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Preface

The genesis of this book on ‘‘Machine Vision Beyond the Visible Spectrum’’ is the
successful series of seven workshops on Object Tracking and Classification
Beyond the Visible Spectrum (OTCBVS) held as part of the IEEE annual Con-
ference on Computer Vision and Pattern Recognition (CVPR) from 2004 through
2010. Machine Vision Beyond the Visible Spectrum requires processing data from
many different types of sensors, including visible, infrared, far infrared, millimeter
wave, microwave, radar, and synthetic aperture radar sensors. It involves the
creation of new and innovative approaches to the fields of signal processing and
artificial intelligence. It is a fertile area for growth in both analysis and experi-
mentation and includes both civilian and military applications. The availability of
ever improving computer resources and continuing improvement in sensor per-
formance has given great impetus to this field of research. The dynamics of
technology ‘‘push’’ and ‘‘pull’’ in this field of endeavor have resulted from
increasing demand from potential users of this technology including both military
and civilian entities as well as needs arising from the growing field of homeland
security. Military applications in target detection, tracking, discrimination, and
classification are obvious. In addition to this obvious use, Machine Vision Beyond
the Visible Spectrum is the basis for meeting numerous security needs that arise in
homeland security and industrial scenarios. A wide variety of problems in envi-
ronmental science are potentially solved by Machine Vision, including drug
detection, crop health monitoring, and assessment of the effects of climate change.

This book contains 10 chapters, broadly covering the subfields of Tracking and
Recognition in the Infrared, Multi-Sensor Fusion and Smart Sensors, and
Hyperspectral Image Analysis. Each chapter is written by recognized experts in
the field of machine vision, and represents the very best of the latest advancements
in this dynamic and relevant field.

The first chapter entitled ‘‘Local Feature Based Person Detection and Tracking
Beyond the Visible Spectrum’’, by Kai Jüngling and Michael Arens of FGAN-
FOM in Germany, addresses the very relevant topic of person detection
and tracking in infrared image sequences. The viability of this approach is
demonstrated by person detection and tracking in several real world scenarios.
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‘‘Appearance Learning by Adaptive Kalman Filters for Robust Infrared Tracking’’
by Xin Fan, Vijay Venkataraman and Joseph Havlicek of Oklahoma State
University, Dalian Institute of Technology, and The University of Oklahoma, casts
the tracking problem in a co-inference framework, where both adaptive Kalman
filtering and particle filtering are integrated to learn target appearance and to
estimate target kinematics in a sequential manner. Experiments show that this
approach outperforms traditional approaches with near-super-pixel tracking
accuracy and robust handling of occlusions. Chapter 3, ‘‘3D Model-Driven Vehicle
Matching and Recognition’’, by Tingbo Hou, Sen Wang, and Hong Qin of Stony
Brook University, treats the difficult and universal problem of vehicle recognition
in different image poses under various conditions of illumination and occlusion.
A compact set of 3D models is used to represent basic vehicle types, and pose
transformations are estimated by using approximated vehicle models that can
effectively match objects under large viewpoint changes and partial occlusions.
Experimental results demonstrate the efficacy of this approach with the potential
for extending these methods to other types of objects. The title of Chap. 4 is
‘‘Pattern Recognition and Tracking in Infrared Imagery’’ by Mohammad Alam of
the University of South Alabama. This chapter discusses several target detection
and tracking algorithms and compares the results obtained to real infrared imagery
to verify the effectiveness of these algorithms for target detection and tracking.
Chapter 5 describes ‘‘A Bayesian Method for Infrared Face Recognition’’ by Tarek
Elguebaly and Nizar Bouguila of Concordia University. It addresses the difficult
problem of face recognition under varying illumination conditions and proposes an
efficient Bayesian unsupervised algorithm for infrared face recognition, based on
the Generalized Gaussian Mixture Model.

Chapter 6, entitled ‘‘Fusion of a Camera and Laser Range Sensor for Vehicle
Recognition’’, by Shirmila Mohottala, Shintaro Ono, Masataka Kagesawa, and
Katsushi Ikeuchi of the University of Tokyo, combines the spatial localization
capability of the laser sensor with the discrimination capability of the imaging
system. Experiments with this combination give a detection rate of 100 percent
and a vehicle type classification rate of 95 percent. Chapter 7 presents ‘‘A System
Approach to Adaptive Multimodal Sensor Designs’’, by Tao Wang, Zhigang Zhu,
Robert S. Krzaczek and Harvey E Rhody of the City College of New York, based
on the integration of tools for the physics-based simulation of complex scenes and
targets, sensor modeling, and multimodal data exploitation. The result of this work
is an optimized design for the peripheral-fovea structure and a system model for
developing sensor systems that can be developed within a simulation context.

