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Preface

The theory of stochastic processes has developed rapidly in the past decades.
Martingale theory and the study of smooth diffusion processes as solutions
of stochastic differential equations have been extended in several directions,
such as the study of infinite dimensional diffusion processes, the study of
diffusion processes with non-smooth unbounded coefficients, diffusion pro-
cesses on manifolds and on singular spaces. The interplay between stochastic
analysis and mathematical physics has been one of the most important and
exciting research areas.

One of the best techniques to deal with the problems of these areas is
Dirichlet space theory. In the original framework of this theory, the state
space is a locally compact separable metric space, e.g., R

d, or a d-dimensional
manifold. This theory has given us a nice understanding about the property
of diffusion processes with non-smooth unbounded coefficients. Moreover,
it has been fruitfully applied to mathematical physics. This framework has
been generalized to state spaces which are more general topological spaces
or some infinite dimensional vector spaces or manifolds. Several key prob-
lems, such as the closability of quadratic forms and the construction of
strong Markov processes associated with quasi-regular Dirichlet forms, have
been solved. The study of infinite dimensional stochastic analysis as well
as the study of processes on singular structures (like fractals, trees, or gen-
eral metric spaces) has enriched and extended the Dirichlet space theory. In
the meantime, a new framework has been introduced into Dirichlet space
theory by the development of nonstandard probabilistic analysis [25, 166].
As is well-known, nonstandard analysis is an alternative setting for analysis
(and, indeed, all areas of mathematics), namely by enriching the set of real
numbers by infinitesimal and infinite elements. It has its origin in seminal
work by Schmieden, Laugwitz [325] and most notably Robinson [310]. By
now, several textbooks and surveys exist on this theory and its applications
(see, e.g. [25, 63, 125, 217]). Nonstandard analysis gives a novel approach to
the theory of stochastic processes. In particular, it has led to hyperfinite sym-
metric Dirichlet space theory. Besides being interesting by itself, it has also
many applications. In the first part of the book, we extend the research to the
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viii Preface

nonsymmetric case, and remove some restrictive conditions in the previous
treatment of the subject (Chap. 5 of [25]). In addition, we shall apply the
theory to present a new approach to infinite dimensional stochastic analysis.

In writing this book we have two main aims: (1) to give a presenta-
tion of research on nonsymmetric hyperfinite Dirichlet space theory and its
applications in (standard) finite and infinite dimensional stochastic analy-
sis, Chaps. 1–4; (2) to find nonstandard representations for a special class
of (finite dimensional) Feller processes and their infinitesimal generators,
viz. stochastically continuous processes with stationary and independent
increments (i.e., Lévy processes), Chap. 5. Chapter 6 is a complement to
illustrate the usefulness of the hyperfinite probability spaces. The first part
(Chaps. 1–4) is based on Chap. 5 of Albeverio et al. [25] and the further in
depth research of Sergio and Ruzong; the second part (Chaps. 5–6) is based
on results obtained recently by Tom Lindstrøm and their extensions by Sergio
and Frederik.

As mentioned earlier, the interplay between stochastic analysis and math-
ematical physics has been one of the most important and exciting themes
of research in the last decades. This is already a sufficient rationale for
the research of the first part of the present book. The motivation for including
the second part, Chap. 5, into this book is that many of the issues dis-
cussed in the more general framework of the first part, such as existence
of standard parts of hyperfinite Markov chains, become much less technical
to resolve for hyperfinite Lévy processes. Furthermore, the more restrictive
setting of the second part also allows one to obtain finer results on the rela-
tion between Lévy processes and their hyperfinite analogues, one example
being a hyperfinite version of the Lévy–Khintchine formula.

The contents of this book are arranged as follows: In Chap. 1, we intro-
duce the framework of hyperfinite Dirichlet forms. We develop the potential
theory of hyperfinite Dirichlet forms in Chap. 2. In Chap. 3, we consider stan-
dard representations of hyperfinite Markov chains under certain conditions,
and translate the conditions on hyperfinite Markov chains into the language
of hyperfinite Dirichlet forms. As an interesting and important application
in classical stochastic analysis, we construct tight dual strong Markov pro-
cesses associated with quasi-regular Dirichlet forms by using the language
of hyperfinite Dirichlet forms in Chap. 4. The results show that hyperfinite
Dirichlet space theory is a powerful tool to study classical problems. In the
first sections of Chap. 5, the notion of a hyperfinite Lévy process is introduced
and its relation to hyperfinite random walks as well as to standard Lévy pro-
cesses is investigated. These results can be used to show that the jump part of
any Lévy process is essentially a hyperfinite convolution of Poisson processes.
Finally, Chap. 6 is an epilogue, providing a rigorous motivation for the study
of hyperfinite Loeb path spaces as generic probability spaces.
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The entire book is based on nonstandard analysis. For the reader’s con-
venience, we present some basic notions of nonstandard analysis, such as
internal sets and saturation, linear spaces, Loeb measure spaces, structure
of ∗

R and topology in the appendix. Because of its monographical character
centered around the hyperfinite approach, the book has by no means the
goal of including all aspects of recent developments in the theory of stochas-
tic processes and its connections with Dirichlet forms theory or the theory
of Lévy processes. For this, we rather refer to surveys and proceedings like
Albeverio [2], Barndorff-Nielsen et al. [73], and Ma et al. [275], respectively.

