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G. E. Sacks 

1. Fundamentals 

Buon giorno. This is the first of eight lectures on the model theo- 

retic notion of theory of algebraic type. Some examples of the notion 

a re  the theories of algebraically closed fields of characteristic p 

(p 2 0), real closed fields and differentially closed fields of character- 

istic 0. The last example is the most important for two reasons. 

First ,  it is the only one known whose complexity matches that of the gen- 

eral case. Second, several results about differential fields, results 

which hold for all theories of algebraic type, were first proved by model 

theoretic means. 

The key definition is  quite compact, but five lectures will be 

needed to unpack it. A theory T is said to be of algebraic if T is 

complete, T is  the model completion of a universal theony, and T is 

quasi-totally transcendental. In the brief time left before the onset of 

formalities, let me indicate why the theory of algebraically closed 

fields of characteristic 0 (ACFO) is of algebraic type. The complete- 

ness of ACFO means that the same first order sentences are  true in all 

algebraically closed fields of characteristic 0. Thus a first order sen- 

tence in the language of fields is  true of the complex numbers if and only 

if it is  true of the algebraic numbers. 

ACF is  the model completion of TFO, the theory of fields of 
0 

characteristic 0. To say TFO is a universal theory is equivalent to 

saying a subset of a field of characteristic 0 closed under t, , etc. is  
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a field of characteristic 0. To see the meaning of model completion, 

let 6? be any field of characteristic 0 and let F be any first order sen+ 

tence in the language of fields with parameters in a.  (For example, 

F might say that some finite set of polynomials in several variables 

withcoefficients in a has a common zero. ) To claim that ACFO is thq 

model completion of TF amowff$to claiming F is  true in all or in 
0 

none of the algebraically closed eGtensions of G .  

The property of quasi-total transcendality is  too complex to eluci- 

date in a lecture on fundamentals. For the moment think of it as  a den- 

sity condition on simply generated extensions of structures weakly ex- 

emplified by the density of the rationals in the reals. If T is  quasi- 

totally transcendental, then each substructure & of a model of T has 

a prime model extension, and ail prime model extensions of a are  iso. 

morphic over d . In the case of ACF this means each field (i of 
0' 

characteristic 0 has a unique prime algebraically closed extension, 

namely the algebraic closure of I: . 

And now the fundamentals of model theory. A similarity type 7 

is  a 5-tuple <I, J , K ,  8,#> such that 0 : I +  N and (I/ : J-. N, where N 

is  the set of positive integers. A structure a of type 7 consists of: 

(i) A nonempty set A called the universe of @ . 
a 

(ii) A family {Fti li c I) of relations. Each R; is  a subset of 

A e(i) 

k 
(iii) A family {f. I j 6 J) of functions. Each f! maps 

J J 
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li; (iv) A subset {ck 1 k Q K) of A called the set of distinguished 

elements of A. 

One often writes 

The cardinality of 6 is  by definition the cardinality of A. Structures 

will be denoted by d, 8 ,  , . . . , and their universes by A,B, C,. . . 
Consider the structure 

-1 
& = < A , + , . , - ,  , o , i >  , 

-1 
where + and a r e  2-place functions on A, - and are  1-place 

functions on A, and 0 and 1 are  distinguished elements of A. The 

concept of field can be formulated so that every field has the same simi- 

larity type as  6 ,  but a need not be a field since the relations, func- 

tions anddistinguished elements of 6 need not satisfy the axioms for 

fields. 

A monomorphism m : & -. dj is  a one-one map m : A -. B such 

a 63 
(i) Ri (al,. . . , a  ) iff Ri (mal,. . . ,ma I and n =  W)). 

n n 
CL B 

(ii) mfj (al, ..., a ) = f .  (mal ,..., ma ( je  J and n=rL(i)). 
n J  n 

(iii) mca = cB (k E K). 
k k  

(It is  assumed that 6, and i8 are  both of type 7 .  ) 

6 is a substructure of 63 (d C & ) if  A C  B and the inclusion 

map iA : A C  B is  a monomorphism. An isomorphism is  an onto mono- - - 
morphism. An isomorphism is indicated by m : &. + 63 or by a ~ 8 .  
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Each similarity type 7 gives rise to a first order l aa~uage  & 
7 

whose sentences a r e  interpretable in structures of type 7 .  The primi- 

tive symbols of are:  
7 

(i) f irst  order variables x, y, z, . . . ; 
(ii) logical connectives - (not), 4 (and), E (there exists), and 

= (equals); 

{iii) a B(i)-place relation symbol Ri (i t I); 

(iv) a @ (j)-place function symbol f .  (j  t J); 
J 

(v) an individual constant- c (k t K). 
-k 

The t e r m  of a r e  ge#e,rated by two rules: all variables and 
7 

individual conetants a r e  terms; if f .  i s  an n-place function symbol and 
J 

tl, . . . , t a re  terms,  then f (t . , t ) i s  a term. 
n j 1". n 

The atomic formulas are: equations such as  t = t2,  where t 
1 1 

and t2 a re  terms; and R (t , t ), where Ri is  an n-place relation 
i 1'"' n 

symboland t l , .  . . , tn are  terms. 