Chapter 8, entitled ‘‘Statistical Affine Invariant Hyperspectral Texture
Descriptors Based on Harmonic Analysis’’ by Pattaraporn Khuwuthyakorn,
Antonio Robles-Kelly, and Jun Zhou of the Cooperative Research Centre for
National Plant Biosecurity in Australia, focuses on the problem of recovering a
hyperspectral image descriptor based on harmonic analysis. This chapter illustrates
the robustness of these descriptors to affine transformations and shows their utility
for purposes of recognition. ‘‘Tracking and ID via Object Reflectance Using a
Hyperspectral Video Camera’’ is the title of Chap. 9. This chapter is authored by

vi Preface

http://dx.doi.org/10.1007/978-3-642-11568-4_3
http://dx.doi.org/10.1007/978-3-642-11568-4_4
http://dx.doi.org/10.1007/978-3-642-11568-4_5
http://dx.doi.org/10.1007/978-3-642-11568-4_6
http://dx.doi.org/10.1007/978-3-642-11568-4_7
http://dx.doi.org/10.1007/978-3-642-11568-4_8
http://dx.doi.org/10.1007/978-3-642-11568-4_9


Hien Nguyen, Amit Banerjee, Phil Burlina, and Rama Chellappa of the University
of Maryland and focuses on the problem of tracking objects through challenging
conditions, such as rapid illumination and pose changes, occlusions, and in the
presence of confusers. This chapter demonstrates that the near-IR spectra of
human skin can be used to distinguish different people in a video sequence. The
final chapter of this book, ‘‘Moving Object Detection and Tracking in Forward
Looking Aerial Imagery’’, by Subhabrata Bhattacharya, Imran Saleemi, Haroon
Idrees, and Mubarak Shah of the University of Central Florida, discusses the
challenges of automating surveillance and reconnaissance tasks for infrared visual
data obtained from aerial platforms. This chapter gives an overview of these
problems and the associated limitations of some of the conventional techniques
typically employed for these applications.

Although the inspiration for this book was the OTCVBS workshop series, the
subtopics and chapters contained herein are based on new concepts and new
applications of proven results, and not necessarily limited to IEEE OTCBVS
workshop series materials. The authors of the various chapters in this book were
carefully chosen from among practicing application-oriented research scientists
and engineers. All authors work with the problems of machine vision or related
technology on a daily basis, and all are internationally recognized as technical
experts in the fields addressed by their chapters.

It is the profound wish of the editors and authors of this book that it will be of
some use to practicing scientists and engineers in the field of machine vision as
they endeavor to improve the systems on which so many of us rely for safety and
security.

June 2010 Riad Hammoud
Guoliang Fan

Robert W. McMillan
Katsushi Ikeuchi
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Part I
Tracking and Recognition in Infrared



Local Feature Based Person Detection
and Tracking Beyond the Visible Spectrum

Kai Jüngling and Michael Arens

Abstract One challenging field in computer vision is the automatic detection and
tracking of objects in image sequences. Promising performance of local features and
local feature based object detection approaches in the visible spectrum encourage the
application of the same principles to data beyond the visible spectrum. Since these
dedicated object detectors neither make assumptions on a static background nor a
stationary camera, it is reasonable to use these object detectors as a basis for tracking
tasks as well. In this work, we address the two tasks of object detection and tracking
and introduce an integrated approach to both challenges that combines bottom-up
tracking-by-detection techniques with top-down model based strategies on the level
of local features. By this combination of detection and tracking in a single frame-
work, we achieve (i) automatic identity preservation in tracking, (ii) a stabilization of
object detection, (iii) a reduction of false alarms by automatic verification of tracking
results in every step and (iv) tracking through short term occlusions without addi-
tional treatment of these situations. Since our tracking approach is solely based on
local features it works independently of underlying video-data specifics like color
information—making it applicable to both, visible and infrared data. Since the object
detector is trainable and the tracking methodology does not make any assumptions on
object class specifics, the overall approach is general applicable for any object class.
We apply our approach to the task of person detection and tracking in infrared image
sequences. For this case we show that our local feature based approach inherently
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4 K. Jüngling and M. Arens

allows for object component classification, i.e., body part detection. To show the
usability of our approach, we evaluate the performance of both, person detection
and tracking in different real world scenarios, including urban scenarios where the
camera is mounted on a moving vehicle.

Keywords Person detection · Person tracking · Visual surveillance · SURF

1 Introduction

Object, and specifically person or pedestrian detection and tracking has been subject
to extensive research over the past decades. The application areas for this are vast
and reach from video surveillance, thread assessment in military applications, driver
assistance to human computer interaction. An extensive review of the whole field of
pedestrian detection and tracking is beyond the scope of this paper and can be found
in [11, 18, 40]. We will indicate, however, some representative work for each of what
we think to be escalating levels of difficulty: (i) person detection, (ii) person tracking
and (iii) person detection and tracking from moving cameras.