The germ of this book goes back to the year 1989 when the second author,
Ruzong Fan, worked on the construction of symmetric Markov processes asso-
ciated with Dirichlet forms at Peking University, Beijing ([165] and Chap. 4).
At that time, Ruzong was unaware that Sergio’s group was working on the
same project using standard methods [41]. The second author, Dr. Zhiming
Ma, of [41] did privately inquire Ruzong about the progress of Ruzong’s
research in 1989 at the Institute of Applied Mathematics, Chinese Academy
of Sciences, Beijing. In response to Dr. Ma’s request of a private meeting,
Ruzong presented his work to Dr. Ma in a classroom with Dr. Ma as the
only audience. Dr. Ma, however, did not mention his ongoing work with
Sergio in any way. Thus, Ruzong was totally unaware of Sergio’s research.
In the spring of 1990, Ruzong first realized this when he saw a manuscript
of Albeverio and Ma [41] in Beijing with a surprise. These events notwith-
standing, Ruzong continued to work on a “symmetric version” of Chaps. 1–4
using non-standard language when he was at Peking University till 1991 and
when he visited the Humboldt-University, Berlin, between 1991 and 1992.
Under Sergio’s supervision and encouragement, Ruzong extended the project
to the current “nonsymmetric version” from 1992 to 1994 at Ruhr-University,
Bochum. In 2006, Frederik kindly joined the project with a contribution on
hyperfinite Lévy processes (Chap. 5) and the Epilogue (Chap. 6). In the sum-
mer of 2006, the three authors gathered at the University of Bonn to finalize
this monograph. We gratefully acknowledge the manifold support of various
institutions in the long process of work on this project.

In the run-up to its completion, Sergio and Frederik were supported par-
tially by the collaborative research center SFB 611 of the German Research
Foundation (DFG), Germany; in addition, Ruzong’s visit to Bonn was par-
tially funded through a research fellowship from the Alexander von Humboldt
Foundation, Germany.

Over the course of his career, Ruzong has received a lot of generous sup-
port from Sergio. As a Ph.D candidate in Beijing around 1987–1988, Ruzong
was greatly fascinated by Sergio and Raphael Høegh-Krohn’s novel work on
infinite dimensional stochastic analysis, in which Ruzong finished his Ph.D
thesis. Unfortunately, Ruzong got no chance to meet Raphael Høegh-Krohn;
right before Ruzong went to Europe, he was shocked to learn that Raphael
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Høegh-Krohn died of a heart attack. In a relatively isolated environment,
Ruzong mostly worked on himself by reading numerous papers and books of
Sergio and Raphael Høegh-Krohn; and many times, Ruzong had to spend
a few days on a single equation or lemma to guess and to understand it.
Whilst it seemed like a helpless or hopeless situation for Ruzong at that time,
Ruzong eventually came to the forefront of research in areas of infinite dimen-
sional stochastic analysis: he studied the hard and central questions regarding
Beurling–Deny formulae, representation of martingale additive functionals
and absolute continuity of symmetric diffusion processes on Banach spaces,
potential theory of symmetric hyperfinite Dirichlet forms, and construction of
the symmetric strong Markov processes associated with quasi-regular Dirich-
let forms by using the non-standard analysis language. This direction of
research was initiated by Sergio, although Ruzong was unaware that Sergio’s
group already worked on the construction of Markov processes using the
language of standard stochastic analysis.

In early 1989, Ruzong applied for a fellowship from the Alexander von
Humboldt Foundation from Peking University, Beijing; soon after a rejection
from the Foundation in the fall 1989, Ruzong received a warm letter from
Sergio with encouragement and a kind offer to nominate, as an academic host,
Ruzong for the fellowship and by writing a strong letter of recommendation.
This is just one anecdote to illustrate how Ruzong has constantly been able
to count on Sergio’s help via communications by either mail or face-to-face
conversations starting from 1989. Between 1992 and 1994, Sergio generously
supported Ruzong at Ruhr-University Bochum to complete the main part of
Chaps. 1–4 of this monograph, and helped Ruzong to pass the hard period of
time in his career.

The story of Ruzong is an example how Sergio has helped many young
mathematicians to grow and to mature. Quite probably, Ruzong would have
disappeared from academia a long time ago without the support of Sergio. In a
true sense, Sergio has been an academic father figure for Ruzong when he des-
perately needed one. In recent years, after his departure from Sergio’s research
group, Ruzong has been mainly working on statistical genetics guided by his
beloved American mentor, Dr. Kenneth Lange, at the University of Michigan
and UCLA. Nevertheless, Ruzong has fond memories and deep appreciation
of numerous communications with his European academic father Sergio; and
both Ruzong and Frederik are deeply grateful for Sergio’s mentoring.

Thus, especially right after Sergio’s 70th birthday in 2009 – which also
marks the 50th anniversary of his remarkable scientific career –, Ruzong
and Frederik are sure that they will be joined by many other young math-
ematicians in thanking Sergio for his wonderful role in our professional and
personal development and in wishing him all the best for the rest of his life:
Not just continued productivity, but most of all good health, happiness, joy,
and peace.
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We owe a huge debt of gratitude to our families: In the summer of 2006,
Dr. Li Zhu (Ruzong’s wife) kindly took care of two young children when her
husband was visiting Bonn. Their adorable daughter, Olivia Wenlu Fan, was
with the second author in Germany for the “hot and interesting” summer of
Bonn, where she liked everything except German milk. Frederik thanks his
wife, Angélique Herzberg, for her love and manifold support with the words
of Proverbs 31,10–12: “A wife of noble character [. . . ] is worth far more than
rubies. Her husband [. . . ] lacks nothing of value. She brings him good [. . . ]
all the days of her life.” We are all very grateful to our families for their love
and understanding during the entire process of writing this book.