The formulas a r e  generated from the atomic formulas as follows: 

if F and G are  formulas, then -F, F d: G and (Ex)F are  formulas, 

where x i s  any variable. 

' (or), -. (implies), * (if and only if), and (x) (for all x) are 

abbreviations: F V G for -(-F -G), F -. G for (-F) ' G, F -G 

for (F - G) 4 (G -. F), and (x)F for -(EX)-F. 

The predicate, x is a free variable of the formula F,  is  defined 

by recursion on the number of steps needed to generate F: if F is  

atomic and x occurs in F, then x is  a free variable of F; if x is a 
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f ree  variable of F, then x is free variable of 5 F s  of F & G and of 

G & F; if x is a free variable of F and y i s  a variable distinct from 

x, then x 12 a free variable of (Ey)F. 

The only way to kill a free variable x of F i s  to prefix F with 

(Ex). A useful convention is: all the free variables of G(x, y, z) lie 

among X, y, z. 

A sentence is  a formula with no free variables. 

Each sentence of % has a definite truth value in each structure 
7 

G' of type 7 .  A s  an aid in defining truth, consider the language 
7A 

obtained by adding a new individual conbtant a for each a c A to the 
\ 

language dt' The formulas of a are  merely the formulas of 
7' 7 A 7 

with some of the free variables replaced by individual constants naming 

elements of A. Each constant term (no variables) t of d names 
?A 

some element at of A as  follows: 

(i) 02 = a and oc = cL 
-k k' 

Ii 
(ii) ufj(tl, . . . , tn) = f . (atl, . . . , at  ). 

J n 

Let H be a sentence of The relation @b  H :H i s  true in 
?A' 

k )  is defined by recursion on the number of steps needed to generate H 

from the atomic formulas of & 
7 ~ :  

G? tl = t2 iff otl = at  
2' 
6 

Q b ~ ~ ( t ~ . .  . . s t )  iff R. (atl , . . . ,  at ). n n 

O ~ F &  G iff C L ~ F  and & b ~ .  

@b 5 F  iff i t  i s  not the case that a b F. 

cb  (B)F(x)  iff @- F(a) - for some a e A. 
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If the sentence H is  not true in a ,  then it is  said to be false. 

<al,,  . . , a  > satisfies (or realizes) F(x1,. . . , x ) in a if 
n n 

& k ~ ( 2 ~ , . . .  , a  -n 1- 

It is now quite simple to say what a field is .  The similarity type 

of afield is exemplified by the structure @ : 
IC. 

L LL a .& a (-1) $ 0  $1  > .  < A , + ,  9 -  9 

The nonlogical primitive symbols of the language associated with the 

-1 
similarity type of fields are: +, . , -, , 0 and 1. The theory of fields 

(TF) is  the following set of sentences: 

(x)(y)(z)[(x+y)+z = x+(y+z)I. 

(x)[x+O = XI. 

(x)[x+(-x) = 01. , 

(XI (Y)[x+Y = Y-I. 

(X)(Y)(Z)[(X. Y). z = x. (Y. 41 .  

(x)[x. 1 = XI. 
- 1 

(x)[x f 0 + X. X = 11. 

(x)(Y)[x'Y = Y ' X I .  

(x)(y)(z)[x. (y+z) = (x. y)+(x. z)l. 

O f l .  

d is a field iff i t  has the similarity type specified above and every sen- 

tence of TF is  true in @. . 
k is first order (or elementarily) equivalent to (c  f @ )  

/means: C F iff 6 F for every sentence F. (It is assumed that 
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& and @ belong to the same similarity type 7 ,  and that F is a sen- 

3 
tence of . ) In the next lecture it will be seen that any two algebraic- 

7 

ally closed fields of the same characteristic a re  f irst  order equivalent. 

More generally it will be observed that any two models of a theory of 

algebraic type a re  first order equivalent. - 
An elementary monomorphism m : & 5 fl i s  a map of A into B 

such that 

Lab . . , a  ) iff dj ~ F ( E ~ ,  . . . ,- -n man) 

for every formula F(x . . , x  ) and every sequence al, . . . , a  c A. 
1' ' n n 

An elementary monomorphism m is  necessarily a monomorphism, 

since 

( 2 k a l = a 2  iff d l k ~ ~ = ~ ~ .  

