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Foreword

‘Dark brown shrivelled dead-looking leaves’ ‘so dry they can be crushed to a
powder between one’s fingers’ ‘the plant cost its own weight in gold’ ‘surprisingly,
the rehydrating leaves became green again’ ‘the leaves expanded to ten times their
area when they were dry’ — these phrases display the astonishment evoked by the
novel vision of a desiccation tolerant ‘resurrection plant’ passing from a moribund
dry state to a healthy active life as it re-hydrates! Such amazement has now been
matched by rapidly advancing scientific understanding.

Researchers from countries widely spread from Hungary to New Zealand set out
current knowledge on desiccation tolerant plants. It is appropriate that this book
includes contributions of many eminent plant scientists from Germany — for
German botanists played a substantial role in the initial reports of angiosperm
species with desiccation tolerant foliage and in the subsequent research into the
mechanisms involved in the survival and recovery of air-dry leaves. The first
reports, by the taxonomist Kurt Dinter, of four desiccation-tolerant angiosperm
species consisted of mere asides in his descriptions of species in the flora of
southwest Africa. Fuller comments on one of these species, Chamaegigas intrepi-
dus, were published by H. Heil in 1924. Four decades later P. Hoffman, G.H.
Vieweg and H. Ziegler demonstrated renewed photosynthesis in re-hydrated shoots
of the African ‘resurrection bush’ Myrothamnus flabellifolia, one of the species
Dinter recognised to be desiccation-tolerant.

Focused exploration for desiccation-tolerant plants has extended our knowl-
edge of the floristic spread and the geographic range greatly. Even a cursory
perusal of the chapter topics shows that the phenomenon is found in the full range
of phyla of chlorophyll-containing species from prokaryotes and cryptogams to
angiosperms. Relatively few species in any one phylum have received intensive
study. Among the angiosperms, Dinter’s species Craterostigma plantagineum,
Chamaegigas intrepidus, Myrothamnus flabellifolia and Xerophyta viscosa have
all received considerable but by no means exhaustive scientific attention, as has
also Sporobolus stapfianus that was recognised as a desiccation-tolerant grass
in 1970.



vi Foreword

The present tome also displays how the scope of desiccation-tolerant plant
studies has expanded to embrace ecological, evolutionary, physiological, biochem-
ical and molecular biological areas. In the last two instances, the increasing
knowledge of desiccation tolerance is being driven by the explosive growth in the
technology and understanding in these fields. The first investigations of gene
expression of drying and rehydrating resurrection plants were conducted in the
Max Planck Institute at Koln by Professor Dorothea Bartels and her colleagues.
I am indebted to Professor Bartels for guiding my first steps in this important aspect
of desiccation tolerance. The rapid growth of this field has given us insights into
the complex changes in mRNA complements and the proteome that support the
survival of drying leaves and the revival of rehydrating plants, not only in the
foliage but also in the pollen and seed of most spermatophytes. The investigations
of a widening number of researchers active in this area have elucidated much about
the compounds and processes implementing desiccation tolerance. Much remains
to be discovered on the mechanisms of regulating the implementation of desicca-
tion tolerance. The visual drama of desolate air-dry plants re-imbibing water,
re-expanding and reviving is matched by the intellectual fascination of the enabling
molecular machinery. I hold the hope that a full comprehension of the regulatory
processes will lead to genetic transformation of crop and pasture species to enable
them to express throughout the full vegetative plant the desiccation tolerance of
their seed and pollen — and so bring a full knowledge of the phenomenon of
desiccation tolerance to its fullest practical yield.

Melbourne, Australia Donald F. Gaff
January 2011
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Chapter 1
Introduction

Dorothea Bartels, Ulrich Liittge, and Erwin Beck

Evolution of life on earth began in aqueous environments. The oldest fossil records
of green photosynthesizing organisms are the stromatolithes of cyanobacteria-like
organisms about 3.5 x 10° years old. One of the major problems organisms were
facing when leaving the water and conquering the land 400 x 10° years ago in the
Devonian was exposure to a dry atmosphere. Among the present land plants, we
observe a wealth of structural and functional adaptations suitable for shaping the
water relations appropriate for life under such conditions. However, even plants in
the aqueous habitats may have been subject to dry periods given by tidal rhythms or
temporary drying out of their aqueous habitat. As primary water plants and not
having evolutionary adaptations, these organisms needed to acclimate to dehydra-
tion conditions, the most extreme one of which is survival of desiccation, i.e. the
loss of most of the cellular water.

