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Preface

Infimum and supremum are indispensable concepts in optimization. Never-
theless their role in vector optimization has been rather marginal. This seems
to be due the fact that their existence in partially ordered vector spaces is
connected with restrictive assumptions. The key to an approach to vector
optimization based on infimum and supremum is to consider set-valued ob-
jective functions and to extend the partial ordering of the original objective
space to a suitable subspace of the power set. In this new space the infimum
and supremum exist under the usual assumptions.

These ideas lead to a novel exposition of vector optimization. The reader is
not only required to familiarize with several new concepts, but also a change
of philosophy is suggested to those being acquainted with the classical ap-
proaches. The goal of this monograph is to cover the most important con-
cepts and results on vector optimization and to convey the ideas, which can
be used to derive corresponding variants of all the remaining results and
concepts. This selection ranges from the general theory including solution
concepts and duality theory, through to algorithms for the linear case.

Researchers and graduate-level students working in the field of vector opti-
mization belong to the intended audience. In view of many facts and notions
that are recalled, the book is also addressed to those who are not famil-
iar with classical approaches to vector optimization. However, it should be
taken into account that a fundamental motivation of vector optimization and
applications are beyond the scope of this book.

Some basic knowledge in (scalar) optimization, convex analysis and general
topology is necessary to understand the first part, which deals with general
and convex problems. The second part is a self-contained exposition of the
linear case. Infimum and supremum are not visible but present in the back-
ground. The connections to the first part are explained at several places, but
they are not necessary to understand the results for the linear case. Some
knowledge on (scalar) linear programming is required.

The results in this book arose from several research papers that have been
published over the last five years. The results and ideas of this exposition

vii



viii Preface

are contributed by Andreas Hamel, Frank Heyde and Christiane Tammer
concerning the first part as well as Frank Heyde, Christiane Tammer and
Matthias Ehrgott concerning the second part. A first summary, extension
and consolidation of these results has been given in the author’s habilitation
thesis, which appeared in 2010. This book is an extension. It contains one new
chapter with extended variants of algorithms and more detailed explanations.

I thank all persons who supported me to write this book. In particular, I’m
greatly indebted to Matthias Ehrgott, Gabriele Eichfelder, Andreas Hamel,
Frank Heyde, Johannes Jahn and Christiane Tammer for their valuable com-
ments, important corrections and all their advice that entailed a considerable
increase of quality.

Halle (Saale), Andreas Löhne
November 2010
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Introduction

From a mathematical point of view, vector optimization is the theory of op-
timization problems with a vector-valued objective function. Instead of the
extended real numbers R := R∪ {+∞,−∞}, one considers an extended par-
tially ordered vector space as the image space of the objective map. One of
the main difficulties is the lack of a suitable infimum and supremum. For
many instances of extended partially ordered vector spaces, even in finite
dimensions, an infimum does not exist at all. But even if the infimum in the
sense of a greatest lower bound exists, it is usually not related to the typi-
cal optimality notions which are motivated by applications in multiobjective
optimization.

The idea of multiobjective optimization is to present a decision maker
all or at least a representative selection of minimal or efficient vectors. The
decision maker’s job is to choose one of these vectors. An infimum in an
extended partially ordered vector space, if it exists, is of course a vector. But
the requirement from an applicational point of view is to evaluate a set of
efficient points in order to present them to the decision maker.

The infimum of a fixed subset is generally changing when the partially
ordered set, say the universal set, is extended to a larger partially ordered
set. The reason is that more candidates for greatest lower bounds are available
in a larger set. This basic idea is applied to vector optimization as we create
a suitable notion of infimum by embedding the extended partially ordered
vector space into a larger partially ordered set, in fact, into a subset of the
power set. This allows us to develop a theory of vector optimization which
is based on infimum and supremum. This leads to new insights and a high
degree of analogy to the scalar optimization theory.