Early systems in person centered computer vision applications mainly focused on
surveillance tasks with stationary cameras. Here, full systems like [16, 37] built on
foreground detection methods that model the static background and detect persons as
foreground regions. These methods [33] have been extensively studied and improved
over the years. Some research in this area has focused on this topic for the specific
case of thermal imagery [7, 10], while some research fuses information from infrared
and the visible spectrum [9, 27]. Drawbacks of systems that rely on person detection
by foreground segmentation are the disability to reliably distinguish different object
classes and to cope with ego-motion of the recording camera, though extensions in
this latter direction have been proposed by [5, 31]. Both problems can be solved by
using a dedicated object detector to find people in images.

Recent advances in object detection in the visible spectrum [8, 13, 24,
32, 36, 38] encourage the application of these trainable, class-specific object
detectors to thermal data. Although person detection in infrared has its own
advantages as well as disadvantages when compared to detection in the visible spec-
trum [12], most principles can be transferred from the visible spectrum to infrared.
While some techniques like the Histogram of Oriented Gradients (HOG) [8] can be
directly be transferred to infrared data [34], a lot of research focuses specifically on
person detection in infrared. Nanda and Davis [30] use a template based approach
which builds on training samples of persons to detect person in infrared data. In [39],
Xu and Fujimura use a SVM which also builds on size normalized person samples
to detect and track persons. In [6], Bertozzi et al. detect pedestrians from a moving
vehicle by localization of symmetrical objects with specific size and aspect ratio,
combined with a set of matches filters.

For most high-level applications like situation assessment, the person detection
results alone are not sufficient since they only provide a snapshot of a single point in
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time. For these higher level interpretation purposes, meaningful person trajectories
have to be built by a tracking process. To benefit from the advantages of the dedicated
object detectors, a lot of approaches directly built on the results of these person
detectors to conduct tracking: Andriluka et al. introduced a method of combining
tracking and detection of people in [1]. This approach uses knowledge of the walking
cycle of a person to predict a persons position and control the detection. Another
extension of this work [24] was proposed in [26] where a tracking was set up on the
ISM based object detector. In [25] Leibe et al. further extended the work to track
people from a moving camera. Gammeter et al. [14] built the tracking based on
the object detector and additional depth cues obtained from a stereo camera to track
people in street scenes from a moving camera. In [15], Gavrila and Munder proposed
a multi cue pedestrian detection and tracking system that is applicable from a moving
vehicle too. They use a cascade of detection modules that involves complementary
information including stereo. Wu and Nevatia [38] introduced a system that detects
body parts by a combination of edgelet features and combines the responses of the
part detectors to compute the likelihood of the presence of a person. The tracking is
conducted by a combination of associating detection results to trajectories and search
for persons with mean shift. In both cases, an appearance model which is based on
color is used for data association in tracking.

In infrared data, person tracking is a more challenging problem than in the visible
spectrum. This is due to similar appearance of persons in infrared which makes iden-
tity maintenance in tracking much more difficult compared to the visible spectrum
where rich texture and color is available to distinguish persons. Especially on mov-
ing cameras, where the image position of people is unstable and thus not sufficient
to correctly maintain object identities, the above mentioned approaches would not
be capable to track persons robustly. This is due to the different assumptions the
approaches make on the availability of color, a stationary camera or special sen-
sors like a stereo camera. An approach which focuses on pedestrian tracking without
making these assumption is presented in [39] by Xu and Fujimura. Here, the tracking
is built on the infrared person detection results of the SVM classifier. For that they
use a Kalman filter to predict a persons position and combine this with a mean shift
tracking.

In this chapter, we seize on the task of detecting and tracking multiple objects in
real-world environments from a possibly moving, monocular infrared camera and
by that pursue the work presented in [20, 21]. Although we focus on detecting and
tracking people, our approach works independently of object specifics and is thus
generically applicable for tracking any object class.

Unlike most of the before mentioned approaches we do not make any assumptions
on application scenario, environment or sensor specifics. Our whole detection and
tracking approach is solely built on local image features (see [35] for an extensive
overview) which are perfectly suited for this task since they are available in every
sensor domain. As local features, we picked SURF [2] (replaceable with SIFT [28])
features since, in our application, they have some major advantages compared to other
local features like a combination of Harris keypoints [17] and shape descriptors [3]
(as used in [23]).
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On the keypoint level, SURF features respond to blob-like structures rather than
to edges, which makes them well suited for infrared person detection since people
here appear as lighter blobs on darker background (or inverted, dependent on sensor
data interpretation). This is due to the use of a hessian matrix based keypoint detector
(Difference of Gaussian which approximates the Laplacian of Gaussian in case of
SIFT) which responds to blobs rather than to corners and edges like, e.g., Harris
based keypoint detectors. The SURF descriptor is able to capture two things which
are important in detection and tracking. It captures the shape of a region which is
important in the training of the general person detector, because the shape of person
is alike for all people. Second, it is able to capture texture (which still might be
available despite infrared characteristics) properties of the regions which is important
in tracking where different persons have to be distinguished from each other. Another
important property is the ability of the descriptor to distinguish between light blobs
on dark background and dark blobs on light background. This makes it perfectly
suited for detecting people in thermal data because those here usually appear lighter
than the background (or darker, dependent on sensor data interpretation).

