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CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

(c.I.M.E. 1 

PSEUDO-DIFFERENTIAL OPERATORS ON HEISENBERG GROUPS 

Corso tenuto a Bressanone dal 16 a1 24 giugno 1977 



Introduction 

The convalution operators on the euclidean spaces a r e  only a particular 

case of convolution operators on arbitrary Lie groups. Pseudo-differential 

operators a r e  roughly speaking convolution operators with variable coef - 
ficients. In classical theory of such operators it is important to have 

standard dilations on a euclidean space. So we pay attention only to Lie 

groups with dilation i. e. with 1 -dimensional group of automorphisms 

converging to infinity when real  parameter increases to infinity. 

It is well known that all Lie groups with dilations a r e  nilpotent. 

In this seminar I consider only Heisenberg Groups. These groups a r e  

the simplest non-abelian nilpotent groups, They appear in Complex Analy - 

s i s  and such operators on strictly pseudoconvex boundaries a s  J. Kohn 

sub-Laplacian, induced Cauchy-Riemann operators, singular integral 

operators of Cauchy-Henkintype can be locally considered a s  convolution 

operators wtih variable coefficients on Heisenberg groups. The characte - 
ristic feature of all these operators is an anisotropy of their singula~ities 

tight with complex tangent directions. Actually this is a contact structu- 

re. Generally a contact structure is given on 2n+l -manifold by 1-form 

w such that the (2n+l) -form w Ad..wn . . . . ~ d  w # 0 

If a strictly pseudoconvex boundary is defined by real  function g with 



1 df f 0 then we may take o = - 
i 

( 2 f - ) By D-arbour theorem 

Heisenberg groups a r e  local models- for any contact manifolds. 

I construct a theory of pseudo-differential operators which belong to the 

contact structure a s  classical pseudo-differential operators belong to the 

smooth structurev 

It is impossible to derive a theory of pseudo-differential operatoi-s 

without an elliptic accompaniment. I introduce a kind of ellipticity which 

a s  I hope can elucidate some striking analogies between non-elliptic 

in usual sense -complex and elliptic complexes. 

Note that the problem of pseudo-differential operators on homogeneous 

Lie groups was put forward by E. Stein at the Nice congress (cf 141). 

Our results  were mainly announced in /2/ and 131. Here we exposed 

them in more  precise form. 

1 Heisenberg Lie groups and algebras 

Heisenberg algebra H . n > 0 ,  can be obtain from the standard 
n 

euclidean space R 2n+1 if we supply it with such commutators: 

i f  X a% (xOf X , X l1 )cdcZn+l where x.6 R . xl, xll E IR" 

4 = (1; 0, 0,)s m 2n+l 
then 

This Heisenberg a1gebra . i~  a Lie algebra of the step 2 all [x, b, t g a r e  

zero. Let (H,be a corresponding simply-connected Lie group. As mani 
2n+l 

fold i t  is identified with )(I ; the m ~ t i p l i c a t i o n  is 

x x y =  (x0 + J" + 2 ( < XI,  y"> <XI(, yl>! , x1 I. y' , 1'1 + yl*) 

Therefore 0 serves a s  unit and x-' = - x The group #,,is called the 

Heisenberg group. 



The identity mapping x cj x coincides with the exponential 

exp: Hn 3 lHn 

There a r e  dilations 

Jt x = (t2xo, tx l ,  txu) , t > 0,  

in the Heisenberg group Hn . Of course $ and 

the 6 a r e  automorphisms of the Lie structures in Hn and H 
t n ' 

2n+l Let s ( Mn) , s' ( H ) be correspolding spaces on R . 
n 

The operators of the left and of the right shifts by elements y O DIn 

a r e  continuous in this spaces. Makeover the Lebesgue measure is bilateral  

ly invariant on the jH 
n 

We may identify the Heisenberg algebra H with the Lie algebra of 
n 

left -invariant 1 -st order differential operators. Pick out generators of 

the complexification of this algebra 

Adopt the notation 

I II r t  u t o  x1 = (x;. ...., X n )  , x = ( X l .  .... x n  1, X =  (XO.X. X 1 