Finally, we would like to thank Dr. Catriona Byrne as well as Susanne
Denskus and Ute McCrory of Springer Verlag for their kind, unfainting
editorial assistance in the long process of publishing this work.
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Chapter 1
Hyperfinite Dirichlet Forms

The interplay between methods from functional analysis and the theory of
stochastic processes is one of the most important and exciting aspects of
mathematical physics today. It is a highly technical and sophisticated theory
based on decades of research in both areas. Numerous papers have been writ-
ten on the standard theory of Dirichlet forms. Apart from the articles and
monographs cited below, other notable contributions to the area include:
Albeverio and Bernabei [5], Albeverio, Kondratiev, and Röckner [32], Albev-
erio and Kondratiev [33], Albeverio and Ma [39], Albeverio, Rüdiger, and Wu
[54], Bliedtner [94], Bouleau [98], Bouleau and Hirsch [99], Chen et al. [112],
Chen, Ma, and Röckner [116], Eberle [149], Exner [154], Fabes, Fukushima,
Gross, Kenig, Röckner, and Stroock [155], Fitzsimmons and Kuwae [172],
Fukushima [177,179,180], Fukushima and Tanaka [185], Fukushima and Ying
[188,189], Gesztesy et al. [191,192], Grothaus et al. [198], Hesse et al. [208],
Jacob [218–220], Jacob and Moroz [221], Jacob and Schilling [222], Jost et
al. [225], Kassmann [232], Kim et al. [240], Kumagai and Sturm [248], Le
Jan [258], Liskevich and Röckner [265], Ma and Röckner [272, 273], Ma et
al. [274], Mosco [283], Okura [292], Oshima [294,295], D.W. Robinson [312],
Röckner and Wang [317], Röckner and Zhang [319], Schmuland and Sun [329],
Shiozawa and Takeda [331], da Silva et al. [332], Stannat [336,338], Stroock
[340], Sturm [343], Takeda [346,347], Wu [363], and Yosida [364].

In this monograph, we present the theory of Dirichlet forms from a unified
vantage point, using nonstandard analysis, thus viewing the continuum of
the time line as a discrete lattice of infinitesimal spacing. This approach is
close in spirit to the discrete classical formulation of Dirichlet space theory in
A. Beurling and J. Deny’s seminal article [87].

The discrete setup in this monograph permits to study the diffusion and
the jump part by essentially the same methods. This setting being indepen-
dent of special topological properties of the state space, it is also considerably
less technical than other approaches. Thus, the theory has found its natural
setting and no longer depends on choosing particular topological spaces; in
particular, it is valid for both finite and infinite dimensional spaces.

S. Albeverio et al., Hyperfinite Dirichlet Forms and Stochastic Processes,
Lecture Notes of the Unione Matematica Italiana 10,
DOI 10.1007/978-3-642-19659-1_1, c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Hyperfinite Dirichlet Forms

Whilst Albeverio et al. [25], Chap. 5, only discussed symmetric hyperfinite
Dirichlet forms and related Markov chains (refer to [165,166] also), we shall
extend the theory to the nonsymmetric case. We shall try to follow as much
as possible the path suggested by the work on the symmetric case.

An important sub-class of Markov process are Feller processes with sta-
tionary and independent increments (Lévy processes), and in recent years,
these processes have attracted a lot of interest, including from nonstandard
analysts. Initiated by T. Lindstrøm [263], a number of articles have been
devoted to the investigation of hyperfinite Lévy processes. Chapter 5 of this
monograph is a detailed exposition of Lindstrøm’s theory [263] and its sub-
sequent continuation by Albeverio and Herzberg [14]. The book ends with
an expository summary (without proofs) of the model theory of stochastic
processes as developed by H.J. Keisler and his coauthors, who formulated
and proved the “universality” of hyperfinite adapted probability spaces in a
rigorous manner, and a short description of recent fundamental results about
the definability of nonstandard universes.

Meanwhile, our purpose in the first chapter is to develop a general theory
of hyperfinite quadratic forms. We shall set the scene in Sect. 1.1. Sections 1.2
and 1.3 will study the domains of symmetric parts, the standard parts and
resolvents. We shall discuss the property of weak coercive quadratic forms
in Sects. 1.4 and 1.7. In Sect. 1.5, we shall study Markov forms and begin
the analysis of associated Markov chains and get the basic Beurling–Deny
formula. We discuss the hyperfinite lifting theory of standard Dirichlet forms
in Sect. 1.6.

1.1 Hyperfinite Quadratic Forms

We shall develop a hyperfinite theory of nonnegative quadratic forms on
infinite dimensional spaces. It is well-known that in the Hilbert space case the
theory of closed forms of this kind is equivalent to the theory of nonnegative
operators. In fact, there is a natural correspondence between forms E(·, ·)
and operators A given by E(u, u) = 〈Au, u〉, where 〈·, ·〉 is the scalar product
in the Hilbert space. We have chosen to present the theory in terms of forms
and not operators for two reasons: partly because forms are real-valued, and
this makes it simpler to take standard parts, but also because in most of our
applications, the form is what is naturally given.

Let H be an internal, hyperfinite dimensional linear space1 equipped with
an inner product 〈·, ·〉 generating a norm || · ||. Let ∗

R be the nonstandard

1 The notions of hyperfinite dimensional linear space are given in Albeverio et al. [25].
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real line2. We call a map E : H × H −→ ∗
R nonnegative quadratic form if

and only if for all α ∈ ∗
R, u, v, w ∈ H,

E(u, u) ≥ 0,
E(αu, v) = αE(u, v),
E(u, αv) = αE(u, v),

E(u+ v, w) = E(u,w) + E(v, w),
E(w, u + v) = E(w, u) + E(w, v).

Since E(·, ·) is a nonnegative quadratic form on the hyperfinite dimensional
space H , elementary linear algebra tells us that there is a unique nonnegative
definite operator A : H −→ H such that

E(u, v) = 〈Au, v〉 for all u, v ∈ H. (1.1.1)

To see this, let ∗
N0 be the nonstandard integers3. Let {ei | 1 ≤ i ≤ N} be an

orthonormal basis of (H, 〈·, ·〉) for anN ∈ ∗
N. We put Aei =

∑N
j=1 E(ei, ej)ej .

Then (1.1.1) follows immediately. Hence, A is given by the matrix A =
(E(ei, ej))1≤i,j≤N , i.e.,

A =

⎛

⎜
⎜
⎜
⎝

E(e1, e1) E(e1, e2) . . . E(e1, eN )
E(e2, e1) E(e2, e2) . . . E(e2, eN )

...
...