theory and utility theory. The foundations are connected with the names
Vilfredo Pareto (1848-1923) and Francis Ysidro Edgeworth (1845-1926). In-
dependently vector optimization also arose from game theory which was ini-
tiated by Émile Borel (1871-1956), Maurice René Fréchet (1878-1973) and

Vector optimization has its origin in economics, in particular, in welfare
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2 Introduction

John von Neumann (1903-1957). For more details the reader is referred to
the survey paper by Stadler (1979). From a theoretical perspective the foun-
dations of vector optimization were laid by Georg Cantor (1845-1918) by his
famous intersection theorem; by Felix Hausdorff (1868-1942), who showed
the existence of utility functions in the context of partially ordered sets; and
by Max Zorn (1906-1993), who gave conditions for the existence of maximal
elements without using a utility function (see Göpfert et al., 2009). What
is today considered to be vector optimization, multiobjective optimization
or multicriteria optimization has its origin in the 1950s. The notion of ef-
ficient points was introduced (compare Stadler, 1979) by Koopmans (1951,
Definition 4.2): “A possible point in the commodity is called efficient when-
ever an increase in the one of its coordinates (the net output of one good)
can be achieved only at the cost of a decrease in some other coordinate (the
net output of another good)”. Kuhn and Tucker (1951) introduced (compare
Stadler, 1979) the term vector maximum problem. Today there exists a num-
ber of textbooks on vector optimization, among them (Sawaragi et al., 1985;
Jahn, 1986, 2004; Luc, 1988; Göpfert and Nehse, 1990; Ehrgott, 2000, 2005;
Göpfert et al., 2003; Chen et al., 2005; Eichfelder, 2008; Boţ et al., 2009).
There are several thousands of research papers on this subject.

This monograph differs from the literature as it is based on the complete
lattice (I,�) of self-infimal subsets of the original objective space (Y,≤) of
a given extended vector-valued objective function. Starting with a vector
optimization problem

minimize f : X → Y with respect to ≤ over S ⊆ X, (V)

we assign to f an I-valued objective function

f̄ : X → I, f̄(x) := Inf {f(x)}

and consider the related problem

minimize f̄ : X → I with respect to � over S ⊆ X. (V)

There is a close connection between the values of f and f̄ ; that is, for all
x1, x2 ∈ X we have

f(x1) ≤ f(x2) ⇐⇒ f̄(x1) � f̄(x2).

Since the objective space I in Problem (V) is a complete lattice, the latter
correspondence allows us to develop the theory of vector optimization based
on infimum and supremum.

This approach was firstly pointed out in (Löhne and Tammer, 2007; Heyde
et al., 2009a), but it is based on a couple of pre-investigations, such as (Hamel
et al., 2004; Hamel, 2005; Löhne, 2005a,b). It turned out that it is possible
to formulate and prove vectorial duality theorems very similar to the corre-
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sponding scalar results if the vectorial image space is replaced by the com-
plete lattice I. But, the space I of self-infimal sets does not only provide
a complete lattice; the infimum with respect to this complete lattice is also
closely related to the standard solution concepts in vector optimization. Even
though infimal sets were used before (see e.g. Nieuwenhuis, 1980; Sawaragi
et al., 1985; Tanino, 1988, 1992; Song, 1997, 1998), in particular in duality
theory, the deeper context was not pointed out: the complete lattice I.

An approach to vector optimization based on infimum and supremum leads
to the question how to integrate conventional solution concepts into the the-
ory. It turned out that there is no standard way to say what is a solution
to a vector optimization problem from a mathematical point of view. On
the one hand this is concerned with the question whether a solution is a set
of vectors or just a single vector (see also the introduction to Chapter 2).
On the other hand there are different types of efficient vectors depending on
different possible interpretations of “less than” when the ordering relation is
more complex than the one in R.

It might be worth noting that the solution concept proposed in this work
involves two different types of minimality notions: weakly minimal and min-
imal vectors. This could shed a new light on the role of weakly efficient
solutions in vector optimization. Jahn (2004, p. 110) writes that “the con-
cept of weak minimality is of theoretical interest, and it is not an appropriate
notion for applied problems.” This is in accordance with the fact that weak
minimality is essential to construct the complete lattice I, but our solution
concept itself is based on minimality. One can say that the theoretical bene-
fits of weak minimality and the application-oriented properties of minimality
are involved in one concept.