The contact structure on the M is defined by a left-invariant 1 -form n 

u (XI = A x o +  2 <x', Axti) - 2 <x t i  , d r t >  



3. H. Weyl quantization. 

The modern theory of pseudo-dif&~ntial operators took i t s  shape in the 

sixties however we can find i.ts origin a s  ear* a s  in the beginning of the 

thirties: there was a probrem of' quantization in the Quantum Mechanics and 

H. Weyl gave a general solution. The problem is to construct of non-cum_ 

muting operators of multiplication : 

A 
X :  t& H X k  5 X = ( X , , % ~ , - * . , % , ~  

and of differentiation 

This operators generate a 2 -step Lie subalgebra W in the Lie algebra 
n 

h n q( 3 ( h% ) ) of all contirmous linear operators in the d ( R  ). 

Let \W be the symple-connected Lie group of this W . Then the w, 91 n 

can be realized a s  a Lie group of continuous linear operators m the 

+I 

4 ( R ) We have the exponential map exp : Wn W 
n 

Therefore for a I ~ d ( ~ k ~ ~  ) we can define an operator 

x, P 
A A 

f ( x ,  p ) =  

where ,., i C < % , $ > + < p . ? > ]  

is the Fourier transform. The expression ( r )  is similar to the inverse 

Fourier transform of the fh (i .q ) . 
Let us justify this definition. 



It is easy to see  that the integral ( & )  converges in the space a 15 ( 1 ~ * ) 1  

under the strong topology and actually is an integrhl operator with the 

Schwartz kernel 

We can rewrite this formula a s  follows 

w h e r e 3  is the inverse Fourier transformation (from the p to the z) 
b 72 

In this form the definition ofXf f o r e v e r y  f E 4; R~~ ) is valid. 
x, P 

2n 
f € ~ ( I L , ,  then f (2 p? is a Continuous operator from d t  ( R to 4 y~ ' )  
If f c .sf( fl:Pl then f r,c * t m  

x p) is a cont*uous operators f rom4 ( R  ) td,(/lR) 

Chose moderate operators (cf / 5 /  ): Let m E  IR. Take (cf. [ 5 7  ) 

We say that such f a r e  symbols of order m 

let 

. 4fR41 -+ ~ n 7 , . j ? ~ ~ / 4 4 ~ ~ ~ 1  ~r f 6 w * { R ~  then I - 
and these operators a r e  called Weyl operators. In particular it i s  possi- 

ble to t ake a product of Weyl operators If fj C Oh w?; j 4 2 ,  
~ I * ' " Z  

then there exists a f t W (nn) such that 



A fi  * /r 
f , $1 = f l  x ,  P f 2  ( I ,  p )  

and 

f (x. p )  = ( f l f 2 )  (X, P) + { f } ( x p) + t e rms  of the lower 

order. This a simple consequence of the Hausdorff -Campbell formula 

for the product of exponents. 

Moreover 

- 
f ( x ^ , i ; ) *  = 

P fi  
f ( x >  P )  

m n 
Let W (R ) be the subspace of wm ( R ~ )  whose elements 

0 

have the following property: there exists f € wrn ( ") such that 
0 

(i) fo (tx , tp) = tm fo  (x. p) , Y t> 1 , I  x 1 + I p 1 > 1 

m-1 
(ii) f - f W 

0 ( R") 
We say that such f a r e  symbols with principal part f . 

0 

l- t- An operator f ( x. p ) E 0 Wm is called elliptic if fo (a, p) f 0 
P 0 

for 1 xl + I p I > 1 ; it is known that the elliptic operators a r e  hypoel- 
hr 

liptic (cf 5 )  Let f&! w, be the class of al l  elliptic operators of 

A A 
m 

order m . If f ( x, p) E E?L! % then there exists i t s  parametrix 'C(2,F) 

E EPe w*- * - I  
with principal part ro (r , p ) = (fo (x , p)) for 

f x r  + ! P I  > 1 

3% 2 
Example : the Hermite operator E = - - + x L  C - -- a x L  

Let 
4 2  E'[R*) = [ ~ r d i ~ ~ )  : u k n  rc Z ~ E  - 1  

s, 
Then f (x^ . :)( [& if and only if f ( $) is a Fredholm 

k 3 
operator from L (& *  ) to c'm (& ) fo r  some (and therefore forg  



any) k E I IQ.  

4. Pseudo - differential operators on #( 

Apply the Weyl quantization for construction of pseudo-differential ope- 

ra tors  on 01 
n' 

F i r s t  of all the operators of multiplication by coordinate functions. 

/s I 
X : k ( x )  -+ x U ( x ) ,  X '  ( X ~ , X , X ~ ~ )  

and left- invariant operators 

generate a 3-step Lie subalgebra in Lie algebra z(+ (#*I/. Treating 

t h i s  Lie algebra a s  above enables to define 

ew+t  
If j! f 4 (R )then ( * t ) is an integral operator with the Schwartz 

* ,X 
Kernel 

This formula is valid for  every { 6 ?J '($.+(land we can use it for 

A a,* 
definition of f ( $. X ) 

If #t? d(~'~ ' ' )  then f (E $ : 4 ' ( kf,, 1 J 4 (HI,,) * ,X  
1f f ~ d y & : y ) t h e n  f ,  ) : 4 ( 1  4 ' (N,) 
Let lY] be a 7 - homogeneous function on the 

t 



Define y ( k l a s  

such that 4 9 (k) ( G )  p / ( x l ~ l I g c ~ , p  l r+  J . 

We say that such f a r e  symbols of order m 

Indicate the matn formulas of the Symbolic Calculus: - 3 
(I) If J 6 y mfpla) then f ( 2, 2) = f (2 2) 6 9 Y i 

m. 
(XI) Let {. 6 Or ' (Hh 1, j: ( 2 ,  Then there exists { 6 y' ""' 

3 

such that 

and 

(111) Assume that f E ( HI, ) has the cornpet  suppart with respat to x. 

Consider a diffeomorfism X of a neighborhood of the support. Assume 

that conserves the contact form w up to a functional multiplier 

( i. e. 2 i s  a contact mapping). 

Let 

Y 
f (n, y) = f ( Z(x) . I d x ( x ) l W  Y 1 . 

Then 



and 

3* 
The last property permits the standard extension of 0 to any contact 

3.1 
P 

manbfold M .  Thus we have 0 (M) with a symbolic Calculus 

a s  above. 
lw 

Now we introduce a subclass (ff/-] of [ €  r ' l ( l~ , )  such that for 

every f there exists a f EyZ(glh) such that 
0 

r x )  = t - { G , x ) ,  (i) f O ( x J  V t > r ,  ~ I x / > I .  

cii, $ - 4. 6 ym-' CM, 1 

We say that the symbols f have principal parts f 
0 

The formula (11) of the Symbolic Calculus shows that in principal parts 

the product of pseudo-differential operators i s  t k  p r ~ d u c t  of left-invariant 

operators depending on x a s  a parameter. F o r  study of. such products 

it is very convenient to use the Heisenberg-Fourier transform on the Nk. 

It is defined by means of the non-degenerate ser ies  of unitary represen - 

tations of the group. By the Stone -von Neumann theorem they a r e  equiva- 

lent to the representations Zp depending on non -zero rea l  parameter ,- 
in the space z l ( ~ :  I such that 

a 
r (x,] = r l ,  s ( ~ ' ) . 2 ~ 3 ,  r P ( x o ~ = ~ i  . r r' 

he Fourier-Heisenberg transform is by definition 

This i s  an integral operator with Schwartz kernel 



so  that 

We see  that this formula ( * is valid for  any distribution from dfw 
SO we can extend the definition of pp to 4 '(6 . 

This leads to a representation of left-invariant operators $ %% 
by operators. 

Moreover 

and the principal part of vb?~) is given by means of the principal part r 

~ x r t ~ ~ ~ ~ ) ) o  = f o  (o,+G, 2i a t  2- 1 
Let foo (XI be the b -homogeneous function on the d H k h i c h  

t 
coincide with fo  (X) fa r  from origin . Consider the operators 

By -homogenity we have t 

-I 

where k&)= k(L) 
4 t 

Therefore there a r e  significant only r =: 1 

Finally we define a 6 -symbol of MI operator XI 1 6 Op "I 
m 

a s  an operator valued function on the manifold of contact directions 

A "  A 

6 h, (f (x. X))W(X) = f 00 (x,l,zt.,2t-) 
'a 
at. t 



The 6 -symbol reveals usual properties : 
k 

*'lh%] 

then 6 *,* '')- [ { , ( ~ * , $ L # , ( ~ ~ ~ J ~ ~ ~ # + ( < ~ I ~  L f~( '~ ' ) ]  

(iiii) the ck-symbol belongs to the contact structure so it can be 

transfered to \any f ( S 2 ) E Oh Y ( P I )  

htc  
Examples: Everywhere M is a strongly pseudoconvex boundary in & . 

(a) Let DF1 be the Kohn sub - Laplacien on the space of (0, q) -forms. 

Then 

h 
- --  o , E  a,, ~ ( M I  and f ( O  ) - (  ax + r > * - ~ ~ i ) ~ ~ ~ ~  

a' % 

ara 
The operator - - + 't is the energy operator of the harmonic escil 

at. - 
lator of Quantum Mechanics. Actually this example has appeared in / 4 /  

and by the way it served an origin of our study. 

- 
(b) The induced Cauchy-Riemann operator am on the (0, q) -forms 

belongs to 0,. y " l " )  witll 

(c) The Cauchy-Henkin integral can be considered a s  operators S on 

M i f  we take their boundary values; they belong to 0, 7 "(MI 



and their symbol is 

- .yz 
b, ( s ] ~ ~ ~ ~  orthogonal projector on the linear span of e 

r,(S) = zero 
- w t 3  

A 
We say t k t  an operator f (g, X) 6 0 is 6 - e l l i p t i c  if r ~ " '  

A 
(Ell-2) The operators h*({ it, x 1) lJ DIl a r e  invertible in 4 fie ) 

Let M be a compact contact manifold. We can intmduce a scale of 

anisotropic spaces of functions and distributions on M 

of B. Stein (cfi /4/). 

P A 
If f ( ; , R ) G % Y ~  then f ( r . X )  isboun&dfrom s;(M) 

to s k-m (M) for  any k 
P 

h 
The following properties a r e  equivalent for f (2  5) E 0, : 

a)  f 6 ,  is a <-elliptic operator. 

b) The aprior$ estimate 

i s  valid in Stein norms for a (and therefore for any) k ( E ,  k' < k 

k- k -m 
c )  f ( 2 .  s) is a Fredholm operator from S (M)  to Jj 

P 
(M) 

for a (and therefore for  any) k 6 IR - 

Remark 



CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

(c.I.M.E.) 

AN INDEX FORMULA FOR E L L I P T I C  BOUNDARY PROBLEMS 

A. DYNIN 

C o r s o  tenuto a B r e s s a n o n e  dal  1 6  a1 24 giugno 1977 



I give an analytical formula for index of elliptic boundary problems for 

scalar  differential operator and for some systems of differential operators 

of even order in bounded domains with smooth boundaries in euclidean 

space. 

1. Notation. 

n * 
x =  ( X  1' .... , x ~ ) c R ~  . I =  ( 2,. . . - . ,En)  E (a). 

The term "smooth" always means cCO. 
n 

Let U be an open bounded domain in /R with smooth boundary Y . 

Points of Y a r e  denoted y . Cotangent vectors at y with length 1 a r e  

denoted . The (2n-3) - manifold S (Y) of all such is supplied 
Y Y * with canonical orientation: the manifold T (Y)  of all cotangent vectors 

n-1 lf 
of Y i s  R ~ - ~  x (  R ) locally. Let (yy . . . . , yn-l) be any sfstem of 

n-1 
coordinates on (R and ( T1, . . , . , 9 ) the dual system of coordi- n-1 

nates on (tRn-I)*. Then the orienting (2n-2) - form 

R = (dylndql) I \ .  . . . A (dy n d q  ) does not depend on the choice of l e  local 
n n 

coordinates and therefore gives an orientation of ( Now let 

v : T* (Y) *R be the euclidean metric, so that S (Y) = z - ~  (1).  Then 



the orienting (2n-3)- form u on the S (Y) is defined by i t s  property 

2. Elliptic Boundary Problems. 

Let A be a scalar  differential operator of order 2 rn with smooth 

coefficients 

oi 
A : k ( x ) +  (X)D &(XI .,%Ec* (5) 

la(l(tm 
Y -  - n * I ts  principal symbol is the function on T ( U )  = U x ( lR, ) 

= a .  (4 d ( A )  (x. f = 14, = 2- 

The operator A is assumed elliptic i. e. 

A x ,  ) $0, vx  c c. Y ~ E ( R " ) *  

Consider ;\ -polynomial with coefficients from cQ) ( S (Y)) of order 3 m 

where 3 is the inward unit conormal at y. 
Y 

F o r  each 7 this polynomial has no root with zero imaginary part. 

Y u #  
If n > 2 therelexactly m roots with positive imaginary part (this is an 

easy consequence of the connectivity of S (Y) ) . If n = 2 then we 

assume this property especially. 

We can factorize the A -polynomial into the product of two polynomials 

with smooth coefficients 

A + 
scn, (zJ,;\ 1 = 6 ( t3,a 1 r -  (Z$,,A 1, 

where al l  roots of d (5.2 ) a r e  in the upper complex 1 - halfplane 

and all roots of f( ) a r e  in the lower 1 - halfplane. 



Consider a boundary problem 

Here B. a r e  boundary differential operators of order m with smooth 
J j 

coefficients 

B j : U +  L bN(y) D'~/Y,  
I 4  < m j  

B : C* (q 9 cW (Y) 
j 

We suppose that the boundary problem satisfies the Shapiro-Lopatinsky 

condition of ellipticity which we take in the Agmon-Douglis-Nirenberg 

version / I /  (cf. lectures by F. TrC ves): 

Consider l-polynomials of degree m .  with smooth coeffients on S (Y)  
J 

A 
6 ( B . ,  = C ( B j )  (Y, $,+A()J) 5 

J 

The Agmon-Douglis-Nirenberg condition is the linear independence of 

these polynomials modulo )I -polynomial r+ ( 3 ,  A ) fo r  every t 
9' 

We can represent this condition in an equivalent form, Let 2. (t- 1 ) 
J 3' 

A 

be the remainder from division of )1 -polynomial 6 (Bj) (E8, a ) by 

+ 9 -polynomial 6 ( T3,C) ) : 

A t 
6 ( B j ) ( Z 5 , 2 )  = 7 .  (t '1) 6 ( t @ , a  ) b + y j ( s , A )  

J S 
where and Z: a r e  ;\ -polynomials and the degree of 'E: (2 ,;) ) is l e s s  

j J J 3 
than m . Let 



Consider the square ( m x m  ) -matrix valued function on S (Y) 

The Agmon-Douglis-Nirenberg condition is obviously equivalent to non - 

degeneracy condition 

(ADN) det .t( a) i t ,  + 0, V r ,  E s (Y) 

3. The Index Formula 

As usual the elliptic boundary problem (a) leads to a linear conti- 

nuous operator 

which is a Fredholm operator and therefore has a finite index 

ind Q= dim Ker a - dim coker 4, 

( see  e. g. / 2 / and / 8 /). 

It is known that the index depends only on the symbol 

6(Q)  = ( w(A), 6 (B1), - - 3  b ( B m )  1- 

We express it by means of the T(a) which is defined by b( a) 

(-1 I n  (n-2) '  / ~p [ r ( ~ L ) - l  d ~ ( f Z g  2n-3 (1) ind = -- 
( 2 ~ i ) ~ ' '  J 

The intengrand is the t race  of (an-3)-power of ( m x m )  -matrix valued 

-1 
differential 1 - fo rmy(  (2.) dp! Q) in the exterior algebra of matrix 

valued differential forms. So we integrate (2n-3)-form over the (oriented ) 

manifold S (Y). 



In particular the Index Formila shows that if  m < n-1 then ind a = 0 

'The prof. oE (1) -involves a special homotopy of 6(CL) in the space 

of symbols of elliptic boundary problems for the A with pseudo-differen- 

tial boundary operators. (By the way, this is the &st place where pseudo- - 
differential operators of positive order were introduced as  early as  in 

1961: see  / 4 / and / 5 1.) 

The homotopy is 

+ 
P ( t ,  ( B j ) ( 2 $ ' 1 )  = ( 1 - t ) q j ( r $ , ) i  a- ( Z $ , I  )+r;(r8,a 1 

Here '1)s t 6 1 and 

This homotopy may be covered by homotopy of boundary value problems 

( a ) for  the same operator A which all a r e  elliptic b3 Z C%~=W@ t 
and the condition (ADN) is satisfied (cf. /5/ and lectures by F. Treves). 

Stability os Index under homotopies implies 

(2)  ind a = ind Q, , 

The ( lx(m+l) -matrix 6( can be factorized 

( 3 )  F( Gl) = c ( ) ( 1 @r[ar) 

where 

6(9) = ( < ( A ) ,  l , 9 ,  .... ; Y m-l)  

is the symbol of the (elliptic ) ~ i r t c h l e t  problem for the operator A. 

We consider ~ [ a )  a s  the symbol C ( R ~  ) of a system of pseudo- 



differential operators R in ( C* ( Y ) ) ~  which is elliptic by (ADN). a4 
(Strictly speaking the R is elliptic in the Douglis-Nirenberg sense only, a 
otherwise we have to modify the Dirichlet problem, cf. / 5 /  and lectures 

by F. Treves. ) 

Now by algebraic properties of Index the equality ( 3 )  irdplies 

Q 

Wt D =O (cf. 121 ) .  Therefore ( 9 (2)) 

Finally the Index Formula (1) coincides with the Index Formula discovered 

by A. Dynin and B. Fedosov (cf. /6/ ) for the elliptic pseudodifferential 

system R on the manifold without boundary Y . Of course such a 
formula can be derived from the famous Atiyah - Singer formula and 

actually this was accomplished by the author (Proceedings of the Conferen - 

ce on the Mathematical Methods in Physics, Dubna, 1964) and by B. Fedo- 

sov / 6 / .  Nowadays B. Fedosov /7/ has found a completely analytical 

proof ofYhe formula. Therefore we have an elementary proof of our for-  

mula (1). 

4. The Index Formula for Systems. 

Consider now an elliptic (NxN)-system A of order 2m. 

Suppose that we can again factorize i t s  principal symbol 
+ &3c-= m .  

By a theorem of Lopatinsky this factorization exists if and only if the rank 

of the (NxmN) -matrix 


