# Problem Books in Mathematics 

Edited by P. Winkler

Dušan Djukić<br>Vladimir Janković<br>Ivan Matić<br>Nikola Petrović

# The IMO Compendium 

A Collection of Problems Suggested for the<br>International Mathematical Olympiads:<br>1959-2004

With 200 Figures

Springer

Dušan Djukić<br>Department of Mathematics<br>University of Toronto<br>Toronto ON, M5S3G3<br>Canada<br>djdusan@EUnet.yu<br>Ivan Matić<br>Department of Mathematics<br>Berkeley, CA<br>USA<br>matic@matf.bf.ac.yu<br>\section*{Series Editor:}<br>Peter Winkler<br>Department of Mathematics<br>Dartmouth College<br>Hanover, NH 03755-3551<br>USA<br>Peter.winkler@dartmouth.edu

Vladimir Janković<br>Department of Mathematics<br>University of Belgrade<br>11000 Belgrade<br>Serbia and Montenegro<br>vjankovic@matf.bg.ac.yu<br>Nikola Petrović<br>Institute of Physics<br>11000 Belgrade<br>Serbia and Montenegro<br>nzpetr@eunet.yu

Mathematics Subject Classification (2000): 00A07
Library of Congress Control Number: 2005934915
ISBN-10: 0-387-24299-6
ISBN-13: 978-0387-24299-6
© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (MVY)
987654321
springer.com

## Preface

The International Mathematical Olympiad (IMO) is nearing its fiftieth anniversary and has already created a very rich legacy and firmly established itself as the most prestigious mathematical competition in which a high-school student could aspire to participate. Apart from the opportunity to tackle interesting and very challenging mathematical problems, the IMO represents a great opportunity for high-school students to see how they measure up against students from the rest of the world. Perhaps even more importantly, it is an opportunity to make friends and socialize with students who have similar interests, possibly even to become acquainted with their future colleagues on this first leg of their journey into the world of professional and scientific mathematics. Above all, however pleasing or disappointing the final score may be, preparing for an IMO and participating in one is an adventure that will undoubtedly linger in one's memory for the rest of one's life. It is to the high-school-aged aspiring mathematician and IMO participant that we devote this entire book.

The goal of this book is to include all problems ever shortlisted for the IMOs in a single volume. Up to this point, only scattered manuscripts traded among different teams have been available, and a number of manuscripts were lost for many years or unavailable to many.

In this book, all manuscripts have been collected into a single compendium of mathematics problems of the kind that usually appear on the IMOs. Therefore, we believe that this book will be the definitive and authoritative source for high-school students preparing for the IMO, and we suspect that it will be of particular benefit in countries lacking adequate preparation literature. A high-school student could spend an enjoyable year going through the numerous problems and novel ideas presented in the solutions and emerge ready to tackle even the most difficult problems on an IMO. In addition, the skill acquired in the process of successfully attacking difficult mathematics problems will prove to be invaluable in a serious and prosperous career in mathematics.

However, we must caution our aspiring IMO participant on the use of this book. Any book of problems, no matter how large, quickly depletes itself if
the reader merely glances at a problem and then five minutes later, having determined that the problem seems unsolvable, glances at the solution.

The authors therefore propose the following plan for working through the book. Each problem is to be attempted at least half an hour before the reader looks at the solution. The reader is strongly encouraged to keep trying to solve the problem without looking at the solution as long as he or she is coming up with fresh ideas and possibilities for solving the problem. Only after all venues seem to have been exhausted is the reader to look at the solution, and then only in order to study it in close detail, carefully noting any previously unseen ideas or methods used. To condense the subject matter of this already very large book, most solutions have been streamlined, omitting obvious derivations and algebraic manipulations. Thus, reading the solutions requires a certain mathematical maturity, and in any case, the solutions, especially in geometry, are intended to be followed through with pencil and paper, the reader filling in all the omitted details. We highly recommend that the reader mark such unsolved problems and return to them in a few months to see whether they can be solved this time without looking at the solutions. We believe this to be the most efficient and systematic way (as with any book of problems) to raise one's level of skill and mathematical maturity.

We now leave our reader with final words of encouragement to persist in this journey even when the difficulties seem insurmountable and a sincere wish to the reader for all mathematical success one can hope to aspire to.

Belgrade, October 2004

Dušan Djukić<br>Vladimir Janković<br>Ivan Matić<br>Nikola Petrović

For the most current information regarding The IMO Compendium you are invited to go to our website: www.imo.org.yu. At this site you can also find, for several of the years, scanned versions of available original shortlist and longlist problems, which should give an illustration of the original state the IMO materials we used were in.

We are aware that this book may still contain errors. If you find any, please notify us at imo@matf.bg.ac.yu. A full list of discovered errors can be found at our website. If you have any questions, comments, or suggestions regarding both our book and our website, please do not hesitate to write to us at the above email address. We would be more than happy to hear from you.

## Acknowledgements

The making of this book would have never been possible without the help of numerous individuals, whom we wish to thank.

First and foremost, obtaining manuscripts containing suggestions for IMOs was vital in order for us to provide the most complete listing of problems possible. We obtained manuscripts for many of the years from the former and current IMO team leaders of Yugoslavia / Serbia and Montenegro, who carefully preserved these valuable papers throughout the years. Special thanks are due to Prof. Vladimir Mićić, for some of the oldest manuscripts, and to Prof. Zoran Kadelburg. We also thank Prof. Djordje Dugošija and Prof. Pavle Mladenović. In collecting shortlisted and longlisted problems we were also assisted by Prof. Ioan Tomescu from Romania and Hà Duy Hưng from Vietnam.

A lot of work was invested in cleaning up our giant manuscript of errors. Special thanks in this respect go to David Kramer, our copy-editor, and to Prof. Titu Andreescu and his group for checking, in great detail, the validity of the solutions in this manuscript, and for their proposed corrections and alternative solutions to several problems. We also thank Prof. Abderrahim Ouardini from France for sending us the list of countries of origin for the shortlisted problems of 1998, Prof. Dorin Andrica for helping us compile the list of books for reference, and Prof. Ljubomir Čukić for proofreading part of the manuscript and helping us correct several errors.

We would also like to express our thanks to all anonymous authors of the IMO problems. It is a pity that authors' names are not registered together with their proposed problems. Without them, the IMO would obviously not be what it is today. In many cases, the original solutions of the authors were used, and we duly acknowledge this immense contribution to our book, though once again, we regret that we cannot do this individually. In the same vein, we also thank all the students participating in the IMOs, since we have also included some of their original solutions in this book.

The illustrations of geometry problems were done in WinGCLC, a program created by Prof. Predrag Janičić. This program is specifically designed for creating geometric pictures of unparalleled complexity quickly and efficiently. Even though it is still in its testing phase, its capabilities and utility are already remarkable and worthy of highest compliment.

Finally, we would like to thank our families for all their love and support during the making of this book.

