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Preface to Second Edition

The second edition of the Wind Energy Handbook seeks to reflect the evolution of design
rules and the principal innovations in the technology that have taken place in the 10 years
since the first edition was published. A major new direction in wind energy development
in this period has been the expansion offshore and so the opportunity has been taken to
add a new chapter on offshore wind turbines and wind farms.

The offshore chapter begins with a survey of the present state of offshore wind
farm development, before consideration of resource assessment and array losses. Then
wave loading on support structures is examined in depth, including a summary of the
combinations of wind and wave loading specified in the load cases of the IEC standard
and descriptions of applicable wave theories. Linear (Airy) wave theory and Dean stream
function theory are explained, together with their translation into wave loadings by
means of Morison’s equation. Diffraction and breaking wave theories are also covered.

Consideration of wave loading leads to a survey of the different types of support
structure deployed to date. Monopile, gravity bases, jacket structures, tripods, and tripiles
are described in turn. In view of their popularity, monopiles are accorded the most space
and, after an outline of the key design considerations, monopile fatigue analysis in the
frequency domain is explained.

Another major cost element offshore is the undersea cable system needed to transmit
power to land. This subject is considered in depth in the section on the power collection
and transmission cable network. Machine reliability is also of much greater importance
offshore, so developments in turbine condition monitoring and other means of increasing
reliability are discussed. The chapter is completed by sections covering the assessment of
environmental impacts, maintenance and access, and optimum machine size.

The existing chapters in the first edition have all been revised and brought up to date,
with the addition of new material in some areas. The main changes are as follows:

Chapter 1: Introduction This chapter has been brought up to date and expanded.
Chapter 2: The wind resource Descriptions of the high frequency asymptotic behaviour

of turbulence spectra and the Mann turbulence model have been added.
Chapters 3 and 4: Aerodynamics of horizontal axis wind turbines The contents of

Chapters 3 and 4 of the first edition have been rearranged so that the fundamentals
are covered in Chapter 3 and more advanced subjects are explored in Chapter 4.
Some material on field testing and performance measurement has been omitted to



�

� �

�
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make space for a survey of wind turbine aerofoils and new sections on dynamic
stall and computational fluid dynamics.

Chapter 5: Design loads for horizontal axis wind turbines The description of IEC load
cases has been brought up to date and a new section on the extrapolation of extreme
loads from simulations added. The size of the ‘example’ wind turbine has been
doubled to 80 m, in order to be more representative of the current generation of
turbines.

Chapter 6: Conceptual design of horizontal axis wind turbines The initial sections
on choice of machine size, rating, and number of blades have been substantially
revised, making use of the NREL cost model. Variable speed operation is con-
sidered in greater depth. The section on tower stiffness has been expanded to
compare tower excitation at rotational frequency and blade passing frequency.

Chapter 7: Component design New rules for designing towers against buckling are
described and a section on foundation rotational stiffness has been added.

Chapter 8: The controller Individual blade pitch control is examined in greater depth.
Chapter 9: Wind turbine installations and wind farms A survey of recent research on

the impact of turbines on birds has been added.
Chapter 10: Electrical systems New sections covering (a) Grid Code requirements for

the connection of large wind farms to transmission networks and (b) the impact of
wind farms on generation systems have been added.
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Preface to Third Edition

The 10 years since the preparation of the second edition of the Wind Energy Handbook
have seen further innovation in many areas of turbine design, and these form the basis
for the changes in this new edition. Refinements to blade design, together with improved
and better-understood material properties, have enabled the trend to larger machines to
continue. Upwind, three bladed, pitch-regulated, variable-speed machines are still firmly
established as the norm, despite the scope for the deployment of two bladed downwind
machines offshore. However, the one-time monopoly of high-speed gearboxes contin-
ues to be eroded, thanks to the rise of direct drive turbines and the increased use of
medium-speed gearboxes with permanent magnet generators. The design of fixed off-
shore support structures continues to evolve, but the most exciting development has been
the successful deployment of floating wind turbines.

The third edition retains most of the material of the previous edition, as the funda-
mental theory underpinning wind turbine design has not changed, but many chapters
have been expanded to cover recent developments. In view of the significant effects of
wakes on wind farm energy yield and turbine loadings, the opportunity has been taken
to add a completely new chapter (Chapter 9) entitled ‘Wake Effects and Wind Farm
Control’. This includes a detailed treatment of engineering models of the wake and their
implications for wind farm control, which is emerging as a way to both increase wind
farm energy production and reduce turbine fatigue loading by mitigating wake interac-
tion effects. There is also a section on wind farm control and the grid system, recognising
the increasing importance of using wind farms to provide ancillary services to the grid.