Organisms that tolerate desiccation by dormancy and resume metabolic activity
upon re-wetting have been termed poikilohydric. Their water content varies since
they respond to the humidity of their environment like physical systems by shrink-
ing and swelling. Unlike the non-desiccation-tolerant so-called homoiohydrous
organisms, they are not differentiated into organs for absorption of water and
structures that prevent loss of water (Schulze et al. 2005).

To date, we find many desiccation-tolerant forms among extant prokaryotic
cyanobacteria (Chap. 2) and eukaryotic green algae (division Chlorobionta), such
as the Chlorococcales in the class Chlorophyceae and species of the classes
Trebouxiophyceae and Trentepohliophyceae, as well as species of Porphyridium
among the red algae (class Rhodophyceae) (Chap. 4). Hence, desiccation tolerance
must have evolved early and polyphyletically. However, in these algal taxa it was a
primary step in evolution. Therefore, we consider the desiccation-tolerant cyano-
bacteria and algae as well as basic cryptogamic land plants such as bryophytes,
lichens and fungi (Chaps. 5-7) termed as “primary poikilohydric” species. Desic-
cation tolerance can be expressed in somatic cells but particularly in special
survival units, i.e. cysts, spores and zygotes, often surrounded by thick cell walls.
Evolution has maintained this in vascular plants where spores of pteridophytes,
pollen grains and most seeds of gymnosperms and angiosperms are highly desicca-
tion tolerant. In some cases, seeds can survive dryness for years, up to one or two
centuries and in the famous case of lotus (Nelumbo nucifera) even 1,200 years

U. Luttge et al. (eds.), Plant Desiccation Tolerance, Ecological Studies 215, 3
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(Shen-Miller et al. 1995). While the germination success of the more than
10,000 years old Pyramid-wheat could not be substantiated, other seeds, e.g. from
a date palm, which germinated and grew, have been dated more than 2,000 years BP
(Sallon et al. 2008).

For the vegetative bodies of vascular plants, desiccation tolerance has evolved
regressively or secondarily; these plants have been termed “secondary poikilo-
hydric” (Chaps. 8 and 9). Secondary poikilohydric vascular plants are much fewer
than the primary ones. They are predominantly found among the pteridophytes,
the ferns and fern allies (700-1,000 species), but are rare in the angiosperms. Only
a total of not more than 350 vascular poikilohydric angiosperm species have been
described up to now (Chaps. 8 and 9). An impressive example of a secondary
water plant, which is secondary poikilohydric, is the angiosperm Chamaegigas
intrepidus (Chap. 12). Evidently, secondary poikilohydry has also evolved poly-
phyletically, but these were rare events. Development of desiccation avoidance in
the evolution of vascular land plants was the more effective strategy than of
desiccation tolerance. The latter requires complex dehydration and rehydration
machineries.

There is a trade-off between desiccation tolerance and the size of plants as most
desiccation-tolerant plants do not grow into tall plants. Poikilohydric thallophyte
tissues usually consist of smaller cells, and the water potential of their protoplasts
and organelles is in equilibrium with that of their immediate environment. Terres-
trial poikilohydric thallophytes may have stomata-like structures, e.g. some liver-
worts and hornworts; however, these are immovable vents and are not able to
control water loss to the atmosphere. Shrinkage upon dehydration is less dramatic
as with vascular plants, and as a consequence, the compartment of the thallophytes
differs fundamentally from that of the desiccation-tolerant vascular plants when
losing and regaining water during a desiccation/rehydration cycle (Chaps. 6 and 10).
One of the tallest and best-studied desiccation-tolerant angiosperms is the small
dicotyledonous shrub Myrothamnus flabellifolia. The tree habit is also reached
by some desiccation-tolerant monocotyledons (Sect. 8.2.2).