## Contents

Preface ..... V
1 Introduction ..... 1
1.1 The International Mathematical Olympiad ..... 1
1.2 The IMO Compendium ..... 2
2 Basic Concepts and Facts ..... 5
2.1 Algebra ..... 5
2.1.1 Polynomials ..... 5
2.1.2 Recurrence Relations ..... 6
2.1.3 Inequalities ..... 7
2.1.4 Groups and Fields ..... 9
2.2 Analysis ..... 10
2.3 Geometry ..... 12
2.3.1 Triangle Geometry ..... 12
2.3.2 Vectors in Geometry ..... 13
2.3.3 Barycenters ..... 14
2.3.4 Quadrilaterals ..... 14
2.3.5 Circle Geometry ..... 15
2.3.6 Inversion ..... 16
2.3.7 Geometric Inequalities ..... 16
2.3.8 Trigonometry ..... 17
2.3.9 Formulas in Geometry ..... 18
2.4 Number Theory ..... 19
2.4.1 Divisibility and Congruences ..... 19
2.4.2 Exponential Congruences ..... 20
2.4.3 Quadratic Diophantine Equations ..... 21
2.4.4 Farey Sequences ..... 22
2.5 Combinatorics ..... 22
2.5.1 Counting of Objects ..... 22
2.5.2 Graph Theory ..... 23
3 Problems ..... 27
3.1 IMO 1959 ..... 27
3.1.1 Contest Problems ..... 27
3.2 IMO 1960 ..... 29
3.2.1 Contest Problems ..... 29
3.3 IMO 1961 ..... 30
3.3.1 Contest Problems ..... 30
3.4 IMO 1962 ..... 31
3.4.1 Contest Problems ..... 31
3.5 IMO 1963 ..... 32
3.5.1 Contest Problems ..... 32
3.6 IMO 1964 ..... 33
3.6.1 Contest Problems ..... 33
3.7 IMO 1965 ..... 34
3.7.1 Contest Problems ..... 34
3.8 IMO 1966 ..... 35
3.8.1 Contest Problems ..... 35
3.8.2 Some Longlisted Problems 1959-1966 ..... 36
3.9 IMO 1967 ..... 42
3.9.1 Contest Problems ..... 42
3.9.2 Longlisted Problems ..... 42
3.10 IMO 1968 ..... 51
3.10.1 Contest Problems ..... 51
3.10.2 Shortlisted Problems ..... 52
3.11 IMO 1969 ..... 55
3.11.1 Contest Problems ..... 55
3.11.2 Longlisted Problems ..... 55
3.12 IMO 1970 ..... 64
3.12.1 Contest Problems ..... 64
3.12.2 Longlisted Problems ..... 65
3.12.3 Shortlisted Problems ..... 72
3.13 IMO 1971 ..... 74
3.13.1 Contest Problems ..... 74
3.13.2 Longlisted Problems ..... 75
3.13.3 Shortlisted Problems ..... 81
3.14 IMO 1972 ..... 84
3.14.1 Contest Problems ..... 84
3.14.2 Longlisted Problems ..... 84
3.14.3 Shortlisted Problems ..... 89
3.15 IMO 1973 ..... 91
3.15.1 Contest Problems ..... 91
3.15.2 Shortlisted Problems ..... 92
3.16 IMO 1974 ..... 94
3.16.1 Contest Problems ..... 94
3.16.2 Longlisted Problems ..... 95
3.16.3 Shortlisted Problems ..... 100
3.17 IMO 1975 ..... 103
3.17.1 Contest Problems ..... 103
3.17.2 Shortlisted Problems ..... 103
3.18 IMO 1976 ..... 106
3.18.1 Contest Problems ..... 106
3.18.2 Longlisted Problems ..... 106
3.18.3 Shortlisted Problems ..... 112
3.19 IMO 1977 ..... 114
3.19.1 Contest Problems ..... 114
3.19.2 Longlisted Problems ..... 114
3.19.3 Shortlisted Problems ..... 120
3.20 IMO 1978 ..... 123
3.20.1 Contest Problems ..... 123
3.20.2 Longlisted Problems ..... 123
3.20.3 Shortlisted Problems ..... 128
3.21 IMO 1979 ..... 131
3.21.1 Contest Problems ..... 131
3.21.2 Longlisted Problems ..... 132
3.21.3 Shortlisted Problems ..... 139
3.22 IMO 1981 ..... 143
3.22.1 Contest Problems ..... 143
3.22.2 Shortlisted Problems ..... 144
3.23 IMO 1982 ..... 147
3.23.1 Contest Problems ..... 147
3.23.2 Longlisted Problems ..... 148
3.23.3 Shortlisted Problems ..... 153
3.24 IMO 1983 ..... 157
3.24.1 Contest Problems ..... 157
3.24.2 Longlisted Problems ..... 157
3.24.3 Shortlisted Problems ..... 165
3.25 IMO 1984 ..... 169
3.25.1 Contest Problems ..... 169
3.25.2 Longlisted Problems ..... 169
3.25.3 Shortlisted Problems ..... 176
3.26 IMO 1985 ..... 180
3.26.1 Contest Problems ..... 180
3.26.2 Longlisted Problems ..... 180
3.26.3 Shortlisted Problems ..... 190
3.27 IMO 1986 ..... 193
3.27.1 Contest Problems ..... 193
3.27.2 Longlisted Problems ..... 194
3.27.3 Shortlisted Problems ..... 201
3.28 IMO 1987 ..... 204
3.28.1 Contest Problems ..... 204
3.28.2 Longlisted Problems ..... 204
3.28.3 Shortlisted Problems ..... 212
3.29 IMO 1988 ..... 216
3.29.1 Contest Problems ..... 216
3.29.2 Longlisted Problems ..... 217
3.29.3 Shortlisted Problems ..... 226
3.30 IMO 1989 ..... 231
3.30.1 Contest Problems ..... 231
3.30.2 Longlisted Problems ..... 232
3.30.3 Shortlisted Problems ..... 244
3.31 IMO 1990 ..... 249
3.31.1 Contest Problems ..... 249
3.31.2 Shortlisted Problems ..... 250
3.32 IMO 1991 ..... 254
3.32.1 Contest Problems ..... 254
3.32.2 Shortlisted Problems ..... 254
3.33 IMO 1992 ..... 259
3.33.1 Contest Problems ..... 259
3.33.2 Longlisted Problems ..... 259
3.33.3 Shortlisted Problems ..... 269
3.34 IMO 1993 ..... 272
3.34.1 Contest Problems ..... 272
3.34.2 Shortlisted Problems ..... 273
3.35 IMO 1994 ..... 277
3.35.1 Contest Problems ..... 277
3.35.2 Shortlisted Problems ..... 277
3.36 IMO 1995 ..... 281
3.36.1 Contest Problems ..... 281
3.36.2 Shortlisted Problems ..... 281
3.37 IMO 1996 ..... 286
3.37.1 Contest Problems ..... 286
3.37.2 Shortlisted Problems ..... 287
3.38 IMO 1997 ..... 292
3.38.1 Contest Problems ..... 292
3.38.2 Shortlisted Problems ..... 293
3.39 IMO 1998 ..... 297
3.39.1 Contest Problems ..... 297
3.39.2 Shortlisted Problems ..... 297
3.40 IMO 1999 ..... 302
3.40.1 Contest Problems ..... 302
3.40.2 Shortlisted Problems ..... 302
3.41 IMO 2000 ..... 307
3.41.1 Contest Problems ..... 307
3.41.2 Shortlisted Problems ..... 308
3.42 IMO 2001 ..... 312
3.42.1 Contest Problems ..... 312
3.42.2 Shortlisted Problems ..... 312
3.43 IMO 2002 ..... 317
3.43.1 Contest Problems ..... 317
3.43.2 Shortlisted Problems ..... 318
3.44 IMO 2003 ..... 322
3.44.1 Contest Problems ..... 322
3.44.2 Shortlisted Problems ..... 323
3.45 IMO 2004 ..... 327
3.45.1 Contest Problems ..... 327
3.45.2 Shortlisted Problems ..... 328
4 Solutions ..... 333
4.1 Contest Problems 1959 ..... 333
4.2 Contest Problems 1960 ..... 335
4.3 Contest Problems 1961 ..... 337
4.4 Contest Problems 1962 ..... 339
4.5 Contest Problems 1963 ..... 340
4.6 Contest Problems 1964 ..... 341
4.7 Contest Problems 1965 ..... 343
4.8 Contest Problems 1966 ..... 345
4.9 Longlisted Problems 1967 ..... 347
4.10 Shortlisted Problems 1968 ..... 361
4.11 Contest Problems 1969 ..... 367
4.12 Shortlisted Problems 1970 ..... 370
4.13 Shortlisted Problems 1971 ..... 377
4.14 Shortlisted Problems 1972 ..... 384
4.15 Shortlisted Problems 1973 ..... 389
4.16 Shortlisted Problems 1974 ..... 395
4.17 Shortlisted Problems 1975 ..... 401
4.18 Shortlisted Problems 1976 ..... 406
4.19 Longlisted Problems 1977 ..... 410
4.20 Shortlisted Problems 1978 ..... 426
4.21 Shortlisted Problems 1979 ..... 434
4.22 Shortlisted Problems 1981 ..... 442
4.23 Shortlisted Problems 1982 ..... 451
4.24 Shortlisted Problems 1983 ..... 457
4.25 Shortlisted Problems 1984 ..... 466
4.26 Shortlisted Problems 1985 ..... 473
4.27 Shortlisted Problems 1986 ..... 481
4.28 Shortlisted Problems 1987 ..... 489
4.29 Shortlisted Problems 1988 ..... 500
4.30 Shortlisted Problems 1989 ..... 516
4.31 Shortlisted Problems 1990 ..... 530
4.32 Shortlisted Problems 1991 ..... 544
4.33 Shortlisted Problems 1992 ..... 558
4.34 Shortlisted Problems 1993 ..... 568
4.35 Shortlisted Problems 1994 ..... 581
4.36 Shortlisted Problems 1995 ..... 589
4.37 Shortlisted Problems 1996 ..... 602
4.38 Shortlisted Problems 1997 ..... 618
4.39 Shortlisted Problems 1998 ..... 632
4.40 Shortlisted Problems 1999 ..... 646
4.41 Shortlisted Problems 2000 ..... 661
4.42 Shortlisted Problems 2001 ..... 675
4.43 Shortlisted Problems 2002 ..... 689
4.44 Shortlisted Problems 2003 ..... 701
4.45 Shortlisted Problems 2004 ..... 715
A Notation and Abbreviations ..... 731
A. 1 Notation ..... 731
A. 2 Abbreviations ..... 732
B Codes of the Countries of Origin ..... 735
References ..... 737

