qp which
satisfies ‖V ‖ ⊆ |K| is isometric to some K-Banach space (c0(I), ‖ ‖∞);
moreover, all such I have the same cardinality.
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Proof. Compare [NFA] Remark 10.2 and Lemma 10.3.

Let V and W be two normed K-vector spaces. From now on we denote,
unless this causes confusion, all occurring norms indiscriminately by ‖ ‖. It
is clear that

L(V,W ) := {f ∈ HomK(V,W ) : f is continuous}

is a vector subspace of HomK(V,W ). By Lemma 2.3 the operator norm

‖f‖ := sup
{
‖f(v)‖
‖v‖ : v ∈ V, v �= 0

}

= sup
{
‖f(v)‖
‖v‖ : v ∈ V, 0 < ‖v‖ ≤ 1

}

is well defined for any f ∈ L(V,W ).

Lemma 2.4. L(V,W ) with the operator norm is a normed K-vector space.

Proof. This is left to the reader as an exercise.

Proposition 2.5. If W is a K-Banach space then so, too, is L(V,W ).

Proof. Let (fn)n∈N be a Cauchy sequence in L(V,W ). Then, on the one
hand, (‖fn‖)n is a Cauchy sequence in R and therefore converges, of course.
On the other hand, because of

‖fn+1(v) − fn(v)‖ = ‖(fn+1 − fn)(v)‖ ≤ ‖fn+1 − fn‖ · ‖v‖

we obtain, for any v ∈ V , the Cauchy sequence (fn(v))n in W . By assumption
the limit f(v) := limn→∞ fn(v) exists in W . Obviously we have

f(av) = af(v) for any a ∈ K.

For v, v′ ∈ V we compute

f(v) + f(v′) = lim
n→∞

fn(v) + lim
n→∞

fn(v′) = lim
n→∞

(fn(v) + fn(v′))

= lim
n→∞

fn(v + v′) = f(v + v′).

This means that v �−→ f(v) is a K-linear map which we denote by f . Since

‖f(v)‖ = lim
n→∞

‖fn(v)‖ ≤ ( lim
n→∞

‖fn‖) · ‖v‖
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it follows from Lemma 2.3 that f is continuous. Finally the inequality

‖f − fn‖ = sup
{
‖(f − fn)(v)‖

‖v‖ : v �= 0
}

= sup
{

limm→∞ ‖fm(v) − fn(v)‖
‖v‖ : v �= 0

}

≤ lim
m→∞

‖fm − fn‖ ≤ sup
m≥n

‖fm+1 − fm‖

shows that f indeed is the limit of the sequence (fn)n in L(V,W ).

In particular,
V ′ := L(V,K)

always is a K-Banach space. It is called the dual space to V .

Lemma 2.6. Let I be an index set ; for any j ∈ I let 1j ∈ c0(I) denote the
family (ai)i∈I with ai = 0 for i �= j and aj = 1; then

c0(I)′
∼=−−→ �∞(I)

� �−→ (�(1i))i∈I

is an isometric linear isomorphism.

Proof. We give the proof only in the case I = N. The general case follows
the same line but requires the technical concept of summability (cf. [NFA]
end of §3). Let us denote the map in question by ι. Because of

|�(1i)| ≤ ‖�‖ · ‖1i‖∞ = ‖�‖

it is well defined and satisfies

‖ι(�)‖∞ ≤ ‖�‖ for any � ∈ c0(N)′.

For trivial reasons ι is a linear map. Consider now an arbitrary nonzero
vector v = (ai)i ∈ c0(N). In the Banach space c0(N) we then have the
convergent series expansion

v =
∑

i∈N

ai · 1i.

Applying any � ∈ c0(N)′ by continuity leads to

�(v) =
∑

i∈N

ai�(1i).
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We obtain

|�(v)|
‖v‖∞

≤ supi |ai||�(1i)|
supi |ai|

≤ sup
i

|�(1i)| = ‖ι(�)‖∞.

It follows that
‖�‖ ≤ ‖ι(�)‖∞

and together with the previous inequality that ι in fact is an isometry and
in particular is injective. For surjectivity let (ci)i ∈ �∞(N) be any vector and
put ε := ‖(ci)i‖∞. We consider the linear form

� : c0(N) −→ K

(ai)i �−→
∑

i

aici

(note that the defining sum is convergent). Using Lemma 2.3 together with
the inequality

|�((ai)i)| =

∣
∣
∣
∣
∣

∑

i

aici

∣
∣
∣
∣
∣
≤ sup

i
|ai||ci| ≤ sup

i
|ai| · sup

i
|ci| = ε · ‖(ai)i‖∞

we see that � is continuous. It remains to observe that

ι(�) = (�(1i))i = (ci)i.