For the desiccation tolerance of taller vascular plants, hydraulic architecture is
an important aspect. Cavitation and the replacement of water by air (embolism;
Chap. 10) in the conducting elements of the xylem are outstanding implications of
drought and the more so upon desiccation in vascular plants. The consequences for
resurrection during rehydration are intriguing and the mechanisms of refilling are
unknown as of yet. Little work has been performed on resurrection plants. How-
ever, the transition from temporal tolerance of tight water relations to drought
resistance and further to the tolerance of desiccation is gradual. From savanna
trees, we know daily courses where water-stress-related midday depression of
hydraulic conductivity is followed in the afternoon by cavitations and embolisms
in roots and leaves, which are refilled during the night (Bucci et al. 2003; Domec
et al. 2006). There are also annual courses: For example, in the fern Mohria
caffrorum poikilohydry is developed seasonally, i.e. plants are desiccation tolerant
in the dry season but not during the rainy season (Farrant et al. 2008). Thus, Chap. 10
evaluates the structures and functions relevant for water flow, from the cellular
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to the organ and whole-plant level as an essential basis for any experimental
approaches towards understanding their functional contribution to desiccation
tolerance of vascular plants. One of the key points is indeed refilling of the
conducting elements with water upon re-watering and during the process of
resurrection. Often in nature extreme cases prove to be the best examples for
understanding basic problems and Chap. 10 evidently ends up with the message
that desiccation-tolerant plants are such an example challenging new research.

The poikilohydric cryptogams and among the vascular plants the majority of the
poikilohydric ferns and dicotyledonous species retain their chlorophyll and much of
the photosynthetic machinery during desiccation. They are termed ‘“homoiochloro-
phyllous”. Among the monocotyledonous plants, we find both homoiochlorophyllous
and poikilochlorophyllous species. The latter degrade their chlorophyll molecules as
well as the thylakoid membranes during desiccation. In evolution, homoiochlor-
ophylly was primary and poikilochlorophylly was secondary. Interestingly, in
this respect, some plants are only partially homoiochlorophyllous like Ramonda
serbica (Degl’Innocenti et al. 2008).

Light is the most critical stress factor during dehydration, in the desiccated state
and upon rehydration (Chaps. 3 and 7). The problem of homoiochlorophyllous
plants is that they are under severe stress of photodestruction by maintaining light
absorbing pigment complexes, but their advantage is that they recover photosyn-
thetic activity rapidly upon rehydration. The advantage of the poikilochlorophyl-
lous plants is that by dismantling their photosynthetic apparatus they avoid
photodestruction. Their problem is that upon rehydration there is a substantial lag
phase before they are able to resume photosynthesis (Chap. 9). Although homoio-
chlorophylly is considered to be a basic evolutionary trait, it does need a highly
sophisticated machinery of photoprotection as it is described in several chapters
(Chaps. 3, 7 and 11), while the more advanced trait of poikilochlorophylly requires
a complex set of molecular and biochemical mechanisms (Chaps. 9, 13-16). Good
examples to this are the needles of the winter hardy evergreen conifers, which, upon
crystallization of tissue water in the intercellular spaces, may lose more than 90% of
their liquid cellular water. These plants degrade a major part of their antenna
pigments in the course of frost hardening still before the onset of frost (Beck
et al. 2004). For a homoiohydric plant, this extreme degree of dehydration is only
tolerable at subfreezing temperatures when biochemical reactions are greatly slow-
ing down or even cease.

Functional diversity is profoundly determined by the homoiochlorophyllous or
poikilochlorophyllous nature of desiccation-tolerant plants. Poikilochlorophylly
determines the ecological niche acquisition by the respective species given by the
extensions of dry periods (Chap. 9).

Thus, we face a large diversity in desiccation tolerance. This is covered in
the various chapters of this book at different levels. At the phytogeographic level,
we arrive at the diversity of habitats as an important facet (Chaps. 2, 4, 5 and 8).
Ecological constraints of habitats determine selection of species. At the organismic
level, we then consider the diversity of the organizational status of cyanobacteria,
algae, bryophytes, lichens (Chaps. 2,4 and 5) and vascular plants (Chap. 8). Functional
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diversity is seen in a variety of mechanisms of evolutionary adaptation as well as more
short-term ecophysiological acclimation.