## Introduction

### 1.1 The International Mathematical Olympiad

The International Mathematical Olympiad (IMO) is the most important and prestigious mathematical competition for high-school students. It has played a significant role in generating wide interest in mathematics among high school students, as well as identifying talent.

In the beginning, the IMO was a much smaller competition than it is today. In 1959, the following seven countries gathered to compete in the first IMO: Bulgaria, Czechoslovakia, German Democratic Republic, Hungary, Poland, Romania, and the Soviet Union. Since then, the competition has been held annually. Gradually, other Eastern-block countries, countries from Western Europe, and ultimately numerous countries from around the world and every continent joined in. (The only year in which the IMO was not held was 1980, when for financial reasons no one stepped in to host it. Today this is hardly a problem, and hosts are lined up several years in advance.) In the 45th IMO, held in Athens, no fewer than 85 countries took part.

The format of the competition quickly became stable and unchanging. Each country may send up to six contestants and each contestant competes individually (without any help or collaboration). The country also sends a team leader, who participates in problem selection and is thus isolated from the rest of the team until the end of the competition, and a deputy leader, who looks after the contestants.

The IMO competition lasts two days. On each day students are given four and a half hours to solve three problems, for a total of six problems. The first problem is usually the easiest on each day and the last problem the hardest, though there have been many notable exceptions. ((IMO96-5) is one of the most difficult problems from all the Olympiads, having been fully solved by only six students out of several hundred!) Each problem is worth 7 points, making 42 points the maximum possible score. The number of points obtained by a contestant on each problem is the result of intense negotiations and, ultimately, agreement among the problem coordinators, assigned by the
host country, and the team leader and deputy, who defend the interests of their contestants. This system ensures a relatively objective grade that is seldom off by more than two or three points.

Though countries naturally compare each other's scores, only individual prizes, namely medals and honorable mentions, are awarded on the IMO. Fewer than one twelfth of participants are awarded the gold medal, fewer than one fourth are awarded the gold or silver medal, and fewer than one half are awarded the gold, silver or bronze medal. Among the students not awarded a medal, those who score 7 points on at least one problem are awarded an honorable mention. This system of determining awards works rather well. It ensures, on the one hand, strict criteria and appropriate recognition for each level of performance, giving every contestant something to strive for. On the other hand, it also ensures a good degree of generosity that does not greatly depend on the variable difficulty of the problems proposed.

According to the statistics, the hardest Olympiad was that in 1971, followed by those in 1996, 1993, and 1999. The Olympiad in which the winning team received the lowest score was that in 1977, followed by those in 1960 and 1999.

The selection of the problems consists of several steps. Participant countries send their proposals, which are supposed to be novel, to the IMO organizers. The organizing country does not propose problems. From the received proposals (the longlisted problems), the problem committee selects a shorter list (the shortlisted problems), which is presented to the IMO jury, consisting of all the team leaders. From the short-listed problems the jury chooses six problems for the IMO.

Apart from its mathematical and competitive side, the IMO is also a very large social event. After their work is done, the students have three days to enjoy events and excursions organized by the host country, as well as to interact and socialize with IMO participants from around the world. All this makes for a truly memorable experience.

### 1.2 The IMO Compendium

Olympiad problems have been published in many books [65]. However, the remaining shortlisted and longlisted problems have not been systematically collected and published, and therefore many of them are unknown to mathematicians interested in this subject. Some partial collections of shortlisted and longlisted problems can be found in the references, though usually only for one year. References [1], [30], [41], [60] contain problems from multiple years. In total, these books cover roughly $50 \%$ of the problems found in this book.

The goal of this book is to present, in a single volume, our comprehensive collection of problems proposed for the IMO. It consists of all problems selected for the IMO competitions, shortlisted problems from the 10th IMO
and from the 12th through 44th IMOs, and longlisted problems from nineteen IMOs. We do not have shortlisted problems from the 9th and the 11th IMOs, and we could not discover whether competition problems at those two IMOs were selected from the longlisted problems or whether there existed shortlisted problems that have not been preserved. Since IMO organizers usually do not distribute longlisted problems to the representatives of participant countries, our collection is incomplete. The practice of distributing these longlists effectively ended in 1989. A selection of problems from the first eight IMOs has been taken from [60].

The book is organized as follows. For each year, the problems that were given on the IMO contest are presented, along with the longlisted and/or shortlisted problems, if applicable. We present solutions to all shortlisted problems. The problems appearing on the IMOs are solved among the other shortlisted problems. The longlisted problems have not been provided with solutions, except for the two IMOs held in Yugoslavia (for patriotic reasons), since that would have made the book unreasonably long. This book has thus the added benefit for professors and team coaches of being a suitable book from which to assign problems. For each problem, we indicate the country that proposed it with a three-letter code. A complete list of country codes and the corresponding countries is given in the appendix. In all shortlists, we also indicate which problems were selected for the contest. We occasionally make references in our solutions to other problems in a straightforward way. After indicating with LL, SL, or IMO whether the problem is from a longlist, shortlist, or contest, we indicate the year of the IMO and then the number of the problem. For example, (SL89-15) refers to the fifteenth problem of the shortlist of 1989.

We also present a rough list of all formulas and theorems not obviously derivable that were called upon in our proofs. Since we were largely concerned with only the theorems used in proving the problems of this book, we believe that the list is a good compilation of the most useful theorems for IMO problem solving.

The gathering of such a large collection of problems into a book required a massive amount of editing. We reformulated the problems whose original formulations were not precise or clear. We translated the problems that were not in English. Some of the solutions are taken from the author of the problem or other sources, while others are original solutions of the authors of this book. Many of the non-original solutions were significantly edited before being included. We do not make any guarantee that the problems in this book fully correspond to the actual shortlisted or longlisted problems. However, we believe this book to be the closest possible approximation to such a list.

## Basic Concepts and Facts

The following is a list of the most basic concepts and theorems frequently used in this book. We encourage the reader to become familiar with them and perhaps read up on them further in other literature.

### 2.1 Algebra

### 2.1.1 Polynomials

Theorem 2.1. The quadratic equation $a x^{2}+b x+c=0(a, b, c \in \mathbb{R}, a \neq 0)$ has solutions

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The discriminant $D$ of the quadratic equation is defined as $D=b^{2}-4 a c$. For $D<0$ the solutions are complex and conjugate to each other, for $D=0$ the solutions degenerate to one real solution, and for $D>0$ the equation has two distinct real solutions.

Definition 2.2. Binomial coefficients $\binom{n}{k}, n, k \in \mathbb{N}_{0}, k \leq n$, are defined as

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!} .
$$

They satisfy $\binom{n}{i}+\binom{n}{i-1}=\binom{n+1}{i}$ for $i>0$ and also $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$, $\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n}=0,\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}$.