This monograph is organized as follows. Part I is devoted to the general
ideas and to convex problems. In Chapter 1 we introduce the complete lattice
I, which is the basis of this exposition. We also provide several concepts and
facts from the literature as far as they are needed in this book. Chapter 2 is
devoted to solution concepts and Chapter 3 is concerned with duality. Part II
deals with linear problems. Even though the connections to the first part are
often discussed, the second part is a self-contained exposition of the linear
theory. In Chapter 4 we focus on solution concepts and duality. The concepts
from Part I are adapted and special features of the linear duality theory are
shown. Chapter 5 is devoted to algorithms to solve linear problems. Each
chapter begins with a specific introduction and ends with several notes on
the literature; in particular, the origin of the results is discussed.

This book offers a systematic introduction and a summary of recent devel-
opments in the theory of vector optimization with infimum and supremum.
It is based on the cited papers, but the theory is presented in a more general
setting and with several extensions. This book aims to be a self-contained
summary and an extension of recent results.
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General and Convex Problems



Chapter 1

A complete lattice for vector optimization

Extended real-valued objective functions are characteristic for scalar opti-
mization problems. The space of extended real numbers R := R ∪ {+∞} ∪
{−∞} enjoys several properties which are quite important for optimization:

(i) R is a vector space, but R is not. The linear operations can be partially
extended to R.

(ii) The linear operations on R are continuous, i.e., the topology is com-
patible with the linear structure.

(iii) R is totally ordered by the usual ordering ≤. The ordering on R is
compatible with the linear operations.

(iv) R is a complete lattice, i.e., every subset has an infimum and a supre-
mum.

In vector optimization we have to replace R and R by a more general space.
Certain properties can be maintained, others must be abandoned. Underlying
a partially ordered topological vector space Y and its extension Y := Y ∪
{±∞} := Y ∪ {−∞,+∞}, we obtain all the mentioned properties up to the
following two exceptions: First, Y is not totally but partially ordered only.
Secondly, a complete lattice is obtained by Y only in special cases. This
depends on the choice of Y and the choice of the partial ordering. But even
in the special cases where Y is a complete lattice (e.g. Y = Rq equipped
with the “natural” componentwise ordering), the infimum is different to the
typical vectorial minimality notions, which arise from applications. This is
illustrated in Figure 1.1.

As a consequence, infimum and supremum (at least in the sense of greatest
lower and least upper bounds) do not occur in the standard literature on
vector optimization. Some authors, among them Nieuwenhuis (1980); Tanino
(1988, 1992), used a generalization of the infimum in R. Although the same
notion is also involved into this work, the new idea is that we provide an
appropriate complete lattice. To this end we work with a subset of the power
set of a given partially ordered topological vector space. The construction
and the properties of this complete lattice are the subject of this chapter. We

7
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8 1 A complete lattice for vector optimization

complete lattice

infimum with respect

vector optimization

in the sense of

minimal elements subset of R
2

to the “natural”

Fig. 1.1 R2 equipped with the natural ordering provides a complete lattice. But,
the infimum can be far away from the minimal elements.

recall in this chapter several standard notions and results but we also present
the basics of a set-valued approach to vector optimization.

1.1 Partially ordered sets and complete lattices

This section is a short summary of several concepts and results related to
ordered sets as they are required for this exposition.

Definition 1.1. Let Z be a nonempty set. A relation R ⊆ Z × Z is called a
partial ordering on Z if the following properties are satisfied:

(i) R is reflexive: ∀z ∈ Z : (z, z) ∈ R,
(ii) R is transitive: [(z1, z2) ∈ R ∧ (z2, z3) ∈ R] =⇒ (z1, z3) ∈ R,
(iii) R is antisymmetric: [(z1, z2) ∈ R ∧ (z2, z1) ∈ R] =⇒ z1 = z2.