We realize that understanding of desiccation tolerance at the organismic level
and in an ecological context has been continuously advanced (Part II). At the cell
biological level, we distinguish biophysical mechanisms and biochemical processes
starting from gene expression to the activity of proteins and the accumulation or
disappearance of metabolites, unravelled by the various components of the so-
called “omics” that provide the information basis for systems biology. Advanced
methodology for highly sophisticated analyses of the biophysical processes of
excitation of the photosynthetic apparatus and the dissipation of the energy of the
excitons produced fosters understanding of principal problems and their potential
solutions of green desiccation-tolerant organisms (Chaps. 3 and 7). This has impact at
the level of the organisms (Part IT) but also forms a link to the cellular level (Part III).
There, it is re-considered from a biochemical viewpoint addressing oxidative stress
and its function in cell biology under water deficit (Chap. 11) and the apparently
paradoxical special case of an aquatic poikilohydric angiosperm (Chap. 12).

The major section (Chaps. 13-16) of the cell biological Part III fathoms the
relevance of the enormous progress of molecular biology and genetics for the
understanding of desiccation tolerance. We must recall that in terms not only of
adaptation during evolution but also of acclimation to recurrent or arrhythmic
environmental changes responses to water shortage and pronounced drought with
an eventual coronation by desiccation tolerance are gradual. Therefore, just like for
hydraulic architecture (Chap. 10), we must realize at the level of cell biology that
drought tolerance in many aspects appears as a prelude to desiccation tolerance.
Therefore, although this volume focuses on desiccation tolerance, certain aspects of
responses to drought must also be included. Many defence strategies, e.g. against
damage from radicals, are similarly involved in both drought and desiccation
tolerance, and responses to drought and desiccation are, therefore, often quite
similar. Desiccation tolerance especially of vascular plants is considered as a
more advanced adaptation to severe and temporal shortage of water than drought
tolerance. Sensu stricto desiccation tolerance involves the survival of losing the
major fraction of tissue water under exposure to dry conditions, and showing
recovery of full physiological competence after rehydration. At the molecular
level, mechanisms providing for drought and desiccation tolerance are shared
with respect to the genetic management of input of stress signals and of down-
stream processes of damage, repair, tolerance and avoidance. This raises the strong
demand of a new comprehensive treatment considering genomics, transcriptomics,
proteomics and metabolomics moving on from drought-tolerant to desiccation-
tolerant plant systems.

Thus, Chap. 13 sets the scene by delineating the basic concepts of functional
genomics, epigenomics, genetics, molecular biology and the sensing and signalling
networks of systems biology, which we need when we consider stress physiology
in general and with particular focus on tight water relations. A specific component
of the complement is highlighted in Chap. 14, namely the dehydrin proteins.
They have multiple general functions as chaperones modulating and protecting
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macromolecular cell structures and biomembranes. They occur in all seed plants
and have been associated with the acquisition of desiccation tolerance of seeds.
They are the best-characterized group of the so-called LEA proteins. LEA means
“late embryogenesis abundant”, i.e. they abound in seeds that are normally desic-
cation tolerant. Is there an evolutionary link to desiccation tolerance of somatic
tissues? At least for one bona fide resurrection plant, Craterostigma plantagineum,
some evidence for the involvement of dehydrins is available (Sect. 14.10). Over-
expression of a dehydrin from barley in rice has been shown to increase tolerance of
specific water-deficit stresses (Xu et al. 1996). We certainly must have an eye on
dehydrins when further fathoming the mechanisms of desiccation tolerance, and
Chap. 16 picks up the LEAs again.

The desiccation-tolerant moss Physcomitrella patens is fully sequenced. How-
ever, we do not have complete genome sequences of desiccation-tolerant higher
plants. When this advances, comparisons with the genomes of other model plants
such as Arabidopsis thaliana (Chap. 13) will turn out to be highly profitable. It is
remarkable, however, how Chap. 15 can already advance from the conceptual basis
of Chap. 13 towards revealing constituents of systems biology of desiccation toler-
ance using genomics, proteomics, metabolomics and fluxomics. A wealth of relevant
genes from resurrection plants is identified, and the involvement of their gene
products can be described. This is already much pertinent information and generates
knowledge. It gives the basis and shows the direction towards understanding.