The main changes to the existing chapters are as follows:

Chapter 1: Introduction This chapter has been brought up to date to reflect the con-
tinuing increase in the size of wind turbines and wind farms.

Chapter 2: The Wind Resource Updated to include edition 4 of the IEC standard. An
illustrative example of the Gumbel method for extreme winds has been added. The
description of turbulence in wakes and wind farms has been replaced by a more
comprehensive treatment in the new Chapter 9.

Chapters 3 and 4: Aerodynamics of Horizontal Axis Wind Turbines, and Further Aero-
dynamic Topics for Wind Turbines Chapters 3 and 4 continue the split, as in the
second edition, between fundamentals in Chapter 3 and more advanced topics in
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Chapter 4. In Chapter 3, minor changes have been made to Section 3.8 dealing with
the tip-loss factor, and additions have been inserted on flat-back aerofoils and low
noise designs in Sections 3.17 and 3.19 with new sections on ‘add-on’ devices to
control separation, lift, and drag (3.18) and on aerodynamic noise and blade design
(3.19). The appendix to chapter 3 has been shortened by abbreviating the section
on drag. In Chapter 4, Section 4.3, the mathematical analysis of the Kinner circular
wing, has been abbreviated, retaining the final results, the Section 4.6 on dynamic
stall has been extended and a new Section 4.7 on applications of computational
fluid dynamics to rotor aerodynamics and wakes has been added.

Chapter 5: Design Loads for HAWTs The changes are mainly minor. The descrip-
tion of IEC load cases has been updated as necessary. A structurally more efficient
blade cross-section has been adopted for the trial blade design, while retaining the
existing plan-form. New figures have been added showing effect of yaw and wind
shear on blade root bending moments for a pitch-regulated turbine.

Chapter 6: Conceptual Design of Horizontal Axis Wind Turbines New sections have
been added covering high-speed rotors, low induction rotors, multiple rotor struc-
tures, and the effect of the number of blades on CP. Also the initial sections on
choice of machine size and rating have been amended to reflect the growth in
turbine size. The section on generators has been expanded to include innovative
approaches to drive trains and power conversion.

Chapter 7: Component Design The section on blade design has undergone major revi-
sion and expansion, including a more detailed treatment of the static and fatigue
properties of laminates. A simplified example of the fatigue design of a blade with
spar caps is presented to illustrate the steps involved. The manufacturing process
is described in more detail and new sub-sections on blade testing, leading edge
erosion, and bend-twist coupling have been added.

Chapter 8: The Controller New sections have been added to cover wind speed estima-
tion and LiDAR-assisted control.

Chapter 9: Wake Effects and Wind Farm Control – see above.

Chapter 10: Onshore Wind Turbine Installations and Wind Farms (previously
Chapter 9) This chapter has been revised and updated to take account of impor-
tant developments in understanding and managing the environmental impact of
wind energy developments. Since the second edition, there has been a considerable
increase in the literature on environmental impact and in the sophistication of
software tools for the effective, sustainable development of wind farms.

Chapter 11: Wind Energy and the Electric Power System (previously Chapter 10) Wind
energy is an increasingly important source of electricity generation, and practice
for connecting turbines and wind farms to the network and integrating their oper-
ation is developing rapidly. The chapter has been revised and updated to address
these important developments, including evolving Grid Code requirements and the
increasing integration of wind energy into power system operation.
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Chapter 12: Offshore Wind Turbines and Wind Farms (previously Chapter 11) The
introductory section has been updated to chart recent growth of installed capac-
ity and trends in levelised cost of energy, while the Contract for Difference sup-
port mechanism is explained in a new appendix. The section on the offshore wind
resource has been extended to include recent research on wake losses, their spatial
extent downwind, and the wind farm blockage effect.
Floating offshore wind turbines offer the opportunity to dramatically increase
the exploitable resource, and the technology is now moving beyond the prototype
stage, with several pilot wind farms already in operation. A new section on floating
offshore wind turbine structures has therefore been added, encompassing different
configurations, governing design criteria and design methods. Three case studies
are also included.
The section on monopile design has been extended to include the new approach to
geotechnical design made possible by the PISA research project. The description
of different types of fixed support structure has been updated to reflect current
developments and a new section added covering fatigue design curves.
Publicly funded monitoring programmes have enabled much to be learned about
the environmental impacts of offshore wind farms, and some of these findings are
reported in a new section on environmental monitoring. Finally, the section on
power collection and transmission has been updated to describe the use of modular
multi-level convertors for HVdc transmission.
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