. . .
...

E(eN , e1) E(eN , e2) . . . E(eN , eN )

⎞

⎟
⎟
⎟
⎠
. (1.1.2)

Moreover, 〈Au, u〉 ≥ 0 for all u ∈ H . This means that A is a hyperfinite
dimensional matrix (not necessarily symmetric). Let Â be the adjoint operator
of A, that is,

E(u, v) = 〈u, Âv〉 for all u, v ∈ H.

By (1.1.2), we have that Â is the transpose of A. If ||A|| and ||Â|| are the
operator norms of A and Â, respectively, we have ||A|| = ||Â||. We fix an
infinitesimal4 Δt such that

2 ∗
R is the standard notation for the nonstandard real line, refer to Appendix, Albeverio

et al. [25], Cutland [125], Davis [135], Hurd [216], Hurd and Loeb [217], Lindstrøm [262],
Stroyan and Bayod [341], and Stroyan and Luxemburg [342].
3 ∗

N0 is the standard notation for the nonstandard integers, refer to Appendix, Albeverio
et al. [25], Cutland [125], Davis [135], Hurd [216], Hurd and Loeb [217], Lindstrøm [262],
Stroyan and Bayod [341], and Stroyan and Luxemburg [342].
4 In the sense of nonstandard analysis, refer to Appendix, Albeverio et al. [25], Keisler
[237, 238], Stroyan and Bayod [341], and Stroyan and Luxemburg [342].
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0 < Δt ≤ 1
||A|| =

1
||Â|| . (1.1.3)

Let us define new operators QΔt and Q̂Δt by

QΔt = I −ΔtA,

Q̂Δt = I −ΔtÂ.

The relation (1.1.3) implies that the operators QΔt and Q̂Δt are nonnegative.
Because A is nonnegative, the operator norms of QΔt and Q̂Δt are less than
or equal to one. Similarly, we define the nonnegative quadratic co-form Ê(·, ·)
of E(·, ·) by

Ê(u, v) = E(v, u) for all u, v ∈ H.

Introduce a nonstandard time line T by

T = {kΔt | k ∈ ∗
N0}.

For each element t = kΔt in T , define Qt and Q̂t to be the operators

Qt = (QΔt)k,

Q̂t = (Q̂Δt)k.

The families {Qt}t∈T and {Q̂t}t∈T are obviously semigroups. We shall call
{Qt}t∈T the semigroup and {Q̂t}t∈T the co-semigroup associated with E(·, ·)
andΔt, respectively. Whenever we refer to E(·, ·), Ê(·, ·), A, Â, T,Qt and Q̂t in
the rest of this book, we shall assume that they are linked by above relations.

In applications, the primary objects will often be the semigroup {Qt}t∈T

and co-semigroup {Q̂t}t∈T . We can then define A and Â (and hence E(·, ·)) by

A =
1
Δt

(
I −QΔt

)
,

Â =
1
Δt

(
I − Q̂Δt

)
.

The operator A is called the infinitesimal generator of E(·, ·), and Â is
called the infinitesimal co-generator of E(·, ·). For each t ∈ T, we may define
approximations A(t) of A and Â(t) of Â by

A(t) =
1
t

(
I −Qt

)
,

Â(t) =
1
t

(
I − Q̂t

)
. (1.1.4)
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From A(t) and Â(t), we get the forms

E(t)(u, v) = 〈A(t)u, v〉
= 〈u, Â(t)v〉, (1.1.5)

and

Ê(t)(u, v) = E(t)(v, u)
= 〈Â(t)u, v〉
= 〈A(t)v, u〉.

We define the symmetric part E(·, ·) and anti-symmetric part E̊(·, ·) of
E(·, ·) by

E(u, v) =
1
2

(
E(u, v) + E(v, u)

)
,

E̊(u, v) =
1
2

(
E(u, v)− E(v, u)

)
.

For α ∈ ∗
R, α ≥ 0, we set

Eα(u, v) = E(u, v) + α〈u, v〉.

Each of these forms generates a norm (possibly a semi-norm in the case
α = 0):

|u|α =
√

Eα(u, u)

=
√
Eα(u, u).

We recall that the original Hilbert space norm on H is denoted by || · ||.
Similarly, we set for α ∈ ∗

R, α ≥ 0,

Eα(u, v) = E(u, v) + α〈u, v〉,
Êα(u, v) = Ê(u, v) + α〈u, v〉.

Let A and {Qt} be the generator and semigroup of E(·, ·), respectively.
Then

A =
1
2

(
A+ Â

)
, Q

Δt
=

1
2

(
QΔt + Q̂Δt

)
and Q

kΔt
= (Q

Δt
)k, ∀k ∈ ∗

N.

Since A and Q
t

are nonnegative, self-adjoint operators, they have unique
nonnegative square roots, which we denote by A

1
2 and Q

t
2 , respectively.
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In the same manner as (1.1.4) and (1.1.5), we can define approximations
A

(t)
of A and E(t)

(·, ·) of E(·, ·) by

A
(t)

=
1
t

(
I −Q

t
)
, E(t)

(u, v) = 〈A(t)
u, v〉, t ∈ T.

If a nonnegative quadratic form E(·, ·) : H ×H −→ ∗
R satisfies

E(u, v) = E(v, u) for all u, v ∈ H,
i.e., E(u, v) = E(u, v), we shall call it a nonnegative symmetric quadratic form.
It is easy to see that a nonnegative quadratic form E(u, v) is symmetric if
and only if A = Â or Qt = Q̂t, ∀t ∈ T.