Our detection approach is built on the Implicit Shape Model (ISM) based approach
introduced in [24]. Here, a general appearance codebook is learned based on training
samples. Additionally to just detecting persons as a compound, we show how this
local feature based person detector can be used to classify a person’s body parts,
which can be input to further articulation interpretation approaches. For tracking,
we introduce a novel technique that is directly integrated into the ISM based detec-
tion and needs no further assumptions on the objects to be tracked. Here, we unite
object tracking and detection in a single process and thereby address the tracking
problem while enhancing the detection performance. The coupling of tracking and
detection is carried out by a projection of expectations resulting from tracking into
the detection on the feature level. This approach is suited to automatically combine
new evidence resulting from sensor data with expectations gathered in the past. By
that, we address the major problems that exist in tracking: we automatically preserve
object identity by integrating expectation into detection, and, by using the normal
codebook-matching procedure, we automatically integrate new data evidence into
existing hypotheses. The projection of expectation thus stabilizes detection itself
and reduces the problem of multiple detections generated by a single real world
object. By adapting the weights of projected features over time, we automatically
take the history and former reliability of a hypothesis into account and therefore
get by without a special approach to assess the reliability of a tracked hypothesis.
Using this reliability assessment, tracks are automatically initialized and terminated
in detection.

We evaluate both, the standalone person detector and the person tracking approach.
The person detector is evaluated in three thermal image sequences with a total of 2,535
person occurrences. These image sequences cover the complete range of difficulties
in person detection, i.e., people appearing at different scales, visible from different
viewpoints, and occluding each other. The person tracking is evaluated in these three
and two additional image sequences under two main aspects. First, we show how
tracking increases detection performance in the first three image sequences. Second
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we show how our approach is able to perform tracking in difficult situations where
people move beside each other and the camera is moving. Additionally, we show
that the tracking is even able to track people correctly in cases where strong camera
motion occurs.

This chapter is structured as follows. Section 2 covers the standalone person
detection. Here, we start by introducing the detection approach in Sect. 2.1. The
body part classification is described in Sect. 2.2. Section 2.3 provides an evaluation
of person detection. Person tracking is discussed in Sect. 3. This section includes
the introduction of our tracking approach in Sect. 3.1, the tracking evaluation in
Sect. 3.2 and the tackling of strong camera motion in tracking in Sect. 3.3.
Section 4 closes this chapter with a conclusion.

2 Person Detection

This section focuses on person detection. It introduces the detection technique, shows
how this can be employed to classify a person’s body parts and presents experimental
results.

2.1 Local Feature Based Person Detection

The person detection approach we use here is based on the trainable ISM object
detection approach introduced in [24]. In this section, we briefly describe the training
and detection approach and the enhancements we made.

2.1.1 Training

In the training stage, a specific object class is trained on the basis of annotated sample
images of the desired object category. The training is based on local features that are
employed to build an appearance codebook of a specific object category.

The SURF features extracted from the training images on multiple scales are used
to build an object category model. For that purpose, features are first clustered in
descriptor space to identify reoccurring features that are characteristic for the specific
object class. To generalize from the single feature appearance and build a generic,
representative object class model, the clusters are represented by the cluster center
(in descriptor space). At this point, clusters with too few contributing features are
removed from the model since these cannot be expected to be representative for the
object category. The feature clusters are the basis for the generation of the Implicit
Shape Model (ISM) that describes the spatial configuration of features relative to
the object center (see Fig. 1a) and is used to vote for object center locations in the
detection process. This ISM is built by comparing every training feature to each
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Fig. 1 a ISM describes spatial configuration of features relative to object center. b Clustered training
features are mapped to a prototype. Each codebook entry contains a prototype and the spatial
distribution of features. c Image features that match to codebook prototypes cast votes for object
center locations. Each image feature has only a single vote in the final detection set since a single
image feature can only provide evidence for one object hypothesis

prototype (cluster center) that was generated in the previous clustering step. If the
similarity (euclidean distance in descriptor space) of a feature and the prototype is
above an assignment threshold, the feature is added to the specific codebook entry.
Here, the feature position relative to the object center—the offset—is added to the
spatial distribution of the codebook (Fig. 1b) entry with an assignment probability.
This probability is based on descriptor similarity and a single feature can contribute
to more than one codebook entry (fuzzy assignment).