Instead of (z1, z2) ∈ R, we write z1 ≤R z2.

The index R is usually omitted or replaced (for instance, if the ordering is
generated by a cone C, we write z1 ≤C z2 whenever z2−z1 ∈ C) and we just
say that ≤ is a partial ordering. A nonempty set Z equipped with a partial
ordering on Z is called a partially ordered set. It is denoted by (Z,≤). The
following convention is used throughout: If (Z,≤) is a partially ordered set
and A ⊆ Z, we speak about a subset of the partially ordered set (Z,≤).

Definition 1.2. Let (Z,≤) be a partially ordered set and let A ⊆ Z. An
element l ∈ Z is called a lower bound of A if l ≤ z for all z ∈ A. An upper
bound is defined analogously.
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Next we define an infimum and a supremum for a subset A of a partially
ordered set (Z,≤).

Definition 1.3. Let (Z,≤) be a partially ordered set and let A ⊆ Z. An
element k ∈ Z is called a greatest lower bound or infimum of A ⊆ Z if k is a
lower bound of A and for every other lower bound l of A we have l ≤ k. We
use the notation k = inf A for the infimum of A, if it exists.

The least upper bound or supremum is defined analogously and is denoted
by supA. The lower (upper) bound of Z, if it exists, is called least (greatest)
element.

Proposition 1.4. Let (Z,≤) be a partially ordered set and let A ⊆ Z. If the
infimum of A exists, then it is uniquely defined.

Proof. Let both k and l be infima of A. Then, l and k are lower bounds of A.
The definition of the infimum yields l ≤ k and k ≤ l. As ≤ is antisymmetric,
we get l = k. ��

Definition 1.5. A partially ordered set (Z,≤) is called a complete lattice if
the infimum and supremum exist for every subset A ⊆ Z.

Note that a one-sided condition is already sufficient to characterize a com-
plete lattice.

Proposition 1.6. A partially ordered set (Z,≤) is a complete lattice if and
only if the infimum exists for every subset A ⊆ Z.

Proof. Let A ⊆ Z be a given set and let B ⊆ Z be the set of all upper bounds
of A. By assumption, p := inf B exists. As p is a lower bound of B, z ≥ p
holds for every upper bound z of A. Every z ∈ A is a lower bound of B. By
the definition of the infimum we get p ≥ z for every z ∈ A. Together we have
p = supA. ��

Example 1.7. The extended real numbers R := R∪ {±∞} equipped with the
usual ordering ≤ provide a complete lattice.

Example 1.8. Let ≤ be the componentwise ordering relation in Rq. If the
ordering relation ≤ is extended to Z := Rq∪{±∞} by setting −∞ ≤ z ≤ +∞
for all z ∈ Z, (Z,≤) provides a complete lattice. The infimum of a subset
A ⊆ Z is

inf A =



(

inf
z∈A

z1, . . . , inf
z∈A

zq

)T

if ∃b ∈ Rq, ∀z ∈ A : b ≤ z

+∞ if A = ∅
−∞ otherwise.

Example 1.9. Let Z = R3 and let C be the polyhedral (convex) cone which
is spanned by the vectors (0, 0, 1)T , (0, 1, 1)T , (1, 0, 1)T , (1, 1, 1)T . Then
(Z,≤C) is not a complete lattice. For instance, there is no supremum of the
finite set {(0, 0, 0)T , (1, 0, 0)T}.
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Note that the previous example is a special case of the following result
by Peressini (1967): Rn is an Archimedean vector lattice with respect to the
order generated by a cone C if and only if there are n linearly independent
vectors vi such that

C :=
{
x ∈ Rn| ∀i = 1, . . . , n :

〈
x, vi

〉
≥ 0
}
. (1.1)

Note further that, as pointed out by Anderson and Annulis (1973), the word
“Archimedean” is inadvertently omitted in (Peressini, 1967). A vector lattice
is Archimedean if

(∀n ∈ N : 0 ≤ nx ≤ z) =⇒ x = 0.