Theorem 2.3 ((Newton's) binomial formula). For $x, y \in \mathbb{C}$ and $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i} .
$$

Theorem 2.4 (Bézout's theorem). A polynomial $P(x)$ is divisible by the binomial $x-a \quad(a \in \mathbb{C})$ if and only if $P(a)=0$.

Theorem 2.5 (The rational root theorem). If $x=p / q$ is a rational zero of a polynomial $P(x)=a_{n} x^{n}+\cdots+a_{0}$ with integer coefficients and $(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$.

Theorem 2.6 (The fundamental theorem of algebra). Every nonconstant polynomial with coefficients in $\mathbb{C}$ has a complex root.

Theorem 2.7 (Eisenstein's criterion (extended)). Let $P(x)=a_{n} x^{n}+$ $\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. If there exist a prime $p$ and an integer $k \in\{0,1, \ldots, n-1\}$ such that $p \mid a_{0}, a_{1}, \ldots, a_{k}, p \nmid a_{k+1}$, and $p^{2} \nmid a_{0}$, then there exists an irreducible factor $Q(x)$ of $P(x)$ whose degree is at least $k$. In particular, if $p$ can be chosen such that $k=n-1$, then $P(x)$ is irreducible.

Definition 2.8. Symmetric polynomials in $x_{1}, \ldots, x_{n}$ are polynomials that do not change on permuting the variables $x_{1}, \ldots, x_{n}$. Elementary symmetric polynomials are $\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i_{1}} \cdots x_{i_{k}}$ (the sum is over all $k$-element subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\left.\{1,2, \ldots, n\}\right)$.

Theorem 2.9. Every symmetric polynomial in $x_{1}, \ldots, x_{n}$ can be expressed as a polynomial in the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$.

Theorem 2.10 (Vieta's formulas). Let $\alpha_{1}, \ldots, \alpha_{n}$ and $c_{1}, \ldots, c_{n}$ be complex numbers such that

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n} .
$$

Then $c_{k}=(-1)^{k} \sigma_{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for $k=1,2, \ldots, n$.
Theorem 2.11 (Newton's formulas on symmetric polynomials). Let $\sigma_{k}=\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)$ and let $s_{k}=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$, where $x_{1}, \ldots, x_{n}$ are arbitrary complex numbers. Then

$$
k \sigma_{k}=s_{1} \sigma_{k-1}-s_{2} \sigma_{k-2}+\cdots+(-1)^{k} s_{k-1} \sigma_{1}+(-1)^{k-1} s_{k} .
$$

### 2.1.2 Recurrence Relations

Definition 2.12. A recurrence relation is a relation that determines the elements of a sequence $x_{n}, n \in \mathbb{N}_{0}$, as a function of previous elements. A recurrence relation of the form

$$
(\forall n \geq k) \quad x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}=0
$$

for constants $a_{1}, \ldots, a_{k}$ is called a linear homogeneous recurrence relation of order $k$. We define the characteristic polynomial of the relation as $P(x)=$ $x^{k}+a_{1} x^{k-1}+\cdots+a_{k}$.

Theorem 2.13. Using the notation introduced in the above definition, let $P(x)$ factorize as $P(x)=\left(x-\alpha_{1}\right)^{k_{1}}\left(x-\alpha_{2}\right)^{k_{2}} \cdots\left(x-\alpha_{r}\right)^{k_{r}}$, where $\alpha_{1}, \ldots, \alpha_{r}$ are distinct complex numbers and $k_{1}, \ldots, k_{r}$ are positive integers. The general solution of this recurrence relation is in this case given by

$$
x_{n}=p_{1}(n) \alpha_{1}^{n}+p_{2}(n) \alpha_{2}^{n}+\cdots+p_{r}(n) \alpha_{r}^{n},
$$

where $p_{i}$ is a polynomial of degree less than $k_{i}$. In particular, if $P(x)$ has $k$ distinct roots, then all $p_{i}$ are constant.

If $x_{0}, \ldots, x_{k-1}$ are set, then the coefficients of the polynomials are uniquely determined.

### 2.1.3 Inequalities

Theorem 2.14. The quadratic function is always positive; i.e., $(\forall x \in \mathbb{R}) x^{2} \geq$ 0 . By substituting different expressions for $x$, many of the inequalities below are obtained.

## Theorem 2.15 (Bernoulli's inequalities).

1. If $n \geq 1$ is an integer and $x>-1$ a real number then $(1+x)^{n} \geq 1+n x$.
2. If $a>1$ or $a<0$ then for $x>-1$ the following inequality holds: $(1+x)^{\alpha} \geq$ $1+\alpha x$.
3. If $a \in(0,1)$ then for $x>-1$ the following inequality holds: $(1+x)^{\alpha} \leq$ $1+\alpha x$.

Theorem 2.16 (The mean inequalities). For positive real numbers $x_{1}, x_{2}$, $\ldots, x_{n}$ it follows that $Q M \geq A M \geq G M \geq H M$, where

$$
\begin{array}{ll}
Q M=\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}}, & A M=\frac{x_{1}+\cdots+x_{n}}{n}, \\
G M=\sqrt[n]{x_{1} \cdots x_{n}}, & H M=\frac{n}{1 / x_{1}+\cdots+1 / x_{n}} .
\end{array}
$$

Each of these inequalities becomes an equality if and only if $x_{1}=x_{2}=$ $\cdots=x_{n}$. The numbers $Q M, A M, G M$, and $H M$ are respectively called the quadratic mean, the arithmetic mean, the geometric mean, and the harmonic mean of $x_{1}, x_{2}, \ldots, x_{n}$.

Theorem 2.17 (The general mean inequality). Let $x_{1}, \ldots, x_{n}$ be positive real numbers. For each $p \in \mathbb{R}$ we define the mean of order $p$ of $x_{1}, \ldots, x_{n}$ by $M_{p}=\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p}$ for $p \neq 0$, and $M_{q}=\lim _{p \rightarrow q} M_{p}$ for $q \in\{ \pm \infty, 0\}$. In particular, $\max x_{i}, Q M, A M, G M, H M$, and $\min x_{i}$ are $M_{\infty}, M_{2}, M_{1}, M_{0}$, $M_{-1}$, and $M_{-\infty}$ respectively. Then

$$
M_{p} \leq M_{q} \quad \text { whenever } \quad p \leq q
$$

Theorem 2.18 (Cauchy-Schwarz inequality). Let $a_{i}, b_{i}, i=1,2, \ldots, n$, be real numbers. Then

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=$ $1, \ldots, n$.

Theorem 2.19 (Hölder's inequality). Let $a_{i}, b_{i}, i=1,2, \ldots, n$, be nonnegative real numbers, and let $p, q$ be positive real numbers such that $1 / p+1 / q=1$. Then

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q}
$$

Equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=1, \ldots, n$. The Cauchy-Schwarz inequality is a special case of Hölder's inequality for $p=q=2$.

Theorem 2.20 (Minkowski's inequality). Let $a_{i}, b_{i}(i=1,2, \ldots, n)$ be nonnegative real numbers and $p$ any real number not smaller than 1 . Then

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} b_{i}^{p}\right)^{1 / p}
$$

For $p>1$ equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=1, \ldots, n$. For $p=1$ equality occurs in all cases.

Theorem 2.21 (Chebyshev's inequality). Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$ be real numbers. Then

$$
n \sum_{i=1}^{n} a_{i} b_{i} \geq\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right) \geq n \sum_{i=1}^{n} a_{i} b_{n+1-i} .
$$

The two inequalities become equalities at the same time when $a_{1}=a_{2}=\cdots=$ $a_{n}$ or $b_{1}=b_{2}=\cdots=b_{n}$.

Definition 2.22. A real function $f$ defined on an interval $I$ is convex if $f(\alpha x+$ $\beta y) \leq \alpha f(x)+\beta f(y)$. for all $x, y \in I$ and all $\alpha, \beta>0$ such that $\alpha+\beta=1$. A function $f$ is said to be concave if the opposite inequality holds, i.e., if $-f$ is convex.

