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Preface

These proceedings contain selected papers associated with the lectures presented
at BAIL 2010 (Boundary and Interior Layers – Computational and Asymptotic
Methods). This conference was held from 5 to 9 July 2010 at the University of
Zaragoza, Spain. The 64 participants came from many different countries, namely:
Argentina, China, France, Germany, India, Ireland, Italy, Russia, South Korea,
Spain, Sweden, the UK, and the USA. The BAIL series of conferences are the result
of an initiative by Professor John Miller, who organized the first three in Dublin
in 1980, 1982, and 1984. Subsequent conferences were then held in Novosibirsk
(1986), Shanghai (1988), Copper Mountain, Colorado (1992), Beijing (1994), Perth
(2002), Toulouse (2004), Göttingen (2006), and Limerick (2008). The next BAIL
Conference will be in Pohang, South Korea, in 2012.

Totally 61 lectures were presented at the BAIL 2010, of which 5 were ple-
nary lectures, 17 were given at the mini-symposia Finite Element Methods Using
Layer-Adapted Grids and Robust Methods for Time-Dependent Singularly Per-
turbed Problems, and 39 were contributions on other subjects. The main objective
of the BAIL conferences is to bring together researchers interested in boundary
and interior layers. This includes mathematicians and engineers who work on their
theoretical and numerical aspects, and also those researchers concerned with their
application to a variety of areas such as fluid dynamics, semiconductors, control
theory, chemical reactions, and porous media.

The lectures presented at the conference showed the diversity of investigations
related to these topics. The proceedings provide a unique overview of research into
various aspects of singularly perturbed problems and in particular the efficient res-
olution of boundary and interior layers using numerical methods. They also include
examples of applications of this class of problems.

All papers in the proceedings were subjected to a standardized refereeing pro-
cess. We would like to thank the authors for their cooperation in the publication
of their work in this volume of LNCSE and also the anonymous referees for their
work and dedication, without which it would have been impossible to produce this
publication.

Finally, we wish to thank the sponsors of the conference: the Spanish Govern-
ment’s project MTM2009-07637-E, the Government of Aragón, the University
of Zaragoza, and the Instituto Universitario de Matemáticas y Aplicaciones. Our
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thanks also go to the members of the Scientific Committee, the organizers of the
mini-symposia, all the attendees for their participation in the conference, and the
research group Numerical Methods for Partial Differential and Integral Equations
for its work in handling all organizational tasks.

January 2010 Carmelo Clavero
José Luis Gracia

Francisco Lisbona
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Modeling Acoustic Streaming On A Vibrating
Particle

Rajai S. Alassar

Abstract In this study, we present the details of a Legendre series truncation
method where the stream function and vorticity are expanded in terms of associ-
ated Legendre functions to calculate the secondary currents induced by a vibrating
spherical particle. The time-dependent differential equations which result from the
expansions are solved using a Crank-Nicolson numerical scheme.

1 Introduction

The phenomenon of secondary currents produced by the vibration of a particle in a
fluid has been observed for a long time. A good review on the subject can be found in
Kotas et al. [1], Lighthill [2], and Riley [3,4]. The importance of this phenomenon is
currently gaining momentum due to the hypothesis of Yoda et al. [5]. Current mod-
els of hearing state that a fish directionalizes sound via direct stimulation of macular
hair cells by acoustic particle velocity (Shellart and de Munck [6], Rogers et al. [7]).
Yoda et al. [5] hypothesize, instead, that the fish ear is an “auditory retina,” where
macular hair cells are stimulated by acoustically-induced flow velocities (i.e. sec-
ondary currents). The densely packed hair cells visualize the flow patterns due to
the acoustically induced flow in the complex three-dimensional geometry between
the otolith and the macula, much like a tuft visualization. The complex geometry
of fish otoliths may help to distinguish flow patterns for sound from different direc-
tions. By converting acoustic signals into spatial patterns sampled with extremely
high spatial resolution by the macular hair cells, directionalizing sound becomes a
pattern recognition problem, not unlike the visual patterns imaged by the retina.