The pair (R2, L), where

L :=
{
x ∈ R2| x1 > 0 ∨ [x1 = 0 ∧ x2 ≥ 0]

}
is the lexicographic ordering cone provides an example of a vector lattice,
which is not Archimedean. As demonstrated in (Anderson and Annulis, 1973),
L cannot be expressed as in (1.1).

Example 1.10. Let X be a nonempty set and let P(X) = 2X be the power
set of X . (P(X),⊇) provides a complete lattice. The infimum and supremum
of a nonempty subset A ⊆ P(X) are given as

inf A =
⋃

A∈A
A supA =

⋂
A∈A

A.

Note that X ∈ P(X) is the least element and ∅ ∈ P(X) is the greatest
element in (P(X),⊇). If A is empty, we set supA = X and inf A = ∅.

Example 1.11. Let X be a vector space and let C(X) be the family of all
convex subsets of X . (C(X),⊇) provides a complete lattice. The infimum
and supremum of a nonempty subset A ⊆ C(X) are given as

inf A = co
⋃

A∈A
A supA =

⋂
A∈A

A.

If A is empty, we set again supA = X and inf A = ∅.

Example 1.12. Let X be a topological space and let F(X) be the family of
all closed subsets of X . (F(X),⊇) provides a complete lattice. The infimum
and supremum of a nonempty subset A ⊆ F(X) are given as

inf A = cl
⋃

A∈A
A supA =

⋂
A∈A

A.

If A is empty, we set again supA = X and inf A = ∅.
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Example 1.13. Let X be a set, L a complete lattice and L(X) be the set of
all L-valued functions on X . A partial ordering on L(X) is defined by

l1 ≤ l2 : ⇐⇒ ∀x ∈ X : l1(x) ≤ l2(x).

Then (L(X),≤) provides a complete lattice. The infimum and supremum are
given by the pointwise infimum and supremum.

1.2 Conlinear spaces

Convexity is one of the most important concepts in optimization. A convex
set C is usually defined to be a subset of a vector space X satisfying the
condition

[λ ∈ [0, 1] ∧ x, y ∈ C] =⇒ λx + (1 − λ)y ∈ C. (1.2)

A very important special case of a convex set is a convex cone, where a cone
is defined to be a set K satisfying

[λ ∈ R+, x ∈ K] =⇒ λx ∈ K, (1.3)

where R+ := {λ ∈ R| λ ≥ 0}.
We observe that neither of the definitions require a multiplication by a

negative real number. It is therefore consistent to define convexity on more
general spaces. This can be motivated by the examples below showing convex
sets and convex cones which cannot be embedded into a linear space (vector
space). The natural framework for convexity seems to be a conlinear space
rather than a linear one.

Definition 1.14. A nonempty set Z equipped with an addition + : Z×Z →
Z and a multiplication · : R+ × Z → Z is said to be a conlinear space with
the neutral element θ ∈ Z if for all z, z1, z2 ∈ Z and all α, β ≥ 0 the following
axioms are satisfied:

(C1) z1 +
(
z2 + z

)
=
(
z1 + z2

)
+ z,

(C2) z + θ = z,
(C3) z1 + z2 = z2 + z1,
(C4) α · (β · z) = (αβ) · z,
(C5) 1 · z = z,
(C6) 0 · z = θ,
(C7) α ·

(
z1 + z2

)
=
(
α · z1

)
+
(
α · z2

)
.

An instance of a conlinear space is given in Example 1.31 below. The
axioms of a conlinear space (Z,+, · ) are appropriate to deal with convexity.
A convex set and a cone in a conlinear space are defined, respectively, by (1.2)
and (1.3). The convex hull coA of a subset A of a conlinear space (Z,+, · )
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is the intersection of all convex sets in Z containing A. The convex hull of a
set A coincides with set of all (finite) convex combinations of elements of A
(Hamel, 2005, Theorem 3).