As far as it is possible at this stage of the progress of research Chap. 16 then
reassembles many of the putative constituents of the desiccation-tolerance comple-
ment linking molecular biology with physiology. The challenge for further endea-
vours of investigation is obvious. The reward these endeavours will give for
understanding plants, habitats, natural ecosystems as well as agro- and forest-
ecosystems and biomes where water is one of the most essential ingredients, is
similarly obvious.
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Chapter 2
Cyanobacteria: Habitats and Species

Burkhard Budel

2.1 Introduction

Cyanobacteria were most probably the first group of organisms performing an
oxygen releasing photosynthesis. Their possible fossil origin (“look-alikes”) from
Apex chert of north-western West Australia dates back to about 3.46 billion years
(Schopf 2000). However, the oldest unambiguous fossil cyanobacteria were found
in tidal-flat sedimentary rocks and are about 2 billion years old (Hofmann 1976).
With the onset of oxygenic photosynthesis between 2.45 and 2.32 billion years ago
(Rasmussen et al. 2008), the ancient Earth’s oxygen-free atmosphere experienced a
deep impact with the sharp rise of oxygen. Before the evolution of respiration, the
oxygen was highly toxic to life, and as a consequence, the first global catastrophe
for most of the organisms living on earth to that date followed. Today, cyanobac-
teria are found in almost all habitats and biomes present on earth (Whitton and
Potts 2000). However, to successfully colonize terrestrial habitats does also mean
to be able to resist extreme desiccation. Air-drying does severely harm membrane
structure, proteins, and nucleic acids and is lethal to the majority of organisms on
Earth (Billi and Potts 2002). During their long evolutionary history, cyanobacteria
developed the ability of their cells to undergo nearly absolute dehydration during
air-drying without being killed, a phenomenon known as anhydrobiosis. This is
also referred to as “desiccation tolerance” and is one mechanism of drought
tolerance (Alpert 2005). Consequently, cyanobacteria colonized more and more
of the available terrestrial habitats. Dehydration in air can lead to a removal of all
but 0.1 g water/g dry weight (Billi and Potts 2000).

2.2 Cyanobacterial Anhydrobiosis and Resistance
to Complete Desiccation

Desiccation-tolerant cyanobacteria must either protect cellular structures from
damage and/or repair them upon rewetting. Dried aggregates of Chroococcidiopsis
include live and dead cells, thus suggesting that desiccation resistance is not a

U. Luttge et al. (eds.), Plant Desiccation Tolerance, Ecological Studies 215, 11
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simple process. In a recent study, Billi (2009) demonstrated that the desiccation
surviving cells were avoiding and/or limiting genome fragmentation, preserve
intact plasma membranes and phycobiliprotein autofluorescence, and exhibit
spatially reduced reactive oxygen species accumulation and dehydrogenase activity
upon rewetting. The percentage of cells avoiding subcellular damage was between
10 and 28% of dried aggregate. In the lichenized state, however, all cells of
symbiotic Chroococcidiopsis species seem to survive desiccation, as there is no
depression of photosynthetic CO, fixation rates of the same lichen thalli (genus
Peltula, Lichinomycetes) before and after dry periods (Biidel et al. unpublished).
This seems to be a general feature of lichenized cyanobacteria (Fig. 2.2g). The
fungal host (mycobiont) apparently provides more than only a three-dimensional
structure for optimized CO, and nutrient uptake, but also an environment for
optimal (damage free) drying of cyanobacterial cells.

The common soil inhabiting cyanobacterium Nostoc commune Vaucher ex
Bornet & Flahault developed protecting mechanisms to avoid genome fragmenta-
tion after prolonged cell desiccation (Shirkey et al. 2003). Changes at the ultra-
structural level of Chroococcidiopsis cells have been demonstrated by Grilli Caiola
et al. (1993). These authors could conclusively show that the thylakoid structure is
changed in dry cells. The thylakoid double membrane opens between the single
membranes, forming open spaces between them (Fig. 2.1a, b).