Theorem 2.23. If $f$ is continuous on an interval $I$, then $f$ is convex on that interval if and only if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \quad \text { for all } x, y \in I
$$

Theorem 2.24. If $f$ is differentiable, then it is convex if and only if the derivative $f^{\prime}$ is nondecreasing. Similarly, differentiable function $f$ is concave if and only if $f^{\prime}$ is nonincreasing.

Theorem 2.25 (Jensen's inequality). If $f: I \rightarrow \mathbb{R}$ is a convex function, then the inequality

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right) \leq \alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{n} f\left(x_{n}\right)
$$

holds for all $\alpha_{i} \geq 0, \alpha_{1}+\cdots+\alpha_{n}=1$, and $x_{i} \in I$. For a concave function the opposite inequality holds.

Theorem 2.26 (Muirhead's inequality). Given $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{+}$and an $n$-tuple $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right)$ of positive real numbers, we define

$$
T_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right)=\sum y_{1}^{a_{1}} \ldots y_{n}^{a_{n}}
$$

the sum being taken over all permutations $y_{1}, \ldots, y_{n}$ of $x_{1}, \ldots, x_{n}$. We say that an n-tuple $\mathbf{a}$ majorizes an n-tuple $\mathbf{b}$ if $a_{1}+\cdots+a_{n}=b_{1}+\cdots+b_{n}$ and $a_{1}+\cdots+a_{k} \geq b_{1}+\cdots+b_{k}$ for each $k=1, \ldots, n-1$. If a nonincreasing $n$-tuple $\mathbf{a}$ majorizes a nonincreasing $n$-tuple $\mathbf{b}$, then the following inequality holds:

$$
T_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right) \geq T_{\mathbf{b}}\left(x_{1}, \ldots, x_{n}\right)
$$

Equality occurs if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Theorem 2.27 (Schur's inequality). Using the notation introduced for Muirhead's inequality,

$$
T_{\lambda+2 \mu, 0,0}\left(x_{1}, x_{2}, x_{3}\right)+T_{\lambda, \mu, \mu}\left(x_{1}, x_{2}, x_{3}\right) \geq 2 T_{\lambda+\mu, \mu, 0}\left(x_{1}, x_{2}, x_{3}\right),
$$

where $\lambda, \mu \in \mathbb{R}^{+}$. Equality occurs if and only if $x_{1}=x_{2}=x_{3}$ or $x_{1}=x_{2}$, $x_{3}=0$ (and in analogous cases).

### 2.1.4 Groups and Fields

Definition 2.28. A group is a nonempty set $G$ equipped with an operation * satisfying the following conditions:
(i) $a *(b * c)=(a * b) * c$ for all $a, b, c \in G$.
(ii) There exists a (unique) additive identity $e \in G$ such that $e * a=a * e=a$ for all $a \in G$.
(iii) For each $a \in G$ there exists a (unique) additive inverse $a^{-1}=b \in G$ such that $a * b=b * a=e$.

If $n \in \mathbb{Z}$, we define $a^{n}$ as $a * a * \cdots * a\left(n\right.$ times) if $n \geq 0$, and as $\left(a^{-1}\right)^{-n}$ otherwise.

Definition 2.29. A group $\mathcal{G}=(G, *)$ is commutative or abelian if $a * b=b * a$ for all $a, b \in G$.

Definition 2.30. A set $A$ generates a group $(G, *)$ if every element of $G$ can be obtained using powers of the elements of $A$ and the operation $*$. In other words, if $A$ is the generator of a group $G$ then every element $g \in G$ can be written as $a_{1}^{i_{1}} * \cdots * a_{n}^{i_{n}}$, where $a_{j} \in A$ and $i_{j} \in \mathbb{Z}$ for every $j=1,2, \ldots, n$.

Definition 2.31. The order of $a \in G$ is the smallest $n \in \mathbb{N}$ such that $a^{n}=e$, if it exists. The order of a group is the number of its elements, if it is finite. Each element of a finite group has a finite order.

Theorem 2.32 (Lagrange's theorem). In a finite group, the order of an element divides the order of the group.

Definition 2.33. A ring is a nonempty set $R$ equipped with two operations + and $\cdot$ such that $(R,+)$ is an abelian group and for any $a, b, c \in R$,
(i) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
(ii) $(a+b) \cdot c=a \cdot c+b \cdot c$ and $c \cdot(a+b)=c \cdot a+c \cdot b$.

A ring is commutative if $a \cdot b=b \cdot a$ for any $a, b \in R$ and with identity if there exists a multiplicative identity $i \in R$ such that $i \cdot a=a \cdot i=a$ for all $a \in R$.

Definition 2.34. A field is a commutative ring with identity in which every element $a$ other than the additive identity has a multiplicative inverse $a^{-1}$ such that $a \cdot a^{-1}=a^{-1} \cdot a=i$.

Theorem 2.35. The following are common examples of groups, rings, and fields:

Groups: $\left(\mathbb{Z}_{n},+\right),\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{R} \backslash\{0\}, \cdot)$.
Rings: $\left(\mathbb{Z}_{n},+, \cdot\right),(\mathbb{Z},+, \cdot),(\mathbb{Z}[x],+, \cdot),(\mathbb{R}[x],+, \cdot)$.
Fields: $\left(\mathbb{Z}_{p},+, \cdot\right),(\mathbb{Q},+, \cdot),(\mathbb{Q}(\sqrt{2}),+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{C},+, \cdot)$.

### 2.2 Analysis

Definition 2.36. A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a limit $a=\lim _{n \rightarrow \infty} a_{n}$ (also denoted by $a_{n} \rightarrow a$ ) if

$$
(\forall \varepsilon>0)\left(\exists n_{\varepsilon} \in \mathbb{N}\right)\left(\forall n \geq n_{\varepsilon}\right)\left|a_{n}-a\right|<\varepsilon
$$

A function $f:(a, b) \rightarrow \mathbb{R}$ has a limit $y=\lim _{x \rightarrow c} f(x)$ if

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x \in(a, b)) 0<|x-c|<\delta \Rightarrow|f(x)-y|<\varepsilon
$$

Definition 2.37. A sequence $x_{n}$ converges to $x \in \mathbb{R}$ if $\lim _{n \rightarrow \infty} x_{n}=x$. A series $\sum_{n=1}^{\infty} x_{n}$ converges to $s \in \mathbb{R}$ if and only if $\lim _{m \rightarrow \infty} \sum_{n=1}^{m} x_{n}=s$. A sequence or series that does not converge is said to diverge.

Theorem 2.38. A sequence $a_{n}$ is convergent if it is monotonic and bounded.
Definition 2.39. A function $f$ is continuous on $[a, b]$ if for every $x_{0} \in[a, b]$, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Definition 2.40. A function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $x_{0} \in$ $(a, b)$ if the following limit exists:

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

A function is differentiable on $(a, b)$ if it is differentiable at every $x_{0} \in(a, b)$. The function $f^{\prime}$ is called the derivative of $f$. We similarly define the second derivative $f^{\prime \prime}$ as the derivative of $f^{\prime}$, and so on.

Theorem 2.41. A differentiable function is also continuous. If $f$ and $g$ are differentiable, then $f g, \alpha f+\beta g(\alpha, \beta \in \mathbb{R}), f \circ g, 1 / f$ (if $f \neq 0$ ), $f^{-1}$ (if welldefined) are also differentiable. It holds that $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime},(f g)^{\prime}=$ $f^{\prime} g+f g^{\prime},(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime},(1 / f)^{\prime}=-f^{\prime} / f^{2},(f / g)^{\prime}=\left(f^{\prime} g-f g^{\prime}\right) / g^{2}$, $\left(f^{-1}\right)^{\prime}=1 /\left(f^{\prime} \circ f^{-1}\right)$.

Theorem 2.42. The following are derivatives of some elementary functions (a denotes a real constant): $\left(x^{a}\right)^{\prime}=a x^{a-1},(\ln x)^{\prime}=1 / x,\left(a^{x}\right)^{\prime}=a^{x} \ln a$, $(\sin x)^{\prime}=\cos x,(\cos x)^{\prime}=-\sin x$.