In this paper, the secondary currents caused by the harmonic oscillation of an
infinite body of fluid past a spherical particle are calculated by a semi analytical
method. The stream function and vorticity are first expanded in terms of associated

R.S. Alassar
King Fahd University of Petroleum & Minerals, Department of Mathematics and Statistics,
Box # 1620, Dhahran 31261, Saudi Arabia
e-mail: alassar@kfupm.edu.sa
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2 R.S. Alassar

Legendre functions and the resulting time-dependent differential equations are then
solved using a Crank-Nicolson numerical scheme. Although no intention is made
here to describe the mechanism of fish hearing, the study offers an initial numerical
exploration into the relevance of the acoustically-induced flow to directionalization
of sound and characterizing the steady streaming region (practically the region that
would be sampled by the hair cells next to the sphere which is considered as a sim-
plified geometry of the fish otolith). It is important to mention here that a study on
the physics of steady streaming has been conducted by the present author, [8]. The
present paper, however, is different in that it presents the mathematics behind the
semi-analytical technique used. It shows how some interesting integrals of special
functions developed by the author are incorporated and made use of in the context
of steady streaming.

We consider a solid spherical particle of diameter 2a suspended in an unbounded
oscillating incompressible stream, Fig. 1. The unsteady but uniform free-stream
exhibits a sinusoidal oscillatory motion. The fluid motion is governed by the conser-
vation principles of momentum and mass which can be expressed by the following
equations:

�

�
@w
@t

C .w � r/w
�

D �rp C F C �r2w (1)

r � w D 0 (2)

Fig. 1 Sphere in oscillating
stream
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where � is the fluid density, t is time, w is the velocity vector, p is the pressure in
the fluid, F is the body force vector, and � is the dynamic viscosity.

2 Method of Solution

First, we recast the equations governing the flow process (1–2) in spherical coordi-
nates. The equations governing, in spherical coordinates, can be written in terms of
the dimensionless vorticity (�/ and the dimensionless stream function ( / as:

e3� sin � � C @2 

@�2
C @2 

@�2
� @ 

@�
� cot �

@ 

@�
D 0 (3)

e2�
@�

@t
C e��

sin �

�
@ 

@�
.
@�

@�
� �/� @ 

@�
.
@�

@�
� cot � �/

�
(4)

D 2

Re

�
@2�

@�2
C @2�

@�2
C @�

@�
C cot �

@�

@�
� �

sin2 �

�

where Re D 2aUo=� is the Reynolds number, Uo is the amplitude of the free-
stream velocity, and � is the coefficient of kinematic viscosity. The logarithmic
transformation � D ln.r=a/ is used, where r is the dimensional radial distance.
The variables , �, and t�(the star is dropped in 3–4) in the governing equations are
defined in terms of the usual dimensional quantities 0, � 0, and t as:  D  0=Uoa2,
� D � 0a=Uo, and t� D Uo t=a.

The oscillations of the free-stream velocity are given in the form U D U 0=Uo D
cos.S t/ where U 0 is the dimensional free-stream velocity, and S D a!=Uo is the
Strouhal number with ! being the frequency of oscillations.

The boundary conditions to be satisfied are the no slip and impermeability con-
ditions on the surface of the sphere and the free-stream conditions away from it.
These can be written as:

 D @ 

@�
D @ 

@�
D 0 at � D 0 (5)

@ 

@�
! e2� sin2 � cos.S t/ ; and @ 

@�
! e2� sin � cos � cos.S t/

or;  ! e2�

2
sin2 � cos.S t/

� ! 0 ;

9>>>=
>>>;
as � ! 1 (6)

In order to solve the governing equations subject to the boundary conditions, we
adopt a series truncation method based on expanding  and � using Associated
Legendre polynomials, Alassar et al. [9], as:

�
 

�

�
D

8̂
<̂
ˆ̂:

1P
nD1

fn.�; t/
1R
z
Pn.�/ d�

1P
nD1

gn.�; t/ P
1
n .z/

9>>=
>>;

(7)
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where Pn.z/ and P 1n .z/ are the Legendre and first associated Legendre polyno-
mials of order n respectively, and z D cos � . The integrals needed to undergo the
transformation of the differential equations onto the modes of the series (7) can be
obtained using an approach similar to that reported by Mavromatis and Alassar [10].