The filamentous, colony-forming cyanobacterium N. commune can tolerate
simultaneous stresses of desiccation, UV irradiation, and oxidation. For protec-
tion, the acidic water stress protein A (wspA) and a highly stable and active

Fig. 2.1 Ultrastructure of wet and dry cells of the genus Chroococcidiopsis. (a) Wet cells, note the
intact (closed double membrane layer) thylakoids (arrow). (b) Dry cell, freeze substituted over
several months prior to ultrathin sectioning and microscopy in order to avoid preparation artifacts.
Note the widened thylakoids (opening of the double membrane layer; arrow)
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superoxidedismutase (sodF) were found to be secreted to the three-dimensional
extracellular matrix. Transcription of wspA and sodF and synthesis and secretion of
wspA were induced upon desiccation or UV-A/B irradiation of N. commune cells
(Wright et al. 2005). The authors hypothesize that wspA plays a central role in the
stress response of N. commune by modulation of structure and function of the three-
dimensional extracellular matrix.

2.3 Habitats and Species

Once the importance of the microclimate for life conditions of small organisms was
discovered, it soon became obvious that in terms of temperature, sunlight-exposed
soils or rock surfaces are among the most extreme terrestrial habitats for photoauto-
trophic organisms (Kraus 1911; Jaag 1945). This led to the observation that two
different exposures (SE versus NW in the northern hemisphere) on one large
rock boulder can even result in a microclimate that reflects arctic alpine and sub-
Mediterranean climates on one single rock (Schade 1917). As a result of high
temperatures during insulation, lack of water and thus fast desiccation occurs in the
colonizing organisms. Jaag (1945) showed that different rock types reach different
surface temperatures under the same circumstances. At an air temperature of 16.5°C at
14:40 h in the Swiss capital of Ziirich, he found surface temperatures of 35.7°C for
diabas, 27.1°C for granite, and 24.4°C for marble during standardized measurements.

Cyanobacteria occur on almost all exposed rock surfaces on earth. There is hardly
any rock surface to find without the presence of either epilithic (on the rock surface;
Fig. 2.2d, e) or endolithic (inside the photic zone of the rock; Fig. 2.2a, c¢) growth of
pro- or eukaryotic algae. Biofilms (thin smooth layers of pro- and eukaryotic algae
only) or biological crusts (thick, uneven layers, often including lichens and some-
times bryophytes) occur on rocks of hot deserts (Biidel 1999; Budel and Wessels
1991; Friedmann et al. 1967), polar deserts (Friedmann 1980; Broady 1981; Omelon
et al. 2006; Biidel et al. 2008), inselbergs (Fig. 2.2c, d) in savannas and rain forests
(Budel et al. 2000), temperate regions (Boison et al. 2004), alpine zone (Horath and
Bachofen 2009), and can even be found on the man-made surfaces of any kind of
stone buildings (Eggert et al. 2006; Karsten et al. 2007).

A very conspicuous phenomenon of rock surfaces are the so-called Tintenstriche
(German: Tinte = ink, Strich = stripe; Fig. 2.2e). They have been first described
from the alpine habitat of the temperate region, but also occur in other biomes of the
world (Liittge 1997). Ink-stripes are bluish-black crusts on steep to more or less
vertical rock surfaces such as dolomite (Diels 1914), granite (Golubic 1967; Budel
etal. 1994), sandstone (Wessels and Buidel 1995), and other rock types (Jaag 1945).
The ink-stripe communities are dominated by cyanobacteria, sometimes accompa-
nied by eukaryotic algae, fungal hyphae, and lichens, even mosses, and vascular
plants can occur (Jaag 1945; Wessels and Biidel 1995). When studied under the
light microscope, many cyanobacterial species expose very colorful sheaths
(Fig. 2.3c, d, f, g). The bright yellow and red color mainly originates from scytone-
min, an indol-alkaloid serving as light and UV protection (Buckley and Hougthon
1976; Garcia-Pichel and Castenholz 1991). When exposed to frequent desiccation