Note that a map m of A into B is  an elementary monomorphism of 

@ into 6 iff 

A ~ < B , m a > ~ ~  A .  

(The similarity type of <&, a >  
ac A is  X T A . )  

Proposition 1. Suppose f : -. 63 and g : 63 -. c. 
(i) If f and g a re  elementary, then gf is  elementary. 

(ii) If g and gf are  elementary, then f is  elementary. 

& is an elementary substructure of 63 (or 53 is  an elementary 

extension of 6. ) if & is a substructure of .63 and the inclusion map 

i : A C  B is  an elementary monomorphism (CE- ( B). In Lecture 3 i t  
A 
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will be shown that every monomorphism between models of a theory of 

algebraic type i s  elementary. Crazie, e buon giorno. 

2. Existence of Models 

B. g. Today I will describe two approaches to the construction of 

models, the f i r s t  via the extended completeness theorem of f i rs t  order 

logic, and the second via direct limits. (A structure @ i s  said to be a 

model of a set  S of sentences if & G for every G r S. ) 

A formula F is a logical consequence of S (S F) if F is  

among the formulas generated from S a s  follows: F r S; F is  anaxiom 

of first order logic; F is the result of applying some rule of inference 

of first order logic to F1,. . . , F when S t Fi (1 <_ i 5 n). 
n 

The axioms and rules of f i rs t  order logic with equality a r e  con- 

sonant with common sense, so they need not be listed here. One point 

worth noting i s  the finite character of logical consequence: if S t F, 

then S F for some finite S C S. 
0 0 

S is logically consistent if no sentence of the form F & --F i s  a 

logical consequence of S. 

Theorem 2.1. S i s  consistent iff S has a model. 

Proof. If S has a model, then no contradiction is a logical conse- 

quence of S, because every consequence of s is true in every model of 

S. 

Suppose S i s  consistent. The construction of the model i s  in two 
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steps. First  S is  Henkinized by adding new individual constants to the 

language of S, and new sentences to S that force the new constants to 

be witnesses.. Let So - - S. Sn+l consists of S together with all sen- 
n 

tences of the form 

where F(x) i s  a formula in the language of S and c is  a new in- 
n' -F(x) 

dividual constant. Let S be U {snln < w ) .  The consistency of S is 
ca 00 

easily checked by induction on n. For example, suppose S (=S) to- o 
gether with (1) yield a contradiction. Then So yields the negation of (I), 

and so 

so t (fi)F(x) 4 -F(c -F(x))' 

Since c does not occur in S the derivation of -F(c ) from 
-F(x) 0' -F(x) 

S is  equivalent to the derivation of -F(y) from So, where y is  some 0 

variable not occurring in S Since S in no way limits y, the deri- 
0' 0 

vation of --F(y) from S is equivalent to one of (y)-F(y) from S 
0 0' 

But then 

so t- cEx)Fe) 4 (y)-F(y), 

an impossibility since S is  consistent. 
0 

The second step is  an application of Zorn' s lemma made possible 

by the finite character of the logical consequence relation t. S is  
co * 

extended to S , a maximal consistent set of sentences in the language 
00 

of Sm. Note that every sentence or its negation belongs to S . 
00 * 

S defines a model of S as  follows. With each individual 
00 
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constant 5 of the language $ of S , associate the equivalence class 
03 00 

* 
[CJ = {cllc = 2 E S 1. 

00 

The universe A of a consists of {u lc  c ). The relations, func- 
Q) 

tions and distinguished elements of a are  defined by: 

6 * 
Ri ( k l l , .  . . , [en]) iff ~ ~ ( 2 ~ ~ .  . . , e n )  E sQ), 

6 * . , e n )  =CC S , f .  ([c~],. . . , kn]) = [CJ iff f .(c 
J Q) 

e 
Ck = Cc,I. 

An induction on the complexityd (i. e. number of steps needed to gener- 

* 
ate) F shows @ bF iff F e S , where F is any sentence of $ . 

00 Q) 

It follows a i s  a model of S. 

Theorem 2.1 is  the work of K. Gbdel, T. Skolem and A. Tar ski; 

the proof given is  due to L. Henkin. 

A theory T is  (according to the definition I prefer) a consistent 

set of sentences. Thus every theory has a model by 2.1. T2 

means every logical consequence of T is  also one of T 1 
2. T1 = T2 

means T1 C T~ and TZ C T1. T is  complete if either 

T F or T -F for every sentence F in the language of T. By 

2.1 T is complete iff all models of T a re  elementarily equivalent. 

Corollary 2.2 (compactness). Suppose S is  a set of sentences such 

that each finite subset of S has a model. Then S has a model. 

Countability Proviso: From riow on assume every structure has at most 