The Legendre function Pn.x/ , as known to physicists, usually arises in studies
of systems with three dimensional spherical symmetry. They satisfy the differen-
tial equation .1 � x2/y00 � 2xy0 C n.n C 1/y D 0, and the orthogonality relation
1R

�1
Pm.x/Pn.x/ dx D 0 for n ¤ m. The first associated Legendre function P 1n .x/

is a special case of the more general associated Legendre functions (not necessarily
polynomials) Pmn .x/ which are obtained from derivatives of the Legendre polyno-
mials according to Pmn .x/ D .�1/m.1�x2/m=2 dm Pn.x/

d zm . Notice thatPmn .x/ reduce
to Pn.x/ form D 0.

Substituting from (7) into (3–4) and integrating over z from �1 to 1, the following
expressions can be obtained by manipulation of the Legendre functions,

@2fn

@�2
� .nC 1=2/2 fn D n.nC 1/ e5=2� gn (8)

e2�
@gn

@t
D 2

Re

�
@2gn

@�2
C @gn

@�
� n.nC 1/ gn

�
C Sn (9)

where,

Sn D �e��=2
"

1P
iD1

1P
jD1

˛nij fi .
@gj

@�
� gj /C

1P
iD1

1P
jD1

ˇnij gj .
@fi

@�
C 1

2
fi /

#
(10)

˛nij D �.2nC 1/

s
j.j C 1/

n.nC 1/

�
n i j

�1 0 1
� �

n i j

0 0 0

�
(11)

ˇnij D .2nC 1/

s
j.j 2 � 1/.j C 2/

n.nC 1/ i.i C 1/

�
n i j

�1 �1 2
� �

n i j

0 0 0

�
(12)

and (
j1 j2 j3
m1 m2 m3

/ are the 3-j symbols.

The power of this technique is evident through the fact that the series expansions
resulted in the elimination of the independent variable (�/. The governing equations
are now written in the form of a set of differential equations with the dependent
variables being the coefficients (fn ; gn/ of the series. The resulting equations rep-
resent two sets of differential equations, with every set containing infinite number
of equations, as compared to the original two partial differential equations. How-
ever, we will solve only few of these equations and yet obtain a highly accurate
solution.
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In the process of obtaining (8–9), one encounters integrals such as
1R

�1
P kn .z/

P km.z/ d z;
1R

�1
P 1n .z/ P

1
i .z/ Pj .z/ d z,

1R
�1
P 1n .z/ P

1
i .z/ P

2
j .z/ d z, and others. These

integrals make it possible to eliminate the angular direction � . They are of the
general form:

1Z
�1
P
m1

j1
.z/ Pm2

j2
.z/ Pm3

j3
.z/ d z (13)

These integrals are very essential and can be obtained from the following relation:

1R
�1
P
m1

j1
.z/ Pm2

j2
.z/ Pm3

j3
.z/ d z D

q
.j2Cm2/Š.j1Cm1/Š
.j2�m2/Š.j1�m1/Š

�P
n

"
.�1/m1Cm2 .2nC 1/

 
j1 j2 n

0 0 0

!  
j1 j2 n

m1 m2 �m1 �m2

!

�
q
.n�m1�m2/Š
.nCm1Cm2/Š

1R
�1
P
m3

j3
.z/ Pm2Cm1

n .z/ d z

#

(14)
where jj1 � j2j � n � j1 C j2 , and

1R
�1

P
m1
j1
.z/ Pm2

j2
.z/ dz D .�1/m2 	

22.jm2�m1j/C1 
 . 12 C

j
m2�m1j

2 / 
 . 32 C

j
m2�m1j

2 /

q
.j1Cm1/Š.j2Cm2/Š

.j1�m1/Š.j2�m2/Š

�P
k

.�1/�m1Cm2.2k C 1/

 
j1 j2 k

0 0 0

!  
j1 j2 k

�m1 m2 m1 �m2

!