Theorem 2.43 (Fermat's theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. The function $f$ attains its maximum and minimum in this interval. If $x_{0} \in(a, b)$ is an extremum (i.e., a maximum or minimum), then $f^{\prime}\left(x_{0}\right)=0$.

Theorem 2.44 (Rolle's theorem). Let $f(x)$ be a continuously differentiable function defined on $[a, b]$, where $a, b \in \mathbb{R}, a<b$, and $f(a)=f(b)=0$. Then there exists $c \in[a, b]$ such that $f^{\prime}(c)=0$.

Definition 2.45. Differentiable functions $f_{1}, f_{2}, \ldots, f_{k}$ defined on an open subset $D$ of $\mathbb{R}^{n}$ are independent if there is no nonzero differentiable function $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $F\left(f_{1}, \ldots, f_{k}\right)$ is identically zero on some open subset of $D$.

Theorem 2.46. Functions $f_{1}, \ldots, f_{k}: D \rightarrow \mathbb{R}$ are independent if and only if the $k \times n$ matrix $\left[\partial f_{i} / \partial x_{j}\right]_{i, j}$ is of rank $k$, i.e. when its $k$ rows are linearly independent at some point.

Theorem 2.47 (Lagrange multipliers). Let $D$ be an open subset of $\mathbb{R}^{n}$ and $f, f_{1}, f_{2}, \ldots, f_{k}: D \rightarrow \mathbb{R}$ independent differentiable functions. Assume
that a point a in $D$ is an extremum of the function $f$ within the set of points in $D$ such that $f_{1}=f_{2}=\cdots=f_{n}=0$. Then there exist real numbers $\lambda_{1}, \ldots, \lambda_{k}$ (so-called Lagrange multipliers) such that a is a stationary point of the function $F=f+\lambda_{1} f_{1}+\cdots+\lambda_{k} f_{k}$, i.e., such that all partial derivatives of $F$ at a are zero.

Definition 2.48. Let $f$ be a real function defined on $[a, b]$ and let $a=x_{0} \leq$ $x_{1} \leq \cdots \leq x_{n}=b$ and $\xi_{k} \in\left[x_{k-1}, x_{k}\right]$. The sum $S=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) f\left(\xi_{k}\right)$ is called a Darboux sum. If $I=\lim _{\delta \rightarrow 0} S$ exists (where $\delta=\max _{k}\left(x_{k}-x_{k-1}\right)$ ), we say that $f$ is integrable and $I$ its integral. Every continuous function is integrable on a finite interval.

### 2.3 Geometry

### 2.3.1 Triangle Geometry

Definition 2.49. The orthocenter of a triangle is the common point of its three altitudes.

Definition 2.50. The circumcenter of a triangle is the center of its circumscribed circle (i.e. circumcircle). It is the common point of the perpendicular bisectors of the sides of the triangle.

Definition 2.51. The incenter of a triangle is the center of its inscribed circle (i.e. incircle). It is the common point of the internal bisectors of its angles.

Definition 2.52. The centroid of a triangle (median point) is the common point of its medians.

Theorem 2.53. The orthocenter, circumcenter, incenter and centroid are well-defined (and unique) for every non-degenerate triangle.

Theorem 2.54 (Euler's line). The orthocenter $H$, centroid $G$, and circumcircle $O$ of an arbitrary triangle lie on a line (Euler's line) and satisfy $\overrightarrow{H G}=2 \overrightarrow{G O}$.

Theorem 2.55 (The nine-point circle). The feet of the altitudes from $A, B, C$ and the midpoints of $A B, B C, C A, A H, B H, C H$ lie on a circle (The nine-point circle).

Theorem 2.56 (Feuerbach's theorem). The nine-point circle of a triangle is tangent to the incircle and all three excircles of the triangle.

Theorem 2.57. Given a triangle $\triangle A B C$, let $\triangle A B C^{\prime}, \triangle A B^{\prime} C$, and $\triangle A^{\prime} B C$ be equilateral triangles constructed outwards. Then $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect in one point, called Torricelli's point.

Definition 2.58. Let $A B C$ be a triangle, $P$ a point, and $X, Y, Z$ respectively the feet of the perpendiculars from $P$ to $B C, A C, A B$. Triangle $X Y Z$ is called the pedal triangle of $\triangle A B C$ corresponding to point $P$.

Theorem 2.59 (Simson's line). The pedal triangle $X Y Z$ is degenerate, i.e., $X, Y, Z$ are collinear, if and only if $P$ lies on the circumcircle of $A B C$. Points $X, Y, Z$ are in this case said to lie on Simson's line.

Theorem 2.60 (Carnot's theorem). The perpendiculars from $X, Y, Z$ to $B C, C A, A B$ respectively are concurrent if and only if

$$
B X^{2}-X C^{2}+C Y^{2}-Y A^{2}+A Z^{2}-Z B^{2}=0
$$

Theorem 2.61 (Desargues's theorem). Let $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ be two triangles. The lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are concurrent or mutually parallel if and only if the points $A=B_{1} C_{2} \cap B_{2} C_{1}, B=C_{1} A_{2} \cap A_{1} C_{2}$, and $C=$ $A_{1} B_{2} \cap A_{2} B_{1}$ are collinear.

### 2.3.2 Vectors in Geometry

Definition 2.62. For any two vectors $\vec{a}, \vec{b}$ in space, we define the scalar product (also known as dot product) of $\vec{a}$ and $\vec{b}$ as $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \varphi$, and the vector product as $\vec{a} \times \vec{b}=\vec{p}$, where $\varphi=\angle(\vec{a}, \vec{b})$ and $\vec{p}$ is the vector with $|\vec{p}|=|\vec{a}||\vec{b}||\sin \varphi|$ perpendicular to the plane determined by $\vec{a}$ and $\vec{b}$ such that the triple of vectors $\vec{a}, \vec{b}, \vec{p}$ is positively oriented (note that if $\vec{a}$ and $\vec{b}$ are collinear, then $\vec{a} \times \vec{b}=\overrightarrow{0}$ ). These products are both linear with respect to both factors. The scalar product is commutative, while the vector product is anticommutative, i.e. $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$. We also define the mixed vector product of three vectors $\vec{a}, \vec{b}, \vec{c}$ as $[\vec{a}, \vec{b}, \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c}$. Remark. Scalar product of vectors $\vec{a}$ and $\vec{b}$ is often denoted by $\langle\vec{a}, \vec{b}\rangle$.

Theorem 2.63 (Thales' theorem). Let lines $A A^{\prime}$ and $B B^{\prime}$ intersect in a point $O, A^{\prime} \neq O \neq B^{\prime}$. Then $A B \| A^{\prime} B^{\prime} \Leftrightarrow \frac{\overrightarrow{O A}}{\overrightarrow{O A^{\prime}}}=\frac{\overrightarrow{O B}}{\overrightarrow{O B^{\prime}}}$. (Here $\frac{\vec{a}}{\vec{b}}$ denotes the ratio of two nonzero collinear vectors).

Theorem 2.64 (Ceva's theorem). Let $A B C$ be a triangle and $X, Y, Z$ be points on lines $B C, C A, A B$ respectively, distinct from $A, B, C$. Then the lines $A X, B Y, C Z$ are concurrent if and only if

$$
\frac{\overrightarrow{B X}}{\overrightarrow{X C}} \cdot \frac{\overrightarrow{C Y}}{\overrightarrow{Y A}} \cdot \frac{\overrightarrow{A Z}}{\overrightarrow{Z B}}=1 \text {, or equivalently, } \frac{\sin \measuredangle B A X}{\sin \measuredangle X A C} \frac{\sin \measuredangle C B Y}{\sin \measuredangle Y B A} \frac{\sin \measuredangle A C Z}{\sin \measuredangle Z C B}=1
$$

(the last expression being called the trigonometric form of Ceva's theorem).