2.1.2 Detection

To detect objects of the trained class in an input image, again SURF features are
extracted. These features (the descriptors) are then matched with the codebook,
where codebook entries with a distance below a threshold tsim are activated and
cast votes for object center locations (Fig. 1c). To allow for fast identification of
promising object hypothesis locations, the voting space is divided into a discrete
grid in x-, y-, and scale-dimension. Each grid that defines a voting maximum in a
local neighborhood is taken to the next step, where voting maxima are refined by
mean shift to accurately identify object center locations.

At this point we make two extensions to the work of [24]. First, we do not dis-
tribute vote weights equally over all features and codebook entries but use feature
similarities to determine the assignment probabilities. By that, features which are
more similar to codebook entries have more influence in object center voting. The
assignment strength p(Ci | fk)of an image feature fk , codebook entry Ci combination
is determined by:

p(Ci | fk) = tsim − ρ( fk,Ci )

tsim
, (1)
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where ρ( fk,Ci ) is the euclidean distance in descriptor space. Since all features with
a distance above or equal tsim have been rejected before, p(Ci | fk) is in range [0, 1].
The maximal assignment strength 1 is reached when the euclidean distance is 0. The
same distance measure is used for the weight p(V�x |Ci ) of a vote for an object center
location �x when considering a codebook entry Ci . The vote location �x is determined
by the ISM that was learned in training. Here, ρ( fk,Ci ) is the similarity between
a codebook prototype and a training feature that contributes to the codebook entry.
The overall weight of a vote V�x is:

V w
�x = p(Ci | fk)p(V�x |Ci ). (2)

Second, we approach the problem of the training data dependency. The initial
approach by Leibe et al. uses all votes that contributed to a maximum to score a
hypothesis and to decide which hypotheses are treated as objects and which are
discarded. As a result, the voting and thus the hypothesis strength depends on the
amount and character of training data. Features that frequently occurred in train-
ing data generate codebook entries that comprise many offsets. A single feature
(in detection) that matches with the codebook prototype thus casts many votes in
object center voting with the evidence of only a single image feature. Since a fea-
ture count independent normalization is not possible at this point, this can result in
false positive hypotheses with a high score, generated by just a single or very few
false matching image features. To solve this issue, we only count a single vote—
the one with the highest similarity of image and codebook feature—for an image
feature/hypothesis combination (see Fig. 1c). We hold this approach to be more
plausible since a single image feature can only provide evidence for an object
hypothesis once.

The score γ of a hypothesis φ can thus, without the need for a normalization,
directly be inferred by the sum of weights of all I contributing votes:

γφ =
I∑

i=1

V w
i . (3)

Certainly, this score is furthermore divided by the volume of the scale-adaptive search
kernel (see [24] for details), which is necessary because objects at higher scales can
be expected to generate much more features than those at lower scales. Additionally,
this enhancement provides us with an unambiguousness regarding the training feature
that created the involvement of a specific image feature in a certain hypothesis. This
allows for decisive inference from a feature that contributed to an object hypothesis
back to the training data. This is important for the classification of body parts which
is described in detail in Sect. 2.2.

The result of the detection step is a set � of object hypotheses, each annotated
with a score γφ. This score is subject to a further threshold application. All object
hypotheses below that threshold are removed from the detection set �.
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Fig. 2 Procedure of body part classification. Features found on body parts are annotated with the
appropriate semantics, feature descriptors are then clustered to build appearance prototypes of each
body part. Body part classification happens in two ways, the top line denotes the way of direct
classification using the training annotation. The bottom line denotes classification by matching
with the appearance prototypes

2.2 Body Part Classification

As mentioned in Sect. 2.1.2, our enhancements provide us with an unambiguousness
regarding the training feature that created a specific vote. This unambiguous infer-
ence together with an object part annotation of the training data, i.e., a body part
annotation of persons, allows for object-part classification. The training data body
part annotation can directly be used to annotate training features found on body parts
with semantic body part identifiers. This annotation is added to codebook entries for
features that can be associated with certain body parts. Object hypotheses resulting
from detection consist of a number of votes. The votes were generated by specific
offsets (which refer to training features) in certain codebook entries which were
activated by image features. As outlined in Fig. 2, using the annotation of these
entries, we are now able to infer the semantics of image features that contribute to
an object hypothesis.

This body part classification approach has the weakness that the similarity between
an image feature and the training feature is calculated only indirectly by the similarity
between the codebook representative and the image feature (see Eq. 1). This means
that a feature that is annotated with a body part and resides in a specific codebook
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entry could contribute to a person hypothesis because the similarity between an image
feature and the codebook representative is high enough (this similarity constraint is
rather weak since we want to activate all similar structures for detection) but the
image feature does in fact not represent the annotated body part.