�.1C .�1/kCjm2�m1j/

q
.kCjm2�m1j/Š

.k�jm2�m1j/Š

�3F2

h
jm2�m1jCkC1

2
;

jm2�m1j�k

2
;

jm2�m1j

2
C 1I jm2 �m1j C1; 3Cjm2�m1j

2
I 1
i

(15)

where, jj1 � j2j � k � j1 C j2 , 
 is the Gamma function, and 3F2 is the general-
ized hypergeometric function. A detailed discussion on these integrals can be found
in Mavromatis and Alassar [10] who showed that the hypergeometric function in
(15) is always a finite series, and indeed is also Saalschutzian, i.e.

3F2

h jm2�m1jCkC1
2

; jm2�m1j�k
2

; jm2�m1j
2

C 1I jm2 �m1j C1; 3Cjm2�m1j
2

I 1
i

D
� .1=2/� .k=2/� .jm2�m1jC1/� .�k=2�1=2/

� ..jm2�m1j�k/=2C1=2/� .jm2�m1j=2/� ..jm2�m1jCk/=2C1/� .�jm2�m1j=2�1=2/
(16)

The 3-j symbols .
j1 j2 j3
m1 m2 m3

/ are transformation coefficients that appear in the

problem of adding angular momenta. They represent the probability amplitude that
three angular momenta j1; j2; and j3 with projectionsm1; m2; andm3 are coupled
to yield zero angular momentum. They are related to the famous Clebsch-Gordan
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coefficients (C). These symbols, however, possess simpler symmetry properties. The
relation between the 3-j symbols and the Clebsch-Gordan coefficients is given by:

.
j1 j2 j3
m1 m2 m3

/ D .�1/j3Cm3C2j1
1p

2j3 C 1
C
j3m3

j1�m1j2�m2
(17)

Many representations of the 3-j symbols are available. They may be represented by
the square 3�3 array of the Regge R-symbol, by algebraic sums, or in terms of the
generalized hypergeometric function of unit argument (3F2/. The following formula
should give a flavor of the many representations available:

C
c�

a˛bˇ
D ı�;˛Cˇ �.abc/

.aCb�c/Š.�bCcC˛/Š.�aCc�ˇ/Š
h
.aC˛/Š.b�ˇ/Š.cC�/Š.c��/Š.2cC1/Š

.a�˛/Š.bCˇ/Š
i 1

2

�3F2
2
4 �a � b C c;�a C ˛;�b � ˇ

�aC c � ˇ C 1;�b C c C ˛ C 1

ˇ̌
ˇ̌̌
ˇ1
3
5

(18)
where,

�.abc/ D
�
.a C b � c/Š.a � b C c/Š.�a C b C c/Š

.aC b C c C 1/Š

� 1
2

(19)

For detailed discussion, representations, properties, and tabulated values, the reader
is referred to Varshalovich et al. [11, pp. 235–411]. The 3-j symbols can also be
obtained through the famous software MATHEMATICA.

The boundary conditions (5–6) are transferred on to the modes of the series (7)
by utilizing the same process by which the differential equations are treated with.
The boundary conditions can now be written as:

fn.0; t/ D @fn

@�
.0; t/ D 0 (20)

fn.�; t/ ! e3=2� cos.St/ ın1 ;
@fn.�; t/

@�
! 3

2
e3=2� cos.St/ ın1 as � ! 1

(21)

gn.�; t/ ! 0 as � ! 1 (22)

where ıij is the Kronecker delta.
Finally, an integral condition based on (8) to be satisfied by the functions gn can

be obtained after making use of the boundary conditions (20–22) as:

1Z
0

e.2�n/ �gn d� D 3

2
cos.St/ ın1 (23)

The solutions of the functions and � are advanced in time by first solving (9) using
a Crank-Nicolson finite-difference scheme similar to that used by Dennis et al. [12].
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Since the problem is solved numerically the conditions at 1 are applied at � D
�mwhere �mdefines the distance away from the sphere at which � has negligible
value. Equation (9), when written in difference form using the Crank-Nicolson finite
difference scheme and applied at every mesh point in the range from � D 0 to � D
�m, will result in a set of algebraic equations that forms a tridiagonal matrix problem
which is solved for each value of n between 1 and N iteratively. N designates the
number of terms taken in the series defined in (7). The boundary conditions gn.0; t/
which are needed to complete the integration procedure are obtained by writing the
integral condition defined in (19) as a numerical quadrature formula which then
relates the boundary value to values of the corresponding function at internal points
of the computational domain. This gives the extra condition needed to determine the
boundary values for gnand thus the formulation of the solution of (9) is complete.