Theorem 2.65 (Menelaus's theorem). Using the notation introduced for Ceva's theorem, points $X, Y, Z$ are collinear if and only if

$$
\frac{\overrightarrow{B X}}{\overrightarrow{X C}} \cdot \frac{\overrightarrow{C Y}}{\overrightarrow{Y A}} \cdot \frac{\overrightarrow{A Z}}{\overrightarrow{Z B}}=-1
$$

Theorem 2.66 (Stewart's theorem). If $D$ is an arbitrary point on the line $B C$, then

$$
A D^{2}=\frac{\overrightarrow{D C}}{\overrightarrow{B C}} B D^{2}+\frac{\overrightarrow{B D}}{\overrightarrow{B C}} C D^{2}-\overrightarrow{B D} \cdot \overrightarrow{D C}
$$

Specifically, if $D$ is the midpoint of $B C$, then $4 A D^{2}=2 A B^{2}+2 A C^{2}-B C^{2}$.

### 2.3.3 Barycenters

Definition 2.67. A mass point $(A, m)$ is a point $A$ which is assigned a mass $m>0$.

Definition 2.68. The mass center (barycenter) of the set of mass points $\left(A_{i}, m_{i}\right), i=1,2, \ldots, n$, is the point $T$ such that $\sum_{i} m_{i} \overrightarrow{T A_{i}}=0$.

Theorem 2.69 (Leibniz's theorem). Let $T$ be the mass center of the set of mass points $\left\{\left(A_{i}, m_{i}\right) \mid i=1,2, \ldots, n\right\}$ of total mass $m=m_{1}+\cdots+m_{n}$, and let $X$ be an arbitrary point. Then

$$
\sum_{i=1}^{n} m_{i} X A_{i}^{2}=\sum_{i=1}^{n} m_{i} T A_{i}^{2}+m X T^{2}
$$

Specifically, if $T$ is the centroid of $\triangle A B C$ and $X$ an arbitrary point, then

$$
A X^{2}+B X^{2}+C X^{2}=A T^{2}+B T^{2}+C T^{2}+3 X T^{2}
$$

### 2.3.4 Quadrilaterals

Theorem 2.70. A quadrilateral $A B C D$ is cyclic (i.e., there exists a circumcircle of $A B C D$ ) if and only if $\angle A C B=\angle A D B$ and if and only if $\angle A D C+\angle A B C=180^{\circ}$.

Theorem 2.71 (Ptolemy's theorem). A convex quadrilateral $A B C D$ is cyclic if and only if

$$
A C \cdot B D=A B \cdot C D+A D \cdot B C
$$

For an arbitrary quadrilateral $A B C D$ we have Ptolemy's inequality (see 2.3.7, Geometric Inequalities).

Theorem 2.72 (Casey's theorem). Let $k_{1}, k_{2}, k_{3}, k_{4}$ be four circles that all touch a given circle $k$. Let $t_{i j}$ be the length of a segment determined by an external common tangent of circles $k_{i}$ and $k_{j}(i, j \in\{1,2,3,4\})$ if both $k_{i}$ and $k_{j}$ touch $k$ internally, or both touch $k$ externally. Otherwise, $t_{i j}$ is set to be the internal common tangent. Then one of the products $t_{12} t_{34}, t_{13} t_{24}$, and $t_{14} t_{23}$ is the sum of the other two.

Some of the circles $k_{1}, k_{2}, k_{3}, k_{4}$ may be degenerate, i.e. of 0 radius and thus reduced to being points. In particular, for three points $A, B, C$ on a circle $k$ and a circle $k^{\prime}$ touching $k$ at a point on the arc of $A C$ not containing $B$, we have $A C \cdot b=A B \cdot c+a \cdot B C$, where $a, b$, and $c$ are the lengths of the tangent segments from points $A, B$, and $C$ to $k^{\prime}$. Ptolemy's theorem is a special case of Casey's theorem when all four circles are degenerate.

Theorem 2.73. A convex quadrilateral $A B C D$ is tangent (i.e., there exists an incircle of $A B C D$ ) if and only if

$$
A B+C D=B C+D A
$$

Theorem 2.74. For arbitrary points $A, B, C, D$ in space, $A C \perp B D$ if and only if

$$
A B^{2}+C D^{2}=B C^{2}+D A^{2}
$$

Theorem 2.75 (Newton's theorem). Let $A B C D$ be a quadrilateral, $A D \cap$ $B C=E$, and $A B \cap D C=F$ (such points $A, B, C, D, E, F$ form a complete quadrilateral). Then the midpoints of $A C, B D$, and $E F$ are collinear. If $A B C D$ is tangent, then the incenter also lies on this line.

Theorem 2.76 (Brocard's theorem). Let $A B C D$ be a quadrilateral inscribed in a circle with center $O$, and let $P=A B \cap C D, Q=A D \cap B C$, $R=A C \cap B D$. Then $O$ is the orthocenter of $\triangle P Q R$.

### 2.3.5 Circle Geometry

Theorem 2.77 (Pascal's theorem). If $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ are distinct points on a conic $\gamma$ (e.g., circle), then points $X_{1}=A_{2} B_{3} \cap A_{3} B_{2}, X_{2}=$ $A_{1} B_{3} \cap A_{3} B_{1}$, and $X_{3}=A_{1} B_{2} \cap A_{2} B_{1}$ are collinear. The special result when $\gamma$ consists of two lines is called Pappus's theorem.

Theorem 2.78 (Brianchon's theorem). Let $A B C D E F$ be an arbitrary convex hexagon circumscribed about a conic (e.g., circle). Then $A D, B E$ and $C F$ meet in a point.

Theorem 2.79 (The butterfly theorem). Let $A B$ be a segment of circle $k$ and $C$ its midpoint. Let $p$ and $q$ be two different lines through $C$ that, respectively, intersect $k$ on one side of $A B$ in $P$ and $Q$ and on the other in $P^{\prime}$ and $Q^{\prime}$. Let $E$ and $F$ respectively be the intersections of $P Q^{\prime}$ and $P^{\prime} Q$ with $A B$. Then it follows that $C E=C F$.

Definition 2.80. The power of a point $X$ with respect to a circle $k(O, r)$ is defined by $\mathcal{P}(X)=O X^{2}-r^{2}$. For an arbitrary line $l$ through $X$ that intersects $k$ at $A$ and $B(A=B$ when $l$ is a tangent $)$, it follows that $\mathcal{P}(X)=\overrightarrow{X A} \cdot \overrightarrow{X B}$.

Definition 2.81. The radical axis of two circles is the locus of points that have equal powers with respect to both circles. The radical axis of circles $k_{1}\left(O_{1}, r_{1}\right)$ and $k_{2}\left(O_{2}, r_{2}\right)$ is a line perpendicular to $O_{1} O_{2}$. The radical axes of three distinct circles are concurrent or mutually parallel. If concurrent, the intersection of the three axes is called the radical center.

Definition 2.82. The pole of a line $l \not \supset O$ with respect to a circle $k(O, r)$ is a point $A$ on the other side of $l$ from $O$ such that $O A \perp l$ and $d(O, l) \cdot O A=r^{2}$. In particular, if $l$ intersects $k$ in two points, its pole will be the intersection of the tangents to $k$ at these two points.

Definition 2.83. The polar of the point $A$ from the previous definition is the line $l$. In particular, if $A$ is a point outside $k$ and $A M, A N$ are tangents to $k$ $(M, N \in k)$, then $M N$ is the polar of $A$.
Poles and polares are generally defined in a similar way with respect to arbitrary non-degenerate conics.

Theorem 2.84. If $A$ belongs to a polar of $B$, then $B$ belongs to a polar of $A$.

### 2.3.6 Inversion

Definition 2.85. An inversion of the plane $\pi$ around the circle $k(O, r)$ (which belongs to $\pi$ ), is a transformation of the set $\pi \backslash\{O\}$ onto itself such that every point $P$ is transformed into a point $P^{\prime}$ on $\left(O P\right.$ such that $O P \cdot O P^{\prime}=r^{2}$. In the following statements we implicitly assume exclusion of $O$.

Theorem 2.86. The fixed points of the inversion are on the circle $k$. The inside of $k$ is transformed into the outside and vice versa.

Theorem 2.87. If $A, B$ transform into $A^{\prime}, B^{\prime}$ after an inversion, then $\angle O A B$ $=\angle O B^{\prime} A^{\prime}$, and also $A B B^{\prime} A^{\prime}$ is cyclic and perpendicular to $k$. $A$ circle perpendicular to $k$ transforms into itself. Inversion preserves angles between continuous curves (which includes lines and circles).

Theorem 2.88. An inversion transforms lines not containing $O$ into circles containing $O$, lines containing $O$ into themselves, circles not containing $O$ into circles not containing $O$, circles containing $O$ into lines not containing $O$.

### 2.3.7 Geometric Inequalities

Theorem 2.89 (The triangle inequality). For any three points $A, B, C$ in a plane $A B+B C \geq A C$. Equality occurs when $A, B, C$ are collinear and $\mathcal{B}(A, B, C)$.

Theorem 2.90 (Ptolemy's inequality). For any four points $A, B, C, D$,

$$
A C \cdot B D \leq A B \cdot C D+A D \cdot B C
$$

Theorem 2.91 (The parallelogram inequality). For any four points $A$, $B, C, D$,

$$
A B^{2}+B C^{2}+C D^{2}+D A^{2} \geq A C^{2}+B D^{2}
$$

Equality occurs if and only if $A B C D$ is a parallelogram.
Theorem 2.92. For a given triangle $\triangle A B C$ the point $X$ for which $A X+$ $B X+C X$ is minimal is Toricelli's point when all angles of $\triangle A B C$ are less than or equal to $120^{\circ}$, and is the vertex of the obtuse angle otherwise. The point $X_{2}$ for which $A X_{2}^{2}+B X_{2}^{2}+C X_{2}^{2}$ is minimal is the centroid (see Leibniz's theorem).

Theorem 2.93 (The Erdős-Mordell inequality). Let $P$ be a point in the interior of $\triangle A B C$ and $X, Y, Z$ projections of $P$ onto $B C, A C, A B$, respectively. Then

$$
P A+P B+P C \geq 2(P X+P Y+P Z)
$$

Equality holds if and only if $\triangle A B C$ is equilateral and $P$ is its center.

### 2.3.8 Trigonometry

Definition 2.94. The trigonometric circle is the unit circle centered at the origin $O$ of a coordinate plane. Let $A$ be the point $(1,0)$ and $P(x, y)$ be a point on the trigonometric circle such that $\measuredangle A O P=\alpha$. We define $\sin \alpha=y$, $\cos \alpha=x, \tan \alpha=y / x$, and $\cot \alpha=x / y$.

Theorem 2.95. The functions $\sin$ and $\cos$ are periodic with period $2 \pi$. The functions $\tan$ and cot are periodic with period $\pi$. The following simple identities hold: $\sin ^{2} x+\cos ^{2} x=1, \sin 0=\sin \pi=0, \sin (-x)=-\sin x, \cos (-x)=$ $\cos x, \sin (\pi / 2)=1, \sin (\pi / 4)=1 / \sqrt{2}, \sin (\pi / 6)=1 / 2, \cos x=\sin (\pi / 2-x)$. From these identities other identities can be easily derived.

Theorem 2.96. Additive formulas for trigonometric functions:

$$
\begin{array}{ll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta, & \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}, & \cot (\alpha \pm \beta)=\frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \pm \cot \beta} .
\end{array}
$$

Theorem 2.97. Formulas for trigonometric functions of $2 x$ and $3 x$ :

$$
\begin{array}{ll}
\sin 2 x=2 \sin x \cos x, & \sin 3 x=3 \sin x-4 \sin ^{3} x, \\
\cos 2 x=2 \cos ^{2} x-1, & \cos 3 x=4 \cos ^{3} x-3 \cos x, \\
\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}, & \tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x} .
\end{array}
$$

Theorem 2.98. For any $x \in \mathbb{R}, \sin x=\frac{2 t}{1+t^{2}}$ and $\cos x=\frac{1-t^{2}}{1+t^{2}}$, where $t=$ $\tan \frac{x}{2}$.

Theorem 2.99. Transformations from product to sum:

$$
\begin{aligned}
& 2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta) \\
& 2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta) \\
& 2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)
\end{aligned}
$$

Theorem 2.100. The angles $\alpha, \beta, \gamma$ of a triangle satisfy

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma & =1 \\
\tan \alpha+\tan \beta+\tan \gamma & =\tan \alpha \tan \beta \tan \gamma
\end{aligned}
$$

Theorem 2.101 (De Moivre's formula). If $i^{2}=-1$, then

$$
(\cos x+i \sin x)^{n}=\cos n x+i \sin n x
$$

### 2.3.9 Formulas in Geometry

Theorem 2.102 (Heron's formula). The area of a triangle $A B C$ with sides $a, b, c$ and semiperimeter $s$ is given by

$$
S=\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{4} \sqrt{2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4}} .
$$

Theorem 2.103 (The law of sines). The sides $a, b, c$ and angles $\alpha, \beta, \gamma$ of a triangle $A B C$ satisfy

$$
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}=2 R
$$

where $R$ is the circumradius of $\triangle A B C$.
Theorem 2.104 (The law of cosines). The sides and angles of $\triangle A B C$ satisfy

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

Theorem 2.105. The circumradius $R$ and inradius $r$ of a triangle $A B C$ satisfy $R=\frac{a b c}{4 S}$ and $r=\frac{2 S}{a+b+c}=R(\cos \alpha+\cos \beta+\cos \gamma-1)$. If $x, y, z d e-$ note the distances of the circumcenter in an acute triangle to the sides, then $x+y+z=R+r$.

Theorem 2.106 (Euler's formula). If $O$ and $I$ are the circumcenter and incenter of $\triangle A B C$, then $O I^{2}=R(R-2 r)$, where $R$ and $r$ are respectively the circumradius and the inradius of $\triangle A B C$. Consequently, $R \geq 2 r$.

Theorem 2.107. The area $S$ of a quadrilateral $A B C D$ with sides $a, b, c, d$, semiperimeter $p$, and angles $\alpha, \gamma$ at vertices $A, C$ respectively is given by

$$
S=\sqrt{(p-a)(p-b)(p-c)(p-d)-a b c d \cos ^{2} \frac{\alpha+\gamma}{2}} .
$$

If $A B C D$ is a cyclic quadrilateral, the above formula reduces to

$$
S=\sqrt{(p-a)(p-b)(p-c)(p-d)}
$$

Theorem 2.108 (Euler's theorem for pedal triangles). Let $X, Y, Z$ be the feet of the perpendiculars from a point $P$ to the sides of a triangle $A B C$. Let $O$ denote the circumcenter and $R$ the circumradius of $\triangle A B C$. Then

$$
S_{X Y Z}=\frac{1}{4}\left|1-\frac{O P^{2}}{R^{2}}\right| S_{A B C} .
$$

Moreover, $S_{X Y Z}=0$ if and only if $P$ lies on the circumcircle of $\triangle A B C$ (see Simson's line).

Theorem 2.109. If
overrightarrowa $=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right), \vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$ are three vectors in coordinate space, then

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}, \quad \vec{a} \times \vec{b}=\left(a_{1} b_{2}-a_{2} b_{1}, a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}\right), \\
{[\vec{a}, \vec{b}, \vec{c}]=\left\|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right\| .}
\end{gathered}
$$

Theorem 2.110. The area of a triangle $A B C$ and the volume of a tetrahedron $A B C D$ are equal to $|\overrightarrow{A B} \times \overrightarrow{A C}|$ and $|[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]|$, respectively.

Theorem 2.111 (Cavalieri's principle). If the sections of two solids by the same plane always have equal area, then the volumes of the two solids are equal.

### 2.4 Number Theory

### 2.4.1 Divisibility and Congruences

Definition 2.112. The greatest common divisor $(a, b)=\operatorname{gcd}(a, b)$ of $a, b \in \mathbb{N}$ is the largest positive integer that divides both $a$ and $b$. Positive integers $a$ and $b$ are coprime or relatively prime if $(a, b)=1$. The least common multiple $[a, b]=\operatorname{lcm}(a, b)$ of $a, b \in \mathbb{N}$ is the smallest positive integer that is divisible by both $a$ and $b$. It holds that $[a, b](a, b)=a b$. The above concepts are easily generalized to more than two numbers; i.e., we also define $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$.