For this reason, we decided to launch another classification level that includes
stronger constraints on feature similarity and introduces a body part specific appear-
ance generalization. Following that, we generate body part templates for every body
part class found in training data, i.e., we pick all features annotated with “foot” from
training data. The descriptors of these features are then clustered in descriptor space
to generate body part templates. The presets on descriptor similarity applied here
are stricter than those used in codebook training. This is because we rather want to
generate an exact representation than to generalize too much from different appear-
ances of certain body parts. The clustering results in a number of disjoint clusters
that represent body parts. The number of descriptors in a cluster is a measure for
how generic it represents a body part. The more often a certain appearance of a body
part has been seen in training data, the more general this appearance is (since it was
seen on many different people). Since the goal is to create an exact (strong similar-
ity in clustering) and generic (repeatability of features) representation, we remove
clusters with too few associated features. The remaining clusters are represented by
their cluster center and constitute the templates. These templates can now be used to
verify the body part classification of stage one by directly comparing the feature
descriptors of a classified image feature with all templates of the same body
part class. If a strong similarity constraint is met for any of the templates, the
classification is considered correct. Otherwise, the image feature annotation is
removed.

Example results of the body part classification are shown in Fig. 3. Here, the
relevant body part categories are: head, torso, shoulder, leg, and foot. We see that
we are not able to detect every relevant body part in any case, but the hints can
be used—especially when considering temporal development—to build a detailed
model of a person which can be the starting point for further interpretation of the
person’s articulation. (Compare [22] for work in this direction.)

2.3 Experimental Results

2.3.1 Training Data

A crucial point in the performance of a trainable object detector is the choice of
training data. Our person detector is trained with a set of 30 training images taken from
an image sequence that was acquired from a moving camera in urban terrain with a
resolution of 640×480.The set contains eight different persons appearing at multiple
scales and viewpoints. The persons are annotated with a reference segmentation
which is used to choose relevant features to train the person detector. Additionally,
we annotate the training features with body part identifiers when this is adequate
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Fig. 3 Example body part classification results of detected persons. Relevant body part classes are:
head, torso, shoulder, leg, and foot

(when a feature visually refers to a certain body part). Example results for the body
part detection are shown in Fig. 3. All detection results shown hereafter do not contain
any of the persons that appear in training data.

2.3.2 Person Detection

To show the operationality of the detection approach in infrared images, we evaluate
the performance in three different image sequences, taken from different cameras
under varying environmental conditions. For evaluation, all persons whose head or
half of the body is visible are annotated with bounding boxes.

To assess the detection performance, we use the performance measure

recall = |true positives|
|ground truth objects| (4)

following [25]. To determine whether an object hypothesis is a true- or a false positive,
we use two different criteria. The inside bounding box criterion assesses an object
hypothesis as true-positive if its center is located inside the ground truth bounding
box. Only a single hypothesis is counted per ground truth object, all other hypotheses
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in the same box are counted as false positive. The overlapping criterion assesses
object hypotheses using the ground truth and hypotheses bounding boxes. The overlap
between those is calculated by the Jaccard-Index [19] (compare intersection-over-
union criterion):

overlap = area(Bp ∩ Bgt )

area(Bp ∪ Bgt )
. (5)

The first criterion is deliberately used to account for inaccuracies in bounding boxes
in the ground truth data and to assess the detection performance independently of its
accuracy. Specifically in our case, where the bounding box is defined by the minimal
box that contains all features which voted for a hypothesis, a hypothesis that only
contains the upper body of a person would be counted as false positive using the
overlapping criterion, even if all body parts of the upper body are correctly found. To
depict the accuracy of detections, we use the overlapping criterion which is evaluated
for different overlap demands.

The first image sequence contains a total of 301 person occurrences, appearing
at roughly the same scale. People run from right to left in the camera’s field of view
with partial person–person overlapping. We evaluate the sequence using the recall
criterion and the false positives per image. The recall is shown as a function of false
positives per image as used in various object detector evaluations. To assess the
accuracy of the detection we evaluate with different requirements of overlapping.
The results for the different evaluation criteria (OLx: Bounding box overlap with a
minimum overlap of x%; BBI: Inside bounding box) are shown in Fig. 5a. The curves
are generated by running the object detector with different parameter settings on the
same image sequence. Example detections for this image sequence are shown in the
top row of Fig. 4.

The second image sequence is from OTCBVS dataset [9] with 763 person
occurrences. Here, a scene is observed by a static camera with a high-angle shot.
Two persons appearing at a low scale move in the scene without any occlusions.
As we see in Fig. 5b, the detection performance is very similar for all false positive
rates. Here, we nearly detect all person occurrences in the image at low false positive
rates. The results do not improve significantly with other parameters that allow person
detections with lower similarity demands and result in more false positives. It is worth
mentioning that the detector was trained on persons the appearance of which was
not even close to the ones visible in this image sequence. Both, viewpoint and scale
of the persons have changed completely between training and input data. Note that
the buckling in the curves of bounding box overlap can result from parameter adjust-
ment in allowed feature similarity for detection. Activating more image features for
detection can result in more false positive hypotheses and in additional inaccuracies
in the bounding box and thus in less true-positives regarding the overlap criterion.
The detailed trend of false positives per image and recall for different overlap
demands in Fig. 5d shows that the detection performance itself is very good. The
accuracy is rather poor compared to the detection performance but still has a recall
of above 0.7 with a 50% bounding-box overlap demand. With increasing overlap
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Fig. 4 Example detections of all three test sequences. Sequence 1: top row, sequence 2: middle
row, sequence 3: bottom row. Dots indicate features that generate the hypothesis marked with the
bounding box

demand, the detection rate decreases and the false positives increase. As we can see
from the development of the curves, this is just due to inaccuracy and not due to “real”
false positives generated from background or other objects. Example detections for
this image sequence are shown in the second row of Fig. 4.

The third image sequence was taken in urban terrain from a camera installed on
a moving vehicle. This image sequence, with a total of 1,471 person occurrences,
is the most challenging because a single image contains persons at various scales
and the moving paths of persons cross, which leads to strong occlusions. From the
example result images in the bottom row of Fig. 4, we see that some persons in the
background occupy only few image pixels while other persons in the foreground
take a significant portion of the whole image. Unlike one could expect, the fact that
people are moving parallel to the camera is not very advantageous for the object
detector because the persons limbs are not visible very well from this viewpoint. The
results of this image sequence are shown in Fig. 5c. We see, that the inside bounding
box criterion performs well and has a recall of more than 0.9 with less than 1.5 false
positive/image. When applying the bounding box overlap criterion, the performance
drops significantly—more than in image sequence one and two. Especially the 50%
overlap criterion only reaches a recall of 0.5 with more than 5 false positives/image.
This rapid performance degradation is mainly due to inaccuracies in bounding boxes
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Fig. 5 Recall/false positive curves for a sequence 1, b sequence 2, and c sequence 3. Each chart
contains four curves that refer to the different evaluation criteria. BBI: inside bounding box criterion.
OL30/40/50: bounding box overlap criterion with 30, 40 and 50% overlap demand. d Trend of
detection performance of sequence 2 with a single parameter set using different bounding box
overlap demands (displayed on the x-axis in 10% steps)

of persons appearing at higher scales. This is also visible in the example detections
in the bottom row of Fig. 4. Here, people in the scene background are most often
detected accurately while persons close to the camera are detected rather imprecisely
in terms of exact bounding boxes.

3 Person Tracking

Even a perfectly working person detector gives only a snapshot image of the sur-
rounding. For most applications, like driver assistance or visual surveillance, it is
necessary to interpret the situation over a time interval, i.e., to know where people
are walking and thus know if they are a possible thread (spec. in military applica-
tions) or if we (as a driver of a vehicle) might be a thread to the person. For this,
a person tracking is necessary. An important point in tracking is to consistently main-
tain object identities because this is a prerequisite for correct trajectory estimation.
This is a difficult problem specifically in infrared data, where features like color that
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are commonly used to distinguish persons in tracking are not available. Here, people
usually appear as a light region on a darker background which means the appear-
ance of different persons is very alike. Additional difficulties arise when tracking
should be conducted from a moving camera. In this case the use of position informa-
tion for correct trajectory estimation is problematic since the camera motion distorts
estimation of people motion.

In this section, we introduce a tracking strategy which is based on the object
detector introduced in Sect. 2 and copes with the difficulties for tracking in infrared
from a moving camera.

3.1 Local Feature Based Integration of Tracking and Detection

The object detection approach described up to now works exclusively data-driven
by extracting features bottom-up from input images. At this point, we introduce a
tracking technique that integrates expectations into this data-driven approach. The
starting point of tracking are the results of the object detector applied to the first
image of an image sequence. These initial object hypotheses build the basis for the
object tracking in the sequel. Each of these hypotheses consists of a set of image
features which generated the according detection. These features are employed to
realize a feature based object-tracking.

3.1.1 Projection of Object Hypotheses

For every new image of the image sequence, all hypotheses � known in the system
at this time T, each comprising a set of features �γ , are fed back to the object
detection before executing the detection procedure. For the input image, the feature
extraction is performed, resulting in a set of image features �img. For every object
hypothesis in the system, the feature set�γ of this hypothesis γ is projected into the
image. For that, we predict the feature’s image positions for the current point in time
(a Kalman-Filter that models the object-center dynamics assuming constant object
acceleration is used to determine position prediction for features. Note that this is
thought to be a weak assumption on object dynamics) and subjoin these feature to
the image features.

In this joining, three different feature types are generated: The first feature type,
the native image features �img refers to features that are directly extracted from the
input image. These features contribute with the weight Ptype=nat, which is set to 1.

The second feature type, the native hypothesis features, is generated by projecting
the hypothesis features�γ to the image. These features are weighted with Ptype=hyp
and are added to the detection-feature-set �tot

γ of hypothesis γ :

�tot
γ = �img ∪�γ . (6)
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These features integrate expectation into detection and their weight is set to a value
in the range [0–1].

The next step generates the features of the third type, the hypothesis features
with image feature correspondence. For this purpose, the hypothesis features �γ
are matched (similarity is determined by an euclidean distance measure) with the
image features �img. Since (i) the assignment of hypothesis to image features
includes dependencies between assignments and since (ii) a single hypothesis feature
can only be assigned to one image feature (and vice versa), a simple “best match”
assignment is not applicable. We thus solve the feature assignment problem by the
revised Hungarian method presented by Munkres in [29]. By that the best overall
matching assignment and mutual exclusivity is ensured.

Feature assignments with a distance (in descriptor space) exceeding an assignment
threshold κfeat are prohibited. An additional image-distance constraint for feature
pairs ensures the spatial consistency of features. Every ι ∈ �img which has a π ∈ �γ
assigned, is labeled as feature type 3 and contributes with the weight Ptype=mat (the
matching hypothesis feature π is removed from the detection set:�tot

γ = �tot
γ \π to

not count features twice). This weight is set to a value >1, because this feature type
indicates conformity of expectation and data and thus contributes with the highest
strength in the voting procedure.

The feature-type-weight is integrated into the voting by extending the vote weight
(see Eq. 2) with factor Ptype to

V w
�x = p(Ci | fk) · p(V�x |Ci ) · Ptype. (7)

The voting procedure—which is the essential point in object detection—is thus
extended by integrating the three different feature types that contribute with
different strengths. The whole procedure is shown in Fig. 6.

3.1.2 Coupled Tracking and Detection

From now on, the detection is executed following the general scheme described in
Sect. 2. In addition to the newly integrated weight factor, the main difference to the
standard detection is that the voting space contains some votes which vote exclusively
for a specific object hypothesis. Besides, votes which were generated from native
image features can vote for any hypothesis. This is shown in Fig. 7a. Here, different
gray values visualize affiliation to different hypotheses.

Since the number and position of expected object hypotheses is known, no addi-
tional maxima search is necessary to search for known objects in the voting space. As
we see in Fig. 7b, the mean shift search can be started immediately since the expected
position of a hypothesis in voting space is known (the position is determined by a
prediction using a Kalman filter that models object center dynamics). Starting from
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Fig. 6 Coupling of expectation and data for tracking. Features in object hypotheses (results of
former detections) are propagated to the next frame and combined with new image features in a
joined feature space. This feature space contains three different feature types which are generated
by matching expectation and data. �img: native image features without correspondence in the
hypothesis feature set, �pro: features of projected hypotheses without image feature match, �mat:
matches of hypothesis and image features. The projected and matching features are marked with
grey values according to the different hypotheses. These features can only vote for the hypotheses
they refer to. The joined feature set is then input to the standard object detection approach where
features are matched with the codebook to generate the voting space. Here, votes produced by native
image features can vote for any object hypothesis while hypothesis specific votes are bound to a
specific hypothesis

this position, the mean shift search is conducted determining the new object position.
Since a mean shift search was started for every known object in particular, the search
procedure knows which object it is looking for and thus only includes votes for this
specific object and native votes into its search. By that hypothesis specific search,
identity preservation is automatically included in the detection procedure without
any additional strategy to assign detections to hypotheses. After mean shift execu-
tion, object hypotheses are updated with the newly gathered information. Since, by
the propagation of the features, old and new information is already combined in the
voting space, the object information in the tracking system can be replaced with the
new information without any further calculations or matching.

To detect new objects, a search comprising the standard maximum search has
to be conducted since the positions of new objects are not known beforehand. As
we see in Fig. 7c, this maxima search is executed in a reduced voting space where
only native votes that have not been assigned to a hypothesis yet remain. All votes
that already contributed to an object hypothesis before are removed from the voting
space. This ensures that no “double” object hypotheses are generated and determines
that new image features are more likely assigned to existing object hypotheses than
to new ones.

As in the original voting procedure, the initial “grid maxima” are refined with
mean shift as we see in Fig. 7d. All maxima with a sufficient score found here
initialize new tracks.