Additionally to the axioms (C1) to (C7), it is sometimes useful to use a
second distributive law, that is, for all z ∈ Z and all α, β ≥ 0 we can suppose
additionally that

(C8) α · z + β · z = (α+ β) · z.
In a conlinear space, singleton sets are not necessarily convex, see Example
1.17 below. Indeed this requirement is equivalent to (C8).

Proposition 1.15. For every conlinear space, the following statements are
equivalent:

(i) Every singleton set is convex,
(ii) (C8) holds.

Proof. This is obvious. ��

Definition 1.16. An element z̄ of a conlinear space Z is said to be convex,
if the set {z̄} is convex.

Example 1.17. An element of a conlinear space can be nonconvex. Indeed, let
Z = P(R) and consider the element A := {0, 1} ∈ Z. We have 1

2A + 1
2A ={

0, 1
2 , 1
}
�= A.

If (Z,+, · ) is a conlinear space, we denote by Zco the subset of all z ∈ Z
satisfying (C8).

Proposition 1.18. (Zco ,+, · ) is a conlinear space.

Proof. Let z1, z2 ∈ Zco . For α, β ≥ 0, we have

α(z1 + z2) + β(z1 + z2) (C7), (C3)= αz1 + βz1 + αz2 + βz2

(C8)= (α+ β)z1 + (α+ β)z2

(C7)= (α+ β)(z1 + z2),

i.e., z1 + z2 ∈ Zco . Similarly we obtain γ · z1 ∈ Zco for γ ≥ 0. ��

If a conlinear space is equipped with an ordering relation, it is useful to
require that this ordering relation is compatible with the conlinear structure.
The same procedure is well-known for partially ordered vector spaces.

Definition 1.19. Let (Z,+, · ) be a conlinear space and let ≤ be a partial
ordering on the set Z. (Z,+, · ,≤) is called a partially ordered conlinear space
if for every z1, z2, z ∈ Z and every α ∈ R+ the following conditions hold:
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(O1) z1 ≤ z2 =⇒ z1 + z ≤ z2 + z,
(O2) z1 ≤ z2 =⇒ αz1 ≤ αz2.

Of course, a partially ordered vector space is a special case of a partially
ordered conlinear space. Let us define convex functions in the general setting
of conlinear spaces.

Definition 1.20. LetW be a conlinear space and let Z be a partially ordered
conlinear space. A function f : W → Z is said to be convex if

∀λ ∈ [0, 1], ∀w1, w2 ∈W :

f
(
λ · w1 + (1 − λ) · w2

)
≤ λ · f(w1) + (1 − λ) · f(w2).

Concave functions are defined likewise.

1.3 Topological vector spaces

A well-known concept is that of a topological vector space, also called topo-
logical linear space or linear topological space (see e.g. Kelley et al., 1963;
Köthe, 1966; Schaefer, 1980). The idea is to equip a linear space with a topol-
ogy and to require that the topology is compatible with the linear structure.
Many useful results depend on this compatibility.

Definition 1.21. Let Y be a real linear space (vector space) and let τ be a
topology on Y . The pair (Y, τ) is called a topological vector space (or linear
topological space) if the following two axioms are satisfied:

(L1) (y1, y2) �−→ y1 + y2 is continuous on Y × Y into Y ,
(L2) (λ, y) �−→ λy is continuous on R × Y into Y .

If there is no risk of confusion, a topological vector space (Y, τ) is simply
denoted by Y . We write intA and clA, respectively, for the interior and
closure of a subset A of a topological vector space Y . The boundary of A ⊆ Y
is the set bdA := clA \ intA.

Proposition 1.22. Let Y be a topological vector space.

(i) For any subset A of Y and any base U of the neighborhood filter of
0 ∈ Y , the closure of A is given by

clA =
⋂

U∈U
A+ U.

(ii) If A is an open subset of Y and B is any subset of Y , then A + B is
open.

Proof. See e.g. Schaefer (1980). ��


