

F. Preparata

Theoretical Computer Science

Lectures given at
Centro Internazionale Matematico Estivo (C.I.M.E.),
held in Bressanone (Bolzano), Italy,
June 9-17, 1975

(d.)E

a Summer School of the

C.I.M.E. Foundation
c/o Dipartimento di Matematica “U. Dini”
Viale Morgagni n. 67/a
50134 Firenze
Italy
cime@math.unifi.it

ISBN 978-3-642-11118-1 e-ISBN: 978-3-642-11120-4
DOI:10.1007/978-3-642-1 0
Springer Heidelberg Dordrecht London New York

©Springer-Verlag Berlin Heidelberg 2011
st

With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

Reprint of the 1 ed. C.I.M.E., Ed. Cremonese, Roma 1975

112 -4

CENTRO INTERNAZIONALE MATEMATICO ESTIVO

(CLM.E.)

I Cielo - Bressanone dal 9 al 17 giugno 197 5

THEORETICAL COMPUTER SCIENZE

Coordinatore: Prof. F. PREPARATA

R. E. MILLER Parallel program schemata pag. 5

D. E. MULLER Theory of automata » 65

R. M. KARP Computational complexity of combinatorial
and graph-theoretic problems » 97

CENTRO INTERNAZIONALE MATEMATICO ESTIVO

(C.I.M.E.)

PARALLEL PROGRAM SCHEMATA

R.E. MILLER

Corso tenuto a Bressanone dal 9 al 17 giugno 1975

- 6 --

Configurable Computers and the Data Flow

Model Transformation

R. E. Miller

R. E. Miller

In this lecture we discuss a type of computer organization which is

based upon the concept of operation sequencing being controlled by operand

availability. Such sequencing differs radically from current computer

organizations in which the sequencing is determined by an explicit or

implicit ordering of the instructions which is controlled through an

instruction counter which specifies the next instruction to be performed.

We will discuss a particular type of data sequenced computer called

"configurable computers" [7]. Closely related types of machines have

subsequently also been proposed and studied by others [3, 11, 10, 9].

One of the major problems with unconventional computer organizations

that have been proposed in the past is the great difficulty of programming

such machines. In some cases the proposed structures were so complex that

an i~ordinate amount of work was required to specify what each object in

the structure was to do, while in other cases the structures were particu-

iarly suited to only a narrow class of computations, and were ill suited

for general purpose use. A number of approaches for representing the

computational process in a data sequenced manner have recently been pro-

posed [II, 5, 2, lJ. We will briefly describe one such approach [8, 6]

which is aimed at automatically transforming normal computer programs into

a data sequenced form suitable for configurable computers. Even though a

direct representation of an algorithm into a data sequenced form may be

able to better exploit the advantages of the data sequenced form, consider·

able advantage is gained in automatic transformation -- closely related to

optimizing compiler techniques -- which allows the user to continue to use

his well known programming languages directly, rather than learning a new

complex language immediately.

- 7 --

R. E. Miller

Configurable Computers

One of the central concepts of configurable computers is to have a

machine that changes its structure into the natural structure of the

~lgorithm being performed, thereby allowing parallel computations and many

pf the speed advantages of special purpose devices.

Two particular approaches for attaining this goal are described. The

pne approach is called Search Mode and the other is called Interconnection

~ode. These should be viewed as only two ends of a spectrum of possibilities

in which considerable differences in the possible computer control struc-

tures exist.

Search Mode Configurables

The basic organization of a search mode machine is depicted in Figure 1.

Active

Operational
Units

The operational units are thought of as a set of either general or

special purpose units which perform the computational, conditional, and

data generation aspects of the computation. When one of these units has

completed a task it requests the searcher to find another task for it to

perform. The searcher, which is essentially a new kind of control, then

inspects memory, or a suitable portion thereof, for a new task for the

operational unit. This organization can thus be adopted to the idea

that a task becomes capable of being performed when its operands have

-8-

R. E. Miller

been computed. An example of machine instruction format aids in seeing in

more detail how the machine could operate. We give an example for an arith~

metic operation but, of course, a complete repetoire of instructions and

formats would have to be given for a complete specification.

I Operation I Status I
Code Bits

First

Operand

Second

Operand

"Address" for

Result

This instruction format contains first a field of bits to specify the

type of operation to be performed (the operation code). Skipping over the

status bits for a moment, it then contains fields for the operand values

to be stored. Within the status bits one keeps track of whether the

operands currently reside in these locations (i.e., have been computed and

stored there) and whether the location for the result is available for

storing a result. Finally, the. "addresS for result" field specifies where

the result is to be stored (i.e.~ as an operand for some other instruction)

Storing a result in an operand field updates the status bits, as does the

action of performing an instruction. Clearly, this type of format

eliminates the need for normal instruction sequencing. The sequencing is

essentially "data driven."

