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Preface to the First Edition

Atoms, Radiation, and Radiation Protection was written from material developed by
the author over a number of years of teaching courses in the Oak Ridge Resident
Graduate Program of the University of Tennessee’s Evening School. The courses
dealt with introductory health physics, preparation for the American Board of
Health Physics certification examinations, and related specialized subjects such as
microdosimetry and the application of Monte Carlo techniques to radiation pro-
tection. As the title of the book is meant to imply, atomic and nuclear physics and
the interaction of ionizing radiation with matter are central themes. These subjects
are presented in their own right at the level of basic physics, and the discussions
are developed further into the areas of applied radiation protection. Radiation
dosimetry, instrumentation, and external and internal radiation protection are
extensively treated. The chemical and biological effects of radiation are not dealt
with at length, but are presented in a summary chapter preceding the discussion of
radiationprotection criteria and standards. Non-ionizing radiation is not included.
The book is written at the senior or beginning graduate level as a text for a one-year
course in a curriculum of physics, nuclear engineering, environmental engineering,
or an allied discipline. A large number of examples are worked in the text. The
traditional units of radiation dosimetry are used in much of the book; SI units are
employed in discussing newer subjects, such as ICRP Publications 26 and 30. SI
abbreviations are used throughout. With the inclusion of formulas, tables, and
specific physical data, Atoms, Radiation, and Radiation Protection is also intended
as a reference for professionals in radiation protection.

I have tried to include some important material not readily available in textbooks
on radiation protection. For example, the description of the electronic structure of
isolated atoms, fundamental to understanding so much of radiation physics, is fur-
ther developed to explain the basic physics of “collective” electron behavior in semi-
conductors and their special properties as radiation detectors. In another area, under
active research today, the details of charged-particle tracks in water are described
from the time of the initial physical, energy-depositing events through the subse-
quent chemical changes that take place within a track. Such concepts are basic for
relating the biological effects of radiation to particle-track structure.
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I am indebted to my students and a number of colleagues and organizations,
who contributed substantially to this book. Many individual contributions are
acknowledged in figure captions. In addition, I would like to thank J. H. Corbin and
W. N. Drewery of Martin Marietta Energy Systems, Inc.; Joseph D. Eddleman of
Pulcir, Inc.; Michael D. Shepherd of Eberline; and Morgan Cox of Victoreen for
their interest and help. I am especially indebted to my former teacher, Myron
F. Fair, from whom I learned many of the things found in this book in countless
discussions since we first met at Vanderbilt University in 1952.

It has been a pleasure to work with the professional staff of Pergamon Press, to
whom I expressmy gratitude for their untiring patience and efforts throughout the
production of this volume.

The last, but greatest, thanks are reserved for my wife, Renate, to whom this book
is dedicated. She typed the entire manuscript and the correspondence that went with
it. Her constant encouragement, support, and work made the book a reality.

November 20, 1985 Oak Ridge, Tennessee
James E. Turner
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Preface to the Second Edition

The second edition of Atoms, Radiation, and Radiation Protection has several
important new features. SI units are employed throughout, the older units being
defined but used sparingly. There are two new chapters. One is on statistics for
health physics. It starts with the description of radioactive decay as a Bernoulli
process and treats sample counting, propagation of error, limits of detection, type-I
and type-II errors, instrument response, and Monte Carlo radiation-transport
computations. The other new chapter resulted from the addition of material on
environmental radioactivity, particularly concerning radon and radon daughters
(not much in vogue when the first edition was prepared in the early 1980s).
New material has also been added to several earlier chapters: a derivation of the
stopping-power formula for heavy charged particles in the impulse approximation,
a more detailed discussion of beta-particle track structure and penetration in matter,
and a fuller description of the various interaction coefficients for photons. The
chapter on chemical and biological effects of radiation from the first edition has
been considerably expanded. New material is also included there, and the earlier
topics are generally dealt with in greater depth than before (e.g., the discussion of
data on human exposures). The radiation exposure limits from ICRP Publications
60 and 61 and NCRP Report No. 116 are presented and discussed. Annotated
bibliographies have been added at the end of each chapter. A number of new
worked examples are presented in the text, and additional problems are included
at the ends of the chapters. These have been tested in the classroom since the 1986
first edition. Answers are now provided to about half of the problems. In summary,
in its new edition, Atoms, Radiation, and Radiation Protection has been updated
and expanded both in breadth and in depth of coverage. Most of the new material
is written at a somewhat more advanced level than the original.

I am very fortunate in having students, colleagues, and teachers who care about
the subjects in this book and who have shared their enthusiasm, knowledge, and
talents. I would like to thank especially the following persons for help I have
received in many ways: James S. Bogard,Wesley E. Bolch, Allen B. Brodsky, Darryl J.
Downing, R. J. Michael Fry, Robert N. Hamm, Jerry B. Hunt, Patrick J. Papin,
Herwig G. Paretzke, Tony A. Rhea, Robert W. Wood, Harvel A. Wright, and
Jacquelyn Yanch. The continuing help and encouragement of my wife, Renate,
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are gratefully acknowledged. I would also like to thank the staff of JohnWiley &
Sons, with whom I have enjoyed working, particularly Gregory T. Franklin, John P.
Falcone, and Angioline Loredo.

January 15, 1995 Oak Ridge, Tennessee
James E. Turner
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Preface to the Third Edition

Since the preparation of the second edition (1995) of Atoms, Radiation, and
Radiation Protection, many important developments have taken place that affect
the profession of radiological health protection. The International Commission on
Radiological Protection (ICRP) has issued new documents in a number of areas that
are addressed in this third edition. These include updated and greatly expanded
anatomical and physiological data that replace “reference man” and revised models
of the human respiratory tract, alimentary tract, and skeleton. At this writing, the
Main Commission has just adopted the Recommendations 2007, thus laying the
foundation and framework for continuing work from an expanded contemporary
agenda into future practice. Dose constraints, dose limits, and optimization are given
roles as core concepts.Medical exposures, exclusion levels, and radiation protec-
tion of nonhuman species are encompassed. The National Council on Radiation
Protection and Measurements (NCRP) in the United States has introduced new
limiting criteria and provided extensive data for the design of structural shielding
for medical X-ray imaging facilities. Kerma replaces the traditional exposure as
the shielding design parameter. The Council also completed its shielding report
for megavoltage X- and gamma-ray radiotherapy installations. In other areas,
the National Research Council’s Committee on the Biological Effects of Ionizing
Radiation published the BEIR VI and BEIR VII Reports, respectively dealing with
indoor radon and with health risks from low levels of radiation. The very successful
completion of the DS02 dosimetry system and the continuing Life Span Study of
the Japanese atomic-bomb survivors represent additional major accomplishments
discussed here.

Rapid advances since the last edition of this text have been made in instrumenta-
tion for the detection, monitoring, and measurement of ionizing radiation. These
have been driven by improvements in computers, computer interfacing, and, in
no small part, by heightened concern for nuclear safeguards and home security.
Chapter 10 on Methods of Radiation Detection required extensive revision and the
addition of considerable new material.

As in the previous edition, the primary regulatory criteria used here for discus-
sions and working problems follow those given in ICRP Publication 60 with limits
on effective dose to an individual. These recommendations are the principal ones
employed throughout the world today, except in the United States. The ICRP-60
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limits for individual effective dose, with which current NCRP recommendations are
consistent, are also generally encompassed within the new ICRP Recommendations
2007. The earlier version of the protection system, limiting effective dose equivalent to
an individual, is generally employed in the U.S. Some discussion and comparison of
the two systems, which both adhere to the ALARA principle (“as low as reasonable
achievable”), has been added in the present text. As a practical matter, both maintain
a comparable degree of protection in operating experience.

It will be some time until the new model revisions and other recent work of the
ICRP become fully integrated into unified general protocols for internal dosime-
try. While there has been partial updating at this time, much of the formalism of
ICRP Publication 30 remains in current use at the operating levels of health physics
in many places. After some thought, this formalism continues to be the primary
focus in Chapter 16 on Internal Dosimetry and Radiation Protection. To a consid-
erable extent, the newer ICRP Publications follow the established format. They are
described here in the text where appropriate, and their relationships to Publication
30 are discussed.

As evident from acknowledgements made throughout the book, I am indebted
to many sources for material used in this third edition. I would like to express
my gratitude particularly to the following persons for help during its preparation:
M. I. Al-Jarallah, James S. Bogard, Rhonda S. Bogard, Wesley. E. Bolch, Roger J.
Cloutier, Darryl J. Downing, Keith F. Eckerman, Joseph D. Eddlemon, Paul W.
Frame, Peter Jacob, Cynthia G. Jones,Herwig G. Paretzke, Charles A. Potter, Robert
C. Ricks, Joseph Rotunda, Richard E. Toohey, and Vaclav Vylet. Their interest
and contributions are much appreciated. I would also like to thank the staff of
JohnWiley & Sons, particularly Esther Dörring, Anja Tschörtner, and Dagmar
Kleemann, for their patience, understanding, and superb work during the
production of this volume.

March 21, 2007 Oak Ridge, Tennessee
James E. Turner
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Preface to the Fourth Edition

The fourth edition of Atoms, Radiation, and Radiation Protection addresses
significant revisions and improvements since publication of the third edition in
methodologies used by the International Commission on Radiological Protection
(ICRP) for describing the distribution of radionuclides residing within the human
body and for assigning radiation dose from their emissions. These improvements
provide a framework for assessing occupational dose consistent with that of the
Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear
Medicine. The mathematical model of the adult human described in ICRP Publi-
cation 89 has been superseded in ICRP Publication 110 by male and female voxel
phantoms constructed from CT scans. Radiation and tissue weighting factors in
ICRP Publication 60, used in determining equivalent and effective dose, were
updated in ICRP Publication 103. ICRP provided a new biokinetic and dosimetric
model of the human alimentary tract in ICRP Publication 100 to replace the
Publication 30 model and to be used with the human respiratory tract model
of Publication 66 in subsequent ICRP publications on doses from ingested and
inhaled radionuclides. Finally, nuclear decay data of ICRP Publication 38 were
updated and provided in an electronic database in Publication 107 for calculations
of radionuclide-specific protection and operational quantities. Chapter 16 addresses
the methodologies supported by these latest ICRP recommendations and includes
worked examples and problems.

Some content from a separate textbook co-authored by James E. Turner, Darryl J.
Downing, and James S. Bogard, titled Statistical Methods in Radiation Physics, has
been incorporated into this book. Statistical Methods was published in 2012 after the
third edition of Atoms, Radiation, and Radiation Protection and used more rigorous
terminology and methodology in developing statistical concepts used by radiation
physicists and health physicists.

Some of the figures showing instruments and facilities in use when the third edi-
tion was published have been replaced herein with their more modern counterparts.

Atoms, Radiation, and Radiation Protection has become a standard teaching text
for health physics students at all levels. Two of the fourth edition authors (Bogard,
Coleman) used the text as students of James E. Turner, author of the first three
editions, in courses he taught through the University of Tennessee Resident Gradu-
ate Program, and later as colleagues at the Oak Ridge National Laboratory. Having



xx Preface to the Fourth Edition

been recipients of Dr. Turner’s highly effective approach in explaining concepts of
radiation physics and dosimetry, we have endeavored only to update time-dependent
information in the text and to provide some additional rigor to the statistical con-
cepts, leaving the teaching approach so characteristic of Jim Turner throughout the
book unchanged.

The authors wish to thank the family of James E. Turner and the staff of
Wiley-VCH for entrusting us with the revision of this classic text. We are particularly
grateful to Wiley-VCH Associate Publisher Martin Preuss, Managing Editor Daniela
Bez, and Sr. Managing Editor Judy Howarth for their patience and encouragement.

Oak Ridge, Tennessee
May 25, 2022

James S. Bogard
Darryl J. Downing
Robert L. Coleman
Keith F. Eckerman
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1

About Atomic Physics and Radiation

1.1 Classical Physics

As the nineteenth century drew to a close, man’s physical understanding of the world
appeared to rest on firm foundations. Newton’s three laws accounted for the motion
of objects as they exerted forces on one another, exchanging energy and momen-
tum. The movements of the moon, planets, and other celestial bodies were explained
by Newton’s gravitation law. Classical mechanics was then over 200 years old, and
experience showed that it worked well.

Early in the century Dalton’s ideas revealed the atomic nature of matter, and in the
1860s Mendeleev proposed the periodic system of the chemical elements. The seem-
ingly endless variety of matter in the world was reduced conceptually to the existence
of a finite number of chemical elements, each consisting of identical smallest units,
called atoms. Each element emitted and absorbed its own characteristic light, which
could be analyzed in a spectrometer as a precise signature of the element.

Maxwell proposed a set of differential equations that explained known electric and
magnetic phenomena and also predicted that an accelerated electric charge would
radiate energy. In 1888 such radiated electromagnetic waves were generated and
detected by Hertz, beautifully confirming Maxwell’s theory.

In short, near the end of the nineteenth century man’s insight into the nature of
space, time, matter, and energy seemed to be fundamentally correct. While much
exciting research in physics continued, the basic laws of the universe were generally
considered to be known. Not many voices forecasted the complete upheaval in
physics that would transform our perception of the universe into something
undreamed of as the twentieth century began to unfold.

1.2 Discovery of X Rays

The totally unexpected discovery of X rays by Roentgen on November 8, 1895 in
Wuerzburg, Germany, is a convenient point to regard as marking the beginning of
the story of ionizing radiation in modern physics. Roentgen was conducting exper-
iments with a Crooke’s tube—an evacuated glass enclosure, similar to a television
picture tube, in which an electric current can be passed from one electrode to another

Atoms, Radiation, and Radiation Protection, Fourth Edition.
James S. Bogard, Darryl J. Downing, Robert L. Coleman, Keith F. Eckerman, and James E. Turner.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.



2 1 About Atomic Physics and Radiation

Figure 1.1 Schematic
diagram of an early Crooke’s,
or cathode-ray, tube. A
Maltese cross of mica placed
in the path of the rays casts
a shadow on the
phosphorescent end of the
tube.

through a high vacuum (Fig. 1.1). The current, which emanated from the cathode
and was given the name cathode rays, was regarded by Crooke as a fourth state of
matter. When the Crooke’s tube was operated, fluorescence was excited in the resid-
ual gas inside and in the glass walls of the tube itself.

It was this fluorescence that Roentgen was studying when he made his discovery.
By chance, he noticed in a darkened room that a small screen he was using fluo-
resced when the tube was turned on, even though it was some distance away. He
soon recognized that he had discovered some previously unknown agent, to which
he gave the name X rays.1 Within a few days of intense work, Roentgen had observed
the basic properties of X rays—their penetrating power in light materials such as
paper and wood, their stronger absorption by aluminum and tin foil, and their dif-
ferential absorption in equal thicknesses of glass that contained different amounts
of lead. Figure 1.2 shows a picture that Roentgen made of a hand on December 22,
1895, contrasting the different degrees of absorption in soft tissue and bone. Roent-
gen demonstrated that, unlike cathode rays, X rays are not deflected by a magnetic
field. He also found that the rays affect photographic plates and cause a charged elec-
troscope to lose its charge. Unexplained by Roentgen, the latter phenomenon is due
to the ability of X rays to ionize air molecules, leading to the neutralization of the
electroscope’s charge. He had discovered the first example of ionizing radiation.

1.3 Some Important Dates in Atomic and Radiation
Physics

Events moved rapidly following Roentgen’s communication of his discovery and
subsequent findings to the Physical–Medical Society at Wuerzburg in December
1895. In France, Becquerel studied a number of fluorescent and phosphorescent
materials to see whether they might give rise to Roentgen’s radiation, but to no avail.
Using photographic plates and examining salts of uranium among other substances,
he found that a strong penetrating radiation was given off, independently of whether

1 That discovery favors the prepared mind is exemplified in the case of X rays. Several persons
who noticed the fading of photographic film in the vicinity of a Crooke’s tube either considered the
film to be defective or sought other storage areas. An interesting account of the discovery and
near-discoveries of X rays as well as the early history of radiation is given in the article by R. L.
Kathren cited under “Suggested Reading” in Section 1.6.
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Figure 1.2 X-ray picture of
the hand of Frau Roentgen
made by Roentgen on
December 22, 1895, and
now on display at the
Deutsches Museum. (Figure
courtesy of Deutsches
Museum, Munich, Germany.)

the salt phosphoresced. The source of the radiation was the uranium metal itself. The
radiation was emitted spontaneously in apparently undiminishing intensity and, like
X rays, could also discharge an electroscope. Becquerel announced the discovery of
radioactivity to the Academy of Sciences at Paris in February 1896.

The following tabulation highlights some of the important historical markers in
the development of modern atomic and radiation physics.

1810 Dalton’s atomic theory.
1859 Bunsen and Kirchhoff originate spectroscopy.
1869 Mendeleev’s periodic system of the elements.
1873 Maxwell’s theory of electromagnetic radiation.
1888 Hertz generates and detects electromagnetic waves.
1895 Lorentz theory of the electron.
1895 Roentgen discovers X rays.
1896 Becquerel discovers radioactivity.
1897 Thomson measures charge-to-mass ratio of cathode rays (electrons).
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1898 Curies isolate polonium and radium.
1899 Rutherford finds two kinds of radiation, which he names “alpha” and “beta,”

emitted from uranium.
1900 Villard discovers gamma rays, emitted from radium.
1900 Thomson’s “plum pudding” model of the atom.
1900 Planck’s constant, h = 6.63 × 10–34 J s.
1901 First Nobel prize in physics awarded to Roentgen.
1902 Curies obtain 0.1 g pure RaCl2 from several tons of pitchblend.
1905 Einstein’s special theory of relativity (E = mc2).
1905 Einstein’s explanation of photoelectric effect, introducing light quanta (photons

of energy E = hv).
1909 Millikan’s oil drop experiment, yielding precise value of electronic charge, e =

1.60 × 10–19 C.
1910 Soddy establishes existence of isotopes.
1911 Rutherford discovers atomic nucleus.
1911 Wilson cloud chamber.
1912 von Laue demonstrates interference (wave nature) of X rays.
1912 Hess discovers cosmic rays.
1913 Bohr’s theory of the H atom.
1913 Coolidge X-ray tube.
1914 Franck–Hertz experiment demonstrates discrete atomic energy levels in

collisions with electrons.
1917 Rutherford produces first artificial nuclear transformation.
1922 Compton effect.
1924 de Broglie particle wavelength, λ = h/momentum.
1925 Uhlenbeck and Goudsmit ascribe electron with intrinsic spin ℏ/2.
1925 Pauli exclusion principle.
1925 Heisenberg’s first paper on quantum mechanics.
1926 Schroedinger’s wave mechanics.
1927 Heisenberg uncertainty principle.
1927 Mueller discovers that ionizing radiation produces genetic mutations.
1927 Birth of quantum electrodynamics, Dirac’s paper on “The Quantum Theory of

the Emission and Absorption of Radiation.”
1928 Dirac’s relativistic wave equation of the electron.
1930 Bethe quantum-mechanical stopping-power theory.
1930 Lawrence invents cyclotron.
1932 Anderson discovers positron.
1932 Chadwick discovers neutron.
1934 Joliot-Curie and Joliot produce artificial radioisotopes.
1935 Yukawa predicts the existence of mesons, responsible for short-range nuclear

force.
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1936 Gray’s formalization of Bragg-Gray principle.
1937 Mesons found in cosmic radiation.
1938 Hahn and Strassmann observe nuclear fission.
1942 First man-made nuclear chain reaction, under Fermi’s direction at University of

Chicago.
1945 First atomic bomb.
1948 Transistor invented by Shockley, Bardeen, and Brattain.
1952 Explosion of first fusion device (hydrogen bomb).
1956 Discovery of nonconservation of parity by Lee and Yang.
1956 Reines and Cowen experimentally detect the neutrino.
1958 Discovery of Van Allen radiation belts.
1960 First successful laser.
1964 Gell-Mann and Zweig independently introduce quark model.
1965 Tomonaga, Schwinger, and Feynman receive Nobel Prize for fundamental work

on quantum electrodynamics.
1967 Salam and Weinberg independently propose theories that unify weak and

electromagnetic interactions.
1972 First beam of 200-GeV protons at Fermilab.
1978 Penzias and Wilson awarded Nobel Prize for 1965 discovery of 2.7 K microwave

radiation permeating space, presumably remnant of “big bang” some 10–20
billion years ago.

1981 270 GeV proton–antiproton colliding-beam experiment at European
Organization for Nuclear Research (CERN); 540 GeV center-of-mass energy
equivalent to laboratory energy of 150,000 GeV.

1983 Electron–positron collisions show continuing validity of radiation theory up to
energy exchanges of 100 GeV and more.

1984 Rubbia and van der Meer share Nobel Prize for discovery of field quanta for
weak interaction.

1994 Brockhouse and Shull receive Nobel Prize for development of neutron
spectroscopy and neutron diffraction.

2001 Cornell, Ketterle, and Wieman awarded Nobel Prize for Bose-Einstein
condensation in dilute gases for alkali atoms.

2002 Antihydrogen atoms produced and measured at CERN.
2004 Nobel Prize presented to Gross, Politzer, and Wilczek for discovery of asymptotic

freedom in development of quantum chromodynamics as the theory of the
strong nuclear force.

2005 World Year of Physics 2005, commemorates Einstein’s pioneering contributions
of 1905 to relativity, Brownian motion, and the photoelectric effect (for which he
won the Nobel Prize).

Figures 1.3 through 1.5 show how the complexity and size of particle accelerators
have grown. Lawrence’s first cyclotron (1930) measured just 4 in. in diameter with
which he produced an 80-keV beam of protons. The Fermi National Accelerator
Laboratory (Fermilab) is large enough to accommodate a herd of buffalo and
other wildlife on its grounds. The LEP (large electron–positron) storage ring at
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Figure 1.3 E. O. Lawrence with his
first cyclotron. (Photo by Watson
Davis, Science Service; figure courtesy
of American Institute of Physics Niels
Bohr Library. Reprinted with
permission from Physics Today,
November 1981, p. 15. Copyright 1981
by the American Institute of Physics.)

the European Organization for Nuclear Research (CERN) on the border between
Switzerland and France, near Geneva, had a diameter of 8.6 km. The ring allowed
electrons and positrons, circulating in opposite directions, to collide at very high
energies for the study of elementary particles and forces in nature. The large size of
the ring was needed to reduce the energy emitted as synchrotron radiation by the
charged particles as they followed the circular trajectory. The energy loss per turn
was made up by an accelerator system in the ring structure. The LEP was retired in
2000 to make way for the Large Hadron Collider (LHC) in its place, which began
operation in 2008. The LHC is primarily used to collide two beams of nearly 7-TeV
protons head-on but also supports Pb ions. The LHC is used to investigate properties
of sub-atomic matter and, by extension, our understanding of the universe.

1.4 Important Dates in Radiation Protection

X rays quickly came into widespread medical use following their discovery.
Although it was not immediately clear that large or repeated exposures might
be harmful, mounting evidence during the first few years showed unequivocally
that they could be. Reports of skin burns among X-ray dispensers and patients,
for example, became common. Recognition of the need for measures and devices
to protect patients and operators from unnecessary exposure represented the
beginning of radiation health protection.

Early criteria for limiting exposures both to X rays and to radiation from
radioactive sources were proposed by a number of individuals and groups. In
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Figure 1.4 Fermi National Accelerator Laboratory, Batavia, Illinois. Buffalo and other
wildlife live on the 6800 acre site. The 1000 GeV proton synchrotron (Tevatron) began
operation in the late 1980s. (Figure courtesy of Fermi National Accelerator Laboratory.
Reprinted with permission from Physics Today, November 1981, p. 23. Copyright 1981 by the
American Institute of Physics.)

time, organizations were founded to consider radiation problems and issue formal
recommendations. Today, on the international scene, this role is fulfilled by the
International Commission on Radiological Protection (ICRP) and, in the United
States, by the National Council on Radiation Protection and Measurements
(NCRP). The International Commission on Radiation Units and Measurements
(ICRU) recommends radiation quantities and units, suitable measuring procedures,
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Figure 1.5 Photograph showing location of underground LEP ring with its 27 km
circumference. The SPS (super proton synchrotron) is comparable to Fermilab. Geneva
airport is in foreground. [Figure courtesy of the European Organization for Nuclear Research
(CERN).]

and numerical values for the physical data required. These organizations act as
independent bodies composed of specialists in a number of disciplines—physics,
medicine, biology, dosimetry, instrumentation, administration, and so forth. They
are not government affiliated and they have no legal authority to impose their
recommendations. The NCRP today is a nonprofit corporation chartered by the
United States Congress.

Some important dates and events in the history of radiation protection follow.

1895 Roentgen discovers ionizing radiation.
1900 American Roentgen Ray Society (ARRS) founded.
1915 British Roentgen Society adopts X-ray protection resolution; believed to be the

first organized step toward radiation protection.
1920 ARRS establishes standing committee for radiation protection.
1921 British X-Ray and Radium Protection Committee presents its first radiation

protection rules.
1922 ARRS adopts British rules.
1922 American Registry of X-Ray Technicians founded.
1925 Mutscheller’s “tolerance dose” for X rays.