In this book, we shall deal with nonnegative quadratic forms E(·, ·) and
the related theory. For the framework, potential theory and applications of
nonnegative symmetric quadratic form, we refer the reader to Albeverio et al.
[25], Chap. 5, Sect. 5.1 and Fan [165,166]. We shall utilize the known results
of symmetric forms in our study, and extend them to the nonsymmetric case.
In particular, we need the notion of the symmetric part E(·, ·) of E(·, ·), and
the related notations. In Sect. 1.2, we shall define the domain D(E) of the
symmetric part E(·, ·) by using the semigroup {Qt | t ∈ T }. We shall introduce
the resolvent {Gα | α ∈ ∗(−∞, 0)} of E(·, ·) in Sect. 1.3, and characterize the
domainD(E) by this resolvent. In Sect. 1.4, we shall define the domainD(E) of
E(·, ·) by its resolvent {Gα | α ∈ ∗(−∞, 0)}; under the hyperfinite weak sector
condition, we shall show that D(E) = D(E). In Sect. 1.5, we shall introduce
hyperfinite Dirichlet forms and related Markov chains. For standard coercive
forms, we shall construct their nonstandard representation in Sect. 1.6.

1.2 Domain of the Symmetric Part

In this section, we shall define the domain D(E) of the symmetric part E(·, ·)
for a hyperfinite nonnegative quadratic form E(·, ·). Before giving a strict
definition (Definition 1.2.1), we shall mention an intuitive description. At
first, let Fin(H) be the set of all elements in H with finite norm. By defining
x ≈ y if ||x− y|| ≈ 0, we know from Proposition A.5.2 in the Appendix that
the space5

◦H = Fin(H)/ ≈

5 ≈ stands for differing by an infinitesimal, in the sense of nonstandard analysis, refer to
Albeverio et al. [25], Cutland [125], Davis [135], Hurd [216], Hurd and Loeb [217], and
Lindstrøm [262].
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is a Hilbert space with respect to the inner product (◦x, ◦y) = st(〈x, y〉), where
◦x denotes the equivalence class of x and st : ∗

R −→ R is the mapping of
standard part6. We call (◦H, (·, ·)) the hull of (H, 〈·, ·〉).

Consider the standard part E(·, ·) of the nonnegative symmetric quadratic
form E(·, ·). If E(·, ·) is S-bounded, i.e., there exists a constant K ∈ R+ such
that

|E(u, v)| ≤ K||u||||v|| for all u, v ∈ H,

we can simply define E(·, ·) by

E(◦u, ◦v) = ◦E(u, v).

If E(·, ·) is not S-bounded, we shall meet two difficulties. We no longer have
that E(u, v) ≈ E(ũ, ṽ) whenever u ≈ ũ and v ≈ ṽ, and there may be ele-
ments v ∈ Fin(H) such that E(ṽ, ṽ) is infinite for all ṽ ≈ v. The latter
problem should not surprise us. It is an immediate consequence of the fact
that unbounded forms on Hilbert spaces cannot be defined everywhere. We
shall solve it by simply letting E(◦u, ◦v) be undefined when E(ṽ, ṽ) is infinite
for all ṽ ∈ ◦v. The most natural solution to the first problem may be to define

E(◦u, ◦u) = inf{◦E(v, v) | v ∈ ◦u}, (1.2.1)

and then extend E(·, ·) to be a bilinear form by the usual trick

E(◦u, ◦v) =
1
2
{
E(◦u+ ◦v, ◦u+ ◦v)− E(◦u, ◦u)− E(◦v,◦v)

}
.

The disadvantage of this approach is that it gives us little understanding of
how the infimum in (1.2.1) is obtained. For an easier access to the regularity
properties of E(·, ·) and E(·, ·), we prefer a more indirect way of attack. Our
plan is to define a subset D(E) of Fin(H) – we call it the domain of E(·, ·) –
satisfying

if ◦E(u, u) <∞, there is a v ∈ D(E) such that v ≈ u, (1.2.2)
if u, v ∈ D(E) and u ≈ v, then ◦E(u, u) = ◦E(v, v) <∞. (1.2.3)

We then define E(·, ·) by

E(◦u, ◦u) = ◦E(v, v), (1.2.4)

6 Refer to Albeverio et al. [25].
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when v ∈ D(E) ∩ ◦u. It turns out that the two definitions (1.2.1) and (1.2.4)
agree (see Proposition 1.2.4).

If we look at the standard nonsymmetric Dirichlet theory, see Albeverio
et al. [9], Kim [241] and Ma and Röckner [270], the domain of a quadratic
form is given from the very beginning. After that, the authors such as those
of Ma and Röckner [270] introduced the symmetric and anti-symmetric parts
(see page 15, [270]). This method makes the domains of the quadratic form
and its symmetric part coincide. On the other hand, Albeverio et al. [25]
has given us a very nice definition of domain for the symmetric hyperfinite
quadratic forms by their semigroups. Therefore, we may define the domain
D(E) of E(·, ·) via the semigroup of {Qt | t ∈ T }. In the next section, we shall
discuss the property of the resolvent {Gα | α ∈ ∗(−∞, 0)} of E(·, ·). We can
define the domain of D(E) through {Gα | α ∈ ∗(−∞, 0)}.

Now it is very natural to ask: can we as well define the domain D(E) of
E(·, ·) directly from {Qt | t ∈ T }? Here we would mention that it seems not
easy to do the job. In Sect. 1.4, we shall define D(E) by means of the resolvent
{Gα | α < 0} of E(·, ·). Under the hypothesis of weak sector condition, we shall
prove D(E) = D(E) by showing that the two definitions satisfy (1.2.1). This is
similar to the procedure in the standard nonsymmetric Dirichlet space theory,
see, e.g., Albeverio et al. [9], Albeverio et al. [47], Albeverio and Ugolini [57],
Kim [241], and Ma and Röckner [270].

Notice that even when E(·, ·) is not S-bounded, E (t)
(·, ·) is S-bounded for

all non-infinitesimal t. One of the motivations behind our definition of the
domain D(E) is that we want to single out the elements where E(·, ·) is really
approximated by the bounded forms E (t)

(·, ·), t �≈ 0, i.e., those u ∈ H such
that

◦E(u, u) = lim
t↓0
t�≈0

◦E(t)
(u, u). (1.2.5)

We could have taken this to be our definition of D(E), but for technical and
expository reasons we have chosen another one which we shall soon show to
be equivalent to (1.2.5) (see Proposition 1.2.2).

Definition 1.2.1. Let E(·, ·) be a nonnegative quadratic form on a hyperfi-
nite dimensional linear space H . The domain D(E) of the symmetric part of
E(·, ·) is the set of all u ∈ H satisfying

(i) ◦E1(u, u) = ◦E1(u, u) <∞.

(ii) For all t ≈ 0, E(Q
t
u,Q

t
u) ≈ E(u, u).

Let us try to convey the intuition behind this definition. Thinking of A
as a differential operator, the elements of D(E) are “smooth” functions and
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Q
t
is a “smoothing” operator often given by an integral kernel. If an element

u is already smooth, then an infinitesimal amount of smoothing Q
t
, t ≈ 0,

should not change it noticeably, and hence E(Q
t
u,Q

t
u) ≈ E(u, u). We shall

give a partial justification of this rather crude image later, when we show
that if ◦E1(u, u) < ∞, then the “smoothed” elements Qt

u, t �≈ 0, are all in
D(E) (Lemma 1.2.3, see also Corollary 1.2.3).

Our first task will be to establish a list of alternative definitions of D(E),
among them (1.2.5). We begin with the following simple identity giving the
relationship between E(·, ·) and E(t)(·, ·), and also the relationship between
E(·, ·) and E(t)

(·, ·) :
Lemma 1.2.1. For all u ∈ H and t ∈ T , we have

(i) E(t)(u, u) ≥ 0 and E(t)
(u, u) ≥ 0,

(ii) E(t)(u, u) =
Δt

t

∑

0≤s<t

E(Qsu, u) =
Δt

t

∑

0≤s<t

E(u, Q̂su),

(iii) E (t)
(u, u) =

Δt

t

∑

0≤s<t

E(Q
s
u, u) =

Δt

t

∑

0≤s<t

E(Q
s/2
u,Q

s/2
u).

Proof. (i) We have

E(t)(u, u) =
1
t
〈(I −Qt)u, u〉

=
1
t

(〈u, u〉 − 〈Qtu, u〉)

≥ 1
t

(〈u, u〉 − ||Qt||〈u, u〉)

≥ 0,

since ||Qt|| ≤ ||QΔt|| t
Δt ≤ 1. It is then easy to see that E(t)

(u, u) ≥ 0.

(ii) By an easy calculation, we have

E(t)(u, u) =
1
t
〈(I −Qt)u, u〉

=
1
t

∑

0≤s<t

〈(Qs −Qs+Δt)u, u〉

=
Δt

t

∑

0≤s<t

E(Qsu, u)

=
Δt

t

∑

0≤s<t

E(u, Q̂su). (1.2.6)
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(iii) In the same way as (1.2.6), we can prove that the first equation holds.
The second one is due to the symmetry and the semigroup property
of Q

s
. 
�

Among other things, Lemma 1.2.1 tells us that E(t)(·, ·) and E(t)
(·, ·) are

nonnegative.

Lemma 1.2.2. Let B,C : H −→ H be nonnegative, symmetric operators
commuting with A and each other. Then the functions

t �→ 〈Qt
Bu,Cu〉 and t �→ E (s)

(Q
t
Bu,Cu)

are nonnegative and decreasing for all u ∈ H and s ∈ T .

Proof. We first notice that the E(s)
(·, ·) part follows from the other one since

E (s)
(Q

t
Bu,Cu) =

1
s
〈Qt

(I −Q
s
)Bu,Cu〉,

and the operator B′ = (I −Q
s
)B is nonnegative and commutes with A and

C. If t > r, then

〈Qr
Bu,Cu〉 − 〈Qt

Bu,Cu〉 = 〈(I −Q
t−r

)Q
r
Bu,Cu〉

= (t− r)E (t−r)
(Q

r/2
B1/2C1/2u,Q

r/2
B1/2C1/2u)

≥ 0,

where we used that E (t−r)
(·, ·) is nonnegative. Hence, t −→ 〈Qt

Bu,Cu〉
decreases. For the positivity, we observe that

〈Qt
Bu,Cu〉 = 〈Qt/2

B1/2C1/2u,Q
t/2
B1/2C1/2u〉

≥ 0.


�
From Lemma 1.2.2 we may now obtain our main inequalities.

Proposition 1.2.1. For all u ∈ H, t ∈ T :

(i) 0 ≤ E(u, u−Q
t
u) ≤ E(u, u)− E(Q

t
u,Q

t
u) ≤ 2E(u, u−Q

t
u).

(ii) 0 ≤ E(Q
Δt
u,Q

Δt
u)− E(Q

2Δt
u,Q

2Δt
u) ≤ E(u, u)− E(Q

Δt
u,Q

Δt
u).

Proof. By trivial algebra, we have

E(u, u)− E(Q
t
u,Q

t
u) = E(u, u−Q

t
u) + E(Q

t
u, u−Q

t
u).
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Applying Lemma 1.2.2 with B = I, C = I −Q
t
, we see that

0 ≤ E(Q
t
u, u−Q

t
u) ≤ E(u, u−Q

t
u),

and part (i) follows.

(ii) The non-negativity is immediate from (i), and as above we have

E(u, u)− E(Q
Δt
u,Q

Δt
u) = E(u, u−Q

Δt
u) + E(Q

Δt
u, u−Q

Δt
u).

Applying Lemma 1.2.2 to each of the latter two terms, using B = I, C =
I −Q

Δt
in the first case, and B = Q

Δt
, C = I −Q

Δt
in the second, we get

E(u, u)− E(Q
Δt
u,Q

Δt
u) ≥ E(Q

2Δt
u, u−Q

Δt
u) + E(Q

3Δt
u, u−Q

Δt
u)

= E(Q
2Δt

u, u)− E(Q
2Δt

u,Q
Δt
u)

+E(Q
3Δt

u, u)− E(Q
3Δt

u,Q
Δt
u)

= E(Q
Δt
u,Q

Δt
u)− E(Q

2Δt
u,Q

2Δt
u).

The proposition is proved. 
�
The inequalities above are what we need to establish a reasonable charac-

terization of D(E). We first give our promised list of alternative definitions
of the domain of E(·, ·).
Proposition 1.2.2. The following statements are equivalent:

(i) u is in the domain D(E) of E(·, ·).
(ii) ◦E1(u, u) = ◦E1(u, u) <∞, and for all t ≈ 0, we have E(u, u−Qt

u) ≈ 0.
(iii) ◦E1(u, u) <∞, and for all t ≈ 0, we have E(u−Q

t
u, u−Q

t
u) ≈ 0.

(iv) ◦E1(u, u) <∞, and for all t ≈ 0, we have E(t)
(u, u) ≈ E(u, u).

Proof. (i) ⇐⇒ (ii). Follows immediately from Proposition 1.2.1 (i).

(ii) =⇒ (iii). We have

0 ≤ E(u−Q
t
u, u−Q

t
u) = E(u, u−Q

t
u)− E(Q

t
u, u−Q

t
u),

and by Lemma 1.2.2 the term E(Q
t
u, u−Q

t
u) is positive.

(iii) =⇒ (i). We recall that |u|0 =
√
E(u, u) is a semi-norm. By Lemma 1.2.2

and the triangle inequality, we have

0 ≤ |u|0 − |Qt
u|0 ≤ |u−Q

t
u|0.
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Multiplying both sides by |u|0 + |Qt
u|0, we get

0 ≤ |u|20 − |Qt
u|20 ≤ |u−Q

t
u|0(|u|0 + |Qt

u|0) ≤ 2|u|0|u−Q
t
u|0.

Hence if ◦E(u, u) <∞ and E(u−Q
t
u, u−Q

t
u) ≈ 0, we have that

E(u, u)− E(Q
t
u,Q

t
u) ≈ 0.

(ii) =⇒ (iv). Follows at once from Lemma 1.2.1.

(iv) =⇒ (ii). Follows from Lemma 1.2.1 and the fact that s �→ E(Q
s
u, u) is

decreasing. 
�
The characterizations of D(E) given in the Proposition 1.2.2 are useful for

different purposes. As an illustration, we use Proposition 1.2.2 (iii) to prove
that the domain has the right linear structure.

Corollary 1.2.1. Let u, v ∈ D(E), and assume that α ∈ ∗
R is a nearstan-

dard7 number. Then αu and u+ v are elements of D(E).

Proof. The αu part is trivial. For u+ v we use Proposition 1.2.2 (iii) and the
triangle inequality.

||(u + v)−Q
t
(u+ v)||0 = ||u−Q

t
u+ v −Q

t
v||0

≤ ||u−Q
t
u||0 + ||v −Q

t
v||0.

The latter two terms above are infinitesimals when t ≈ 0. 
�
Corollary 1.2.2. For any infinitesimal δ ∈ T , we have D(E) ⊂ D(E (δ)

).

Proof. Let u ∈ D(E). By Proposition 1.2.2 (iv), we know E(kδ)
(u, u) ≈

E(u, u) ≈ E(δ)
(u, u) for all k such that kδ ≈ 0. By Proposition 1.2.2 (iv)

again, we get u ∈ D(E (δ)
). 
�

The second part of Proposition 1.2.1 informs us that Q
t
u is more likely to

be in D(E) than u is. The next lemma pins this down more precisely.

Lemma 1.2.3. Assume ◦E1(u, u) <∞. Then for all non-infinitesimals t, we
have Q

t
u ∈ D(E).

Proof. By Proposition 1.2.1, we have

◦E1(Q
t
u,Q

t
u) ≤ ◦E1(u, u) <∞.

7 See Appendix and Albeverio et al. [25] for the concept of nearstandard.
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To prove that Definition 1.2.1 (ii) is satisfied, we notice that according to
Proposition 1.2.1 (ii), the function

t �→ E(Q
t
u,Q

t
u)

is decreasing and convex, and hence

1
s

(
E(Q

t
u,Q

t
u)− E(Q

t+s
u,Q

t+s
u)
)
≤ 1
t

(
E(u, u)− E(Q

t
u,Q

t
u)
)

for all s > 0. Multiplying through by s, we get

0 ≤ E(Q
t
u,Q

t
u)− E(Q

t+s
u,Q

t+s
u) ≤ s

t

(
E(u, u)− E(Q

s
u,Q

s
u)
)
.

For s ≈ 0 and t �≈ 0, the expression on the right is infinitesimal, and the
lemma follows. 
�

We shall now strengthen the lemma above and show that if ◦E1(u, u) <∞,
then there is an infinitesimal t such that Q

t
u ∈ D(E). This is a special case

of our next result. First we need to introduce a new definition. A subset F of
H is called E-closed if and only if for all sequences {un}n∈N of elements from
F such that ◦|un − um|1 −→ 0 as n,m −→∞, there exists an element u in F
such that ◦|un − u|1 −→ 0 as n −→∞.

Proposition 1.2.3. D(E) is E-closed. Moreover, if {un}n∈N is a |·|1 Cauchy
sequence from D(E), and {un | n ∈ ∗

N} is an internal extension, then there
is a γ ∈ ∗

N− N such that uη ∈ D(E) for all η ≤ γ.

Proof. Let {un|n ∈ N} be a | · |1 Cauchy sequence from D(E), and let {un|n ∈
∗
N} be an internal extension of it. There is an element γ ∈ ∗

N − N such
that |un − um|1 ≈ 0 whenever n and m are infinite and less than γ. Let
η ∈ ∗

N−N, η ≤ γ. By the choice of γ, ◦E1(uη, uη) <∞ and ◦|un−uη|1 −→ 0
as n approaches infinity in N. All that remains is to prove that uη ∈ D(E).

Assume not, then by Proposition 1.2.2 (iii) there is an ε ∈ R+ and t ≈ 0
such that

|uη −Q
t
uη|0 > ε.

Choose m ∈ N so large that

|uη − um|0 < ε

4
.

Then by Proposition 1.2.1 (i), we have

|Qt
uη −Q

t
um|0 < ε

4
.
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Combining the inequalities above, we have

ε < |uη −Q
t
uη|0 ≤ |uη − um|0 + |um −Q

t
um|0 + |Qt

um −Q
t
uη|0

≤ ε/2 + |um −Q
t
um|0,

but since um ∈ D(E), the last term is infinitesimal by Proposition 1.2.2 (iii).
We have the contradiction we wanted. 
�
Corollary 1.2.3. If ◦E1(u, u) <∞, there is a t0 ≈ 0 such that Qt

u ∈ D(E)
for all t ≥ t0.

Proof. First we notice that if Q
t0
u ∈ D(E), so is Q

t
u for all t > t0. Put

un = Q
1
n u. Then the sequence {|un|1} is increasing and bounded by |u|1,

and we can apply Proposition 1.2.3 to it. The corollary follows. 
�
Corollary 1.2.4. If ◦E1(u, u) <∞, there is a δu ≈ 0 such that u ∈ D(E (δ)

)
for all infinitesimal δ ≥ δu.

Proof. By Corollary 1.2.3, there is a t0 ≈ 0 such that Q
t
u ∈ D(E) for all

t ≥ t0. Let δu be an infinitesimal such that δu > t0 and t0/δu ≈ 0. For all
infinitesimal δ ≥ δu, we have v = Q

δ
u ∈ D(E) ⊂ D(E (δ)

) by Corollaries 1.2.2
and 1.2.3. For all k ∈ ∗

N such that kδ ≈ 0, we have the following

E(δ)
(Q

kδ
u,Q

kδ
u) = E(δ)

(Q
(k−1)δ

v,Q
(k−1)δ

v)

≈ E(δ)
(v, v)

= E(δ)
(Q

δ
u,Q

δ
u). (1.2.7)

By Lemma 1.2.1 (iii), we have

E(δ)
(Q

δ
u,Q

δ
u) =

Δt

δ

∑

0≤s<δ

E(Q
s/2
Q

δ
u,Q

s/2
Q

δ
u)

=
Δt

δ

∑

0≤s<δ

E(Q
s/2+δ−t0

Q
t0
u,Q

s/2+δ−t0
Q

t0
u)

≈ E(Q
t0
u,Q

t0
u), (1.2.8)

because Qt0
u ∈ D(E). By Lemma 1.2.1 (iii) again, we have

E(δ)
(u, u) =

Δt

δ

∑

0≤s<δ

E(Q
s/2
u,Q

s/2
u)

=
Δt

δ

⎡

⎣
∑

0≤s<2t0

E(Q
s/2
u,Q

s/2
u) +

∑

2t0≤s<δ

E(Q
s/2
u,Q

s/2
u)

⎤

⎦
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≈ Δt

δ

∑

2t0≤s<δ

E(Q
s/2−t0

Q
t0
u,Q

s/2−t0
Q

t0
u)

≈ E(Q
t0
u,Q

t0
u). (1.2.9)

By relations (1.2.7), (1.2.8), and (1.2.9), we know u ∈ D(E (δ)
). 
�

Remark 1.2.1. Proposition 1.2.3 is rather surprising since there exist stan-
dard forms which are neither closed nor closable. In fact, there are numerous
applications where the main difficulty is to show that the form constructed
is closed, or at least can be extended to a closed form (see, e.g., [11, 16–
24, 26, 27, 36, 48, 49, 94, 98, 99, 103, 151, 175, 176, 178, 225, 232, 236, 247, 251,
259, 278, 301, 318, 345, 359]). If we know that a form comes from a hyper-
finite form, this follows immediately from Proposition 1.2.3. In Albeverio
et al. [25], Chap. 6, we have got various examples of how useful this observa-
tion is. For the time being, we only remark that since we shall soon show that
all standard, coercive closed forms can be obtained from hyperfinite forms,
the method is quite general (we refer to Sect. 1.6 of this chapter).

Notice that if we can show that whenever ◦E1(u, u) <∞, then for all t ≈ 0,
||u−Q

t
u|| ≈ 0, Corollary 1.2.3 will imply the first part of our program, i.e.,

(1.2.2) above.

Lemma 1.2.4. Assume ◦E(u, u) <∞. Then for all t ≈ 0, we have

||u−Q
t
u|| ≈ 0.

Proof. For t ≈ 0, we have

||u−Q
t
u||2 = 〈u −Q

t
u, u−Q

t
u〉

= tE (t)
(u, u−Q

t
u)

= t
[
E(t)

(u, u)− E(t)
(u,Q

t
u)
]

≤ tE(u, u) ≈ 0.


�
Let us turn our attention to our second main goal (1.2.3).

Lemma 1.2.5. If u, v ∈ D(E) and u ≈ v, then

E(u, u) ≈ E(v, v).

Proof. It is obviously enough to show that if u ∈ D(E) and u ≈ 0, then
E(u, u) ≈ 0. But if u ∈ D(E), we know from Proposition 1.2.2 (iv):

◦E(u, u) = lim
t↓0
t�≈0

◦E(t)
(u, u). (1.2.10)