A straightforward finite-difference solution for (8) results in an unstable solution
especially for large n. Therefore, the solution of these equations is obtained using
a step-by-step integration scheme modified from that used by Badr et al. [13]. The
method is based on splitting (8) into two first order differential equations one of
which is integrated by a stable method in the direction of increasing �while the
other is integrated in the backward direction from � D 1 to � D 0. The method
is well explained by Badr et al. [13] and can be easily modified to suit our problem
and need not be discussed further.

The whole iterative numerical scheme can be summarized as follows:
At time t , the known solution at time (t ��t/ is used as a starting solution. The

tridiagonal system resulting from (9) with the most recently available information
is solved to obtain the functions gn.�; t/. Secondly, we apply the integral condi-
tion (19) to obtain a better approximation for gn.0; t/. Then, (8) is solved using the
stable step-by-step numerical procedure mentioned above to obtain fn.�; t/. The
procedure is then repeated until convergence is reached. The condition set for con-
vergence is

ˇ̌
gmC1
n .�/ � gmn .�/

ˇ̌
< 10�10 where m denotes the iteration number.

Time is then incremented and the whole process is repeated.
Following the start of fluid motion, very small time steps were used since the time

variation of vorticity is quite fast. As time increases, the time step was gradually
increased. Smaller time steps were used for higher Strouhal numbers. The number
of points in the �direction used is 201 with a space step of 0.025. This makes �m D 5

which sets the outer boundary at a physical distance of approximately 148 times the
radius of the sphere. This is necessary to ensure that the conditions at infinity are
appropriately incorporated in the numerical solution. The effect of �m on the flow
field near the sphere was examined by comparing the results when using differ-
ent values of �m. The effect of the step size on the flow field near the sphere was
also examined by comparing the results when using different values. No significant
changes in the values of the drag or the surface vorticity were detected by reducing
the step size further than the given value. As there is no intrinsic way to determine
them, the total number of terms taken in the series was found by numerical experi-
ments. The number of terms taken in the series starts with only 3 terms. One more
term is added when the last term in the series exceeds 10�6. The total number of
terms is dependent on Reynolds and Strouhal numbers. More terms are needed for
high Reynolds and low Strouhal numbers.
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One last modification is taken here through defining a dimensionless time �
which is related to the previously defined dimensionless time t by

� D St=2	 (24)

Scaling time by the Strouhal number is appropriate in dealing with relatively high-
frequency flows. Consequently, each cycle has a period of unity with 400 divisions
and �� D 0:0025.

The accuracy of the method of solution was verified by Alassar et al. [9] through
comparisons with the forced and mixed convection cases available in the literature
such as Wong et al. [14], Sayegh and Gauvin [15], Dennis and Walker [16], and
others. The comparisons were satisfactory.

Figure 2 shows the secondary currents calculated by the present method for the
cases Re D 5; 50, and 200 with S D 	=4 and a photo from experiments by Kotas
et al. [1].

Fig. 2 Secondary currents for the cases Re D 5, 50, and 200 with S D 	=4200, and a photo from
experiments by Kotas et al. [1]
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Fig. 3 Variation of dn with S

An important characteristic length is the distance from the center of the sphere to
the center of the near (inner) recirculation region dn. Figure 3 shows the variation of
dn with Strouhal and Reynolds numbers. As S increases, the distance from the center
of the sphere to the center of the inner rotating region (stagnation point) becomes
smaller for all Re cases. Obviously, dn is smaller for higher Reynolds numbers.
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Performance of Stabilized Higher-Order
Methods for Nonstationary
Convection-Diffusion-Reaction Equations

Markus Bause

Abstract We study the performance properties of a class of stabilized higher-
order finite element approximations of convection-diffusion-reaction models with
nonlinear reaction mechanisms. Streamline upwind Petrov-Galerkin (SUPG) sta-
bilization together with anisotropic shock-capturing as an additional stabilization
in crosswind-direction is used. We show that these techniques reduce spurious
oscillations in crosswind-direction and increase the accuracy of simulations.

1 Introduction

Time-dependent convection-diffusion-reaction equations

@tu C b � ru � r � .aru/C r.u/ D f (1)

are often studied in various technical and environmental applications. Here, u D
u.x; t/ denotes the unknown where x 2 ˝ � Rd , with d 	 2, and t 2 .0; T / for
some T > 0. Further, a 2 L1.0; T IW 1;1.˝// is the diffusion coefficient, b 2
L1.0; T I W 1;1.˝// is the velocity field, r 2 C 1.RC

0 / is the parametrization of
the reaction rate and f 2 L2.0; T IL2.˝// is a prescribed right-hand side term. We
suppose that r � b.x; t/ D 0 and a.x; t/ 	 ˛ > 0 almost everywhere. Throughout
the paper we use standard notation.

The accurate numerical approximation of (1) is still a challenging task. In appli-
cations, the transport equation (1) is often convection- and/or reaction-dominated
and characteristic solutions have sharp layers. In these cases standard finite element
methods cannot be applied. Stabilized finite element approaches are required. For a
review of these techniques we refer to the recent work of John and Schmeyer [3].

M. Bause
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Stabilization methods are well-understood for linear steady convection-diffusion-
reaction problems; cf., e.g., [3, 4]. However, there is still a considerable lack in
the analysis, design and application of these methods for unsteady nonlinear prob-
lems which is addressed here. Rigorous analyses are rare for the unsteady and
nonlinear case.

2 Discretization Scheme

Equipping (1) with initial and homogeneous Dirichlet boundary conditions and dis-
cretizing (1) in time by the �-scheme, with � 2 .0; 1, leads to a sequence of
stationary boundary value problems: Find fukgN

kD1 such that

˛kuk C �b.tk/ � ruk � �r � .a.tk/ruk/C � r.uk/ D Qf k in ˝ ; (2)

with Qf k D ˛kuk�1 C �f .tk/C .1 � �/f .tk�1/ � .1 � �/b.tk�1/ � ruk�1 C .1 �
�/r � .a.tk�1/ruk�1/ � .1 � �/r.uk�1/, ˛k D 1=.tk � tk�1/ and uk D 0 on @˝ ,
u0 D u.t0/.

In the sequel, we suppose that the solution u of (1) is non-negative and bounded
from above, i.e., 0 DW u0 � u � u1 almost everywhere in ˝ � .0; T /, which
is admissible from the sake of physical realism, for instance, if u denotes the
concentration of a chemical species. We make the assumption that

r 2 C 1.RC
0 / ; r.0/ D 0 ; r 0.s/ 	 r0 	 0 for s 	 0 ; s 2 R : (3)

To calculate approximations of fukgN
kD1, a standard hp-version of the finite ele-

ment method is assumed; cf. [1, 4, 7]. For a family of admissible and shape-regular
triangulations Th D fT g of the polyhedral domain˝ � Rd let

V
p

h
D X

p

h
\H 1

0 .˝/ with X
p

h
D fv 2 C.˝/ j vjT ı FT 2 PpT

.bT / 8T 2 Thg

denote the underlying finite element space of piecewise polynomials of local order
pT for all T 2 Th. Here, bT is the (open) unit simplex or the (open) unit hypercube
in Rd and Pn.bT /, with n 	 1, is the set of all polynomials of degree at most n onbT .
We assume that each T 2 Th is a smooth bijective image of bT , i.e., T D FT .bT /.
The vector p is defined by p D fpT j T 2 Thg. In our analysis the local inverse
inequalities

krwhkL2.T / � �invp
2
T h

�1
T kwkL2.T / 8wh 2 Xp

h
on T 2 Th (4)

are applied. Here, �inv depends on the shape-regularity parameter; cf. [7].
Skipping for brevity the indices in (2), the SUPG-stabilized approximation of (2)

is: Find uh 2 V p

h
such that

As.uh; vh/ D Ls.vh/ (5)