It is the operation code and status bit fields that the searcher

inspects to determine readiness of an instruction. This could be imagined

to be done by a type of associative search, or by a method of building up

stacks or queues of instructions that are ready to be performed. Before

describing how programs can be transformed into such a data sequenced

form, we describe the interconnection mode machine idea.

-9-

R. E. Miller

Interconnection Mode Configurab1es

In the search mode concept the sequencing of instructions was done

through the action of operation results becoming operands of new instruc

tions, and these transfers of information were done by storing results in

~he proper places of instructions. With the advent of economical e1ec

~ronic switches more direct connection of result to operand could be

~nvisioned. This is the case for the interconnection mode idea. A block

~iagram is shown below.

Setup

Control

n x n

Interconnection

Networks

Memory

Data Access

Control

Operational

Units

Here the interconnection network is used to directly interconnect

$utputs of one operational unit to inputs of another operational unit in

accord with the result to operand specifications of the algorithm. The

~asic steps for such a machine are:

1. Decompose the program into appropriate size blocks.

2. Transform each block into a data sequenced form.

3. Store the blocks, so transformed, in memory as setup instructions

for the interconnection network.

4. Choose a block to be performed (to start with this is the block

with the start of the program-- subsequently this is specified

- 10-

R. E. Miller

by what block the running block exits to next) and set up the

interconnections as specified.

5. Perform the block execution. Note that during this time no

instuctions only data -- need be stored or fetched from memory.

6. Termination of block specifies next block to be performed (return

to 4).

At this point it should be clear that both the search mode and inter~

connection mode machines are sequenced essentially by data paths rather

than control paths through the algorithm. Thus, the natural parallelism

of the algorithm can be used to speed up operation. Also, the machines

have some of the speed advantages of special purpose devices. This is

especially true of the interconnection mode machine since units are actu-

ally directly interconnected as they would be in a special purpose device

The operational control -- distributed throughout the machine by data

availability considerations -- is also rather simple, and this could be a

distinct advantage over other approaches to high performance where very

complex control mechanisms are required. Finally, as we have indicated,

standard programming languages can be used to express the jobs to be done

and transformational techniques to provide suitable machine language

instructions for these machines should be readily developed using tech-

niques known for compiler optimization. Other potential advantages for

these machines are given in [7].

Data Sequenced Program Transformation

We now outline how a program can be transformed into a form suitable

for our configurable computers. We call this a data flow transformation.

The basic steps of the transformation are:

- 11 -

R. E. Miller

1. Partition the program into "basic blocks" and name each block. A

basic block is a contiguous segment of code which can be entered only

through the first instruction of the block, must be executed by execut

ing each successive instruction in order, and can be exited only from

the last instruction in the block. I.e., it is a "straight line"

segment of code.

2. Determine the immediate predecessors and successors of each basic

block.

3. Generate (in arbitrary order) a "data flow segment" for each block.

A data flow segment consists of:

(i) input list -- i.e. variables needed by the block.

(ii) output list -- i.e. result names at end of block execution.

(iii) interconnected modules -- i.e. the operations and flow of data

from result to operand between operations in the block.

4. Interconnect data flow segments. This uses the predecessor and

successor information and updates input and output lists for data

"passing through" a block.

Without going into great detail we illustrate the transformation

through an example from [6].

An Example of Data Flow Model Transformation

As an example program we consider the problem of evaluating the func

tion f(x) = aX + bx + c. We assume that x, a, b, and c are inputs

stored in the symbolic locations x, a, b, and c respectively, and also

assume that x is a positive integer. A simple program to perform this

evaluation is shown below. The program language used is simple and should

be self-explanatory.

Statement II

1

2

3

4

5

6

7

8

9

10

11

12

13

- 12-

Program

CLA x

STO COUNT

CLA a

TRA 6

MPY a

Decrement COUNT

Branch on COUNT
(to 5 on "! 0)

STO T

CLA x

MPYb

ADDT

ADDC

STO R

R. E. Miller

Comments

set accumulator to x.

put x in location COUNT.

put a in accumulator.

transfer to statement 6.

multiply accumulator by a.

decrease COUNT by 1.

conditional transfer.

store a x in T.

place x in accumulator.

form bx in accumulator.

form aX+bx in accumulator.

form aX+bx+c in accumulator.

store result in R.

Applying the notion of basic block to this program we find that

instructions 1, 2, 3, 4 form a basic block with instruction 1 being the

start of the program. Similarly instructions 6, 7 form a basic block,

8, 9, 10, 11, 12, 13 form a basic block and 5 alone forms a basic block.

These blocks are depicted and named BBl through BB4 in the following

diagram.

- 13-

R. E. Miller

BBI {
1 CLA x

2 STO COUNT

3 CLA a

4 TRA 6

BB3 (5 MPYa
--

{ BB2
6 Decrement COUNT

7 Branch on COUNT (to 5 on #)

8 STO T

9 CLA x

10 MPY b
BB4

11 ADD T

12 ADD c

13 STO R

Step 2 of the algorithm determines immediate successors and immediate

predecessors as shown in the following figure.

Step 3 of the algorithm generates a "data flow segment" for each basic

block. The idea here is to generate a list of items needed as inputs to

the block, the outputs created by the block and the operations used to

create these outputs along with the flow of data between the operations

within the block. The items have names associated with them through the

program language definition, these names we call "source names." During

- 14-

R. E. Miller

example, basic block 2, (BB2). This block starts with instruction 6

Decrement COUNT. By definition this instruction needs an input with sourqe

name "COUNT" and produces a new output also called "COUNT" which has a

value less than the original value of COUNT. Thus COUNT is placed on the

input list, and we associate a local data name with this input value. We

use the name BB2,1; i.e., the first local data name in BB2. In the out

put list we then have COUNT with a new value and name this new value BB2~.2

as a local data name. The operation performed is a SUBTRACT I so this

operation gets placed in the module structure with input BB2,1 and outpqt

BB2,2. The second instruction of BB2 is Branch on COUNT. This instruc~

tion uses the current value of COUNT, namely BB2,2 and tests it for =0

or fO. This is indicated in the output list ~s changing item COUNT-BB2,4

to two values COUNT BB2,2TI and COUNT BB2,2T2 for the outcome of the

test either being outcome TI or T2. A test module is added to the

module structure -- we call it test T -- with the two indicated outputs.

This completes Step 3 for BB2. Our result is summerized belpw.

BB2 Data Flow Segment

Input List COUNT - BB2,1

Output List -€eYN~-=-BB~,~--

Module Structure

COUNT - BB2, 2 Tl

COUNT - BB2,2T2

- 15 --

R. E. Miller

Similar calculations are done for each of the other basic blocks producing

the following results.

Module
Structure

BBI Data Flow Segment

Input List x - BBl,l
a - BBl,2

Output List -A66BM = BBi,i-

no modules.

BB3

Input List

Output List

COUNT - BBl,l
ACCUM - BBl,2

Data Flow Segment

ACCUM - BB3,1
a - BB3,2

ACCUM - BB3,3

BB3'1;;f3,2

~3,3
BB4 Data Flow Segment

Module
~tructure

Input List

Output List

ACCUM - BB4,1
x - BB4,2
b - BB4,3
c - BB4,6

T - BB4,1
-A66BM-=-BB4,~-
-A66BM-=-BB4,4-
-A66BM-=-BB4,5-

ACCUM - BB4,7
R - BB4,7

BB4,~BB4,3

l!!D
B4,4

- 16-

R. E. Miller

Step 4 of the transformation interconnects these module structures by using

successor and predecessor information and making output to input connections

through common source names. The result of making these interconnections

and inserting test points TI and T2 for places where data passes only

conditionally on the outcome of test T is shown in the next figure. Note

that even in this simple example some possibilities for parallelism are

exhibited. For example, the two multiplications and the subtract I

operations could all be performed concurre~tly.

x a

T R

It should be clear from the descript!ons given for configurable

computers that this diagram provides all the essential information needed

to specify the instructions for a search mode machine or the interconnec

tions for an interconnection mode machine. Clearly, the sequencing so

specified differs considerably from how the original program would have

run on a conventional computer.

- 17-

R. E. Miller

tmFERBNCES

[1] A. Bllhrs, "Operation Patterns," Symposium on Theoretical Programming,
Novosibirsk, USSR, August 1972, in Lecture Notes in Computer Science,
Vol. 5 International Symposium on Theoretical Programming, Springer
Verlag, New York, 1974, pp. 217-246.

[2] J. B. Dennis, J. B. Fosseen, and J. P. Linderman, "Data Flow Schemas, ,
Symposium on Theoretical Programming, Novosibirsk, USSR, August 1972,
in Lecture Notes in Computer Science, Vol. 5 International Symposium
on Theoretical Programming, Springer-Verlag, New York, 1974,
pp. 187-216.

[3] J. B. Dennis and D. P. Misunas, "A Computer Architecture for Highly
Parallel Signal Processing," Proceedings ACM Annual Conference,
November 1974, pp. 402-409.

[4] K. B. Irani and C. R. Sonnenburg, "Exploitation of Implicit Parallel
ism in Arithmetic Expressions for an Asynchronous Environment,"
Report

[5] P. R. Kosinski, itA Data Flow Programming Language," IBM T. J. Watson
Research Center Report RC-4264, Yorktown Heights, N. Y., March 1973.

[6] R. E. Miller, "The Data Flow Model Transformation," to appear in the
Proceedings of the 1972 GMD Summer Seminar on Systems Organization,
Bonn, Germany.

[7] R. E. Miller and J. Cocke, "Configurab1e Computers: A New Class of
General Purpose Machines," Symposium on Theoretical Programming,
Novosibirsk, USSR, August 1972, in Lecture Notes in Computer Science,
Vol. 5 International Symposium on Theoretical Programming, Springer
Verlag, New York, 1974, pp. 285-298.

[8] R. E. Miller and J. D. Rutledge, "Generating a Data Flow Model of a
Program," IBM Technical Disclosure Bulletin, Vol. 8, No. 11, April
1966, pp. 1550-1553.

[9] s. S. Reddi and E. A. Feustel, "A Restructurab1e Computer System,"
Report, Laboratory for Computer Science and Engineering, Rice Univ.,
Houston, Texas, March 1975.

[10] c. R. Sonnenburg, "A Configurab1e Parallel Computing System," Ph. D.
Dissertation, University of Michigan, Ann Arbor, Octobe~ 1974.

[11] J. C. Syre, "From the Single Assignment Software Concept to a New
Class of Multiprocessor Architectures," Report, 1975 Department
d'Informatique, C.E.R.T. BP4025, 31055 Toulouse Cedex, France.

- 18-

R. E. Miller

Computation Graphs and Petri Nets

R. E. Miller

In this lecture we show how a special type of Petri net, widely

studied in the literature, can be represented by computation graphs.

We then illustrate how results about computation graphs can be translated

into results for such Petri nets. We first introduce the two models.

pomputation Graphs [3]

A computation graph G is a finite directed graph consisting of:

(i) nodes n1 ,n2 , ••• ,nt ; (ii) edges d1 ,d2 , ••• ,dt , where any given edge dp

is directed from a specified node n. to a specified node n.; (iii) four
~ J

non-negative integers A , U ,Wand T , where T > W , associated with p p p p p- p

rach edge dp •

Nodes represent operations, edges represent first-in-first-out queues

pf data, and for an edge d directed from n. to n. the four parameters
p ~ J

mean: A is the initial number of items in the queue, U is the number
p p

pf items added to the queue each time n i fires, Wp is the number of items

removed from the queue each time n. fires, and T is the number of items
J p

required as operands for n. to fire.
J

The idea of computation sequences for a computation graph is that

an operation can fire whenever it has a sufficient number of operands

on each of its incoming edges. After firing it places results on each

~f its outgoing edges, and these results may be used later as operands

for other operations. Some simple examples of computation graphs are

$hown in the following figures:

(2,1,1,2)

~ ~-1 + ~-2

- 19-

R. E. Miller

This one node, one edge example shows how a computation graph can

realize the computation of successive Fibonacci numbers when the two

initial values are each 1. Note here that although ~ = 2 here W

that two operands are needed for the add operation·but only one is

~emoved. Thus the second operand in one firing becomes the first

pperand in the next firing.

(200,0,1,1) (100,0,1,1)

(0,1,2,2)

(0,1,0,0)

1 so

This example illustrates combining two lists of numbers A and B to form a

list C according to the equation

ci = a2i- 1 + a2i + bi for i = 1,2, .•. ,100.

More complex computation graphs are shown in [3 & 5], where they are

studied in more detail.

Petri Nets [6]

Petri nets have become a very popular means of representing paral

lelism in systems. Some examples of the literature are [1, 2, 6, 7].

It is a simple directed graph model in which the notion of computation

can be easily explained. More formally, a Petri ~ P = (IT,E,R,MO)

consists of a finite set of nodes IT of places, a finite set of nodes E

of transitions, a relation R ~ (ITxE) u (ExIT) which indicates directed

edges between nodes, and a mapping MO from IT to the set of non-negative