3 Convergent Series

From now on throughout the book (K, | |) is a fixed nonarchimedean field.
For the convenience of the reader we collect in this section the most basic

facts about convergent series in Banach spaces (some of which we have used
already in the proof of Lemma 2.6).

Let (V, ‖ ‖) be a K-Banach space.

Lemma 3.1. Let (vn)n∈N be a sequence in V ; we then have:

i. The series
∑∞

n=1 vn is convergent if and only if limn→∞ vn = 0;

ii. if the limit v := limn→∞ vn exists in V and is nonzero then ‖vn‖ = ‖v‖
for all but finitely many n ∈ N;
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iii. let σ : N → N be any bijection and suppose that the series v =
∑∞

n=1 vn

is convergent in V ; then the series
∑∞

n=1 vσ(n) is convergent as well
with the same limit v.

Proof. i. This is immediate from Lemma 1.5. ii. If v �= 0 then ‖v‖ �= 0 and
hence ‖vn − v‖ < ‖v‖ for any sufficiently big n ∈ N. For these n Lemma 1.1
then implies that

‖vn‖ = ‖(vn − v) + v‖ = max(‖vn − v‖, ‖v‖) = ‖v‖.

iii. We fix an ε > 0 and choose an m ∈ N such that
∥
∥
∥
∥
∥
v −

s∑

n=1

vn

∥
∥
∥
∥
∥

< ε for any s ≥ m.

Then also

‖vs‖ =

∥
∥
∥
∥
∥

(

v−
s−1∑

n=1

vn

)

−
(

v−
s∑

n=1

vn

)∥
∥
∥
∥
∥
≤ max

(∥
∥
∥
∥
∥
v−

s−1∑

n=1

vn

∥
∥
∥
∥
∥
,

∥
∥
∥
∥
∥
v−

s∑

n=1

vn

∥
∥
∥
∥
∥

)

< ε

for any s > m. Setting � := max{σ−1(n) : n ≤ m} ≥ m we have

{σ−1(1), . . . , σ−1(m)} ⊆ {1, . . . , �}

and hence, for any s ≥ �,

{σ(1), . . . , σ(s)} = {1, . . . , m} ∪ {n1, . . . , ns−m}

with appropriate natural numbers ni > m. We conclude that
∥
∥
∥
∥
∥
v −

s∑

n=1

vσ(n)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(

v −
m∑

n=1

vn

)

− vn1 − · · · − vns−m

∥
∥
∥
∥
∥

≤ max

(∥
∥
∥
∥
∥
v −

m∑

n=1

vn

∥
∥
∥
∥
∥
, ‖vn1‖, . . . , ‖vns−m‖

)

< ε

for any s ≥ �.

The following identities between convergent series are obvious:

–
∑∞

n=1 avn = a ·
∑∞

n=1 vn for any a ∈ K.
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– (
∑∞

n=1 vn) + (
∑∞

n=1 wn) =
∑∞

n=1(vn + wn).

Lemma 3.2. Let
∑∞

n=1 an and
∑∞

n=1 vn be convergent series in K and V ,
respectively ; then the series

∑∞
n=1 wn with wn :=

∑
�+m=n a�vm is conver-

gent, and
∞∑

n=1

wn =

( ∞∑

n=1

an

)( ∞∑

n=1

vn

)

.

Proof. Let A := supn |an| and C := supn ‖vn‖. The other cases being trivial
we will assume that A,C > 0. For any given ε > 0 we find an N ∈ N such
that

|an| <
ε

C
and ‖vn‖ <

ε

A
for any n ≥ N.

Then

‖wn‖ ≤ max
�+m=n

|a�| · ‖vm‖ ≤ max
(
C · max

�≥N
|a�|, A · max

m≥N
‖vm‖

)
< ε

for any n ≥ 2N . By Lemma 3.1.i. the series
∑∞

n=1 wn therefore is convergent.
To establish the asserted identity we note that its left hand side is the limit
of the sequence

Ws :=
s∑

n=1

wn =
∑

�+m≤s

a�vm

whereas its right hand side is the limit of the sequence

W ′
s :=

(
s∑

n=1

an

)(
s∑

n=1

vn

)

=
∑

�,m≤s

a�vm.

It therefore suffices to show that the differences Ws − W ′
s converge to zero.

But we have

‖Ws − W ′
s‖ =

∥
∥
∥
∥
∥

∑

�,m≤s
�+m>s

a�vm

∥
∥
∥
∥
∥
≤ max

�,m≤s
�+m>s

|a�| · ‖vm‖

≤ max
(
C · max

�> s
2

|a�|, A · max
m> s

2

‖vm‖
)
.

Analogous assertions hold true for series
∑∞

n1,...,nr=1 vn1,...,nr indexed by
multi-indices in N× · · · ×N. But we point out the following additional fact.


