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CENTRO INTERNAZIONALE MATEMATICO ESTNO 

(C. I.M.E.) 

M. BRELOT 

Corso tenuto a Stresa dal 2 a1 10 Luglio 1969 



HISTORICAL INTRODUCTION 

by 

Marcel BRELOT 

(Institut H. Poincare ) 

As an introduction to the next courses,  some historical  notions 

seem to be necessary.  

Until about 1800, potential theory was only a study of some 

ql~estions about electrostat ics and newtonian attraction. The Laplace 

equation was already much used, and was extended by POISSON who 

gave also his famous integral in a ball; the Green function was soon 

introduced, but the f i r s t  important mathematical work was a paper of 
3 

GAUSS, in 1840 ( [20] ) ; three problems were solved in R :  the pro- 

blem of equilibrium giving the distribution of a given mass  on a con- -- 
ductor ( l~c losedl lsurface) ,  to make the potential constant on it; this  cor-  

responds to the minimum of the energy. A second problem s t a r t s  from 

masses  inside the conductor, and studies a distribution on a conductor 

which gives the same  potential outside. Similar  problem for given mas- 

s e s  outside. The solution i s  realized in physics by the phenomenon of 

~linfluence and the equation was called l a t e r  Ifsweeping out process"  

o r  commonly now "balayagefl process .  A third problem is  the (so cal- 

led l a t e r  by RIEMANN) Dirichlet problem where a harmonic function -- 
( i ,  e .  solution of the Laplace equation) is studied inside the conduttor 

for given continuous boundary values. These studies were based on the 

integral 1 (UP -2f) d p ,  where u)?x) is the newtonian potential 

of the m e a s u r e p  > 0 . Actually GAUSS considered 

only /LL with a density, and assumed the existence of a ,u, giving 

a minimum of the integral. The developments of GAUSS were amazin- 
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gly deep, powerful , r ich  , sti l l  useful today, but they could not be ri- 

gorous, lacking notions like the general Radon measure,  and they needed 

actually some restrictions. Therefore they were first  left aside, except 

for the Dirichlet problem which was studied in various ways, f irst  not 

rigorous either. Let us mention a method used by RIEMANN ( [30] ), 

following GAUSS - W. THOMPSON (Lord KELVIN) - DIRICHLET ; it 

considers regular functions on the domain, taking given values at the 
2 

boundary; when the Dirichlet integral j g r a d  u dx ( dx, Lebesgue 

measure) is minimum, u is the solution of the Dirichlet problem . 
But we meet the s imi lar  difficulty of the attained minimum, which 

was solved, under suitable restrictions, only by HILBER7' ( [22] ) 

about 1900. Other methods were given which were rigorous, but with 

various restrict ions on the boundary (use of the alternating process 

of Schwarz, of potentials of double layer by NEUMANN, la ter  with 

the Fredholm theory, famous balayage process of Poincare ( [29] ) , 

Lebesgue solution, . . . ) . If s o  many great  mathematicians gave diffe- 

rent solutions of this problem , the reason is that the restrictions ,on 

the boundary were not satisfactory, and even seemed unnecessary, t i l l  

ZAREMBA and LEBESGUE noticed they were necessary. 

2. S e c o n d  p e r i o d  ( e s s e n t i a l l y  t h a t  b e t w e e n  t h e  w a r s ) :  .............................................. 
, U s e  o f  R a d o n  m e a s u r e .  --------------------- 

The use of Radon measure (defined in 1913) in potential theo- 

ry  first  by EVANS, F .  RIESZ, de LA V A L L ~ E  POUSSIN renewed the 

theory. As for the Dirichlet problem we were speaking of, the non-ge- 

neral existence of a solution led LEBESGUE and chiefly WIENER 

( [34] ) (1924) to define a generalized solution, then to study i ts  
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behavior at the euclidian boundary . A previous solution of PERRON 

gave the best form by using the subharmonic o r  superharmonic func- 

tions of F. RIESZ ( [31] ), which a re  locally equal to a newtonian o r  

logarithmic potential of a measure (resp. 6 0 o r  3 0) up to a harmo- 

nic function. These notions allow the treatment of many problems, and 
3 

I did s o  systematically, without using a kernel. like I/  ] x - y]  in R , 

and this became valuable la ter  in axiomatic theories without given 

kernels. Now for any real function f on the boundary 3 w of a boun- 

ded domain w , let us consider the envelopes of Perron-Wiener - 
Hf = inf v , v superharmonic o r  t a, (we say hyperharmonic) 

satisfying : l im inf v at the boundary > f and > - a, and - 
H = - H Always H 6 Ef , and in case of equality with a fini- - f -f ' - f 
te  necessarily harmonic function (case of resolutivity) , the common 

envelope 
Hf 

is called the solution. WIENER proved it  is realized 

when f is finite continuous; then H (x) is a positive l inear 
f 

form which we may write / I  dpx , where d p x  is a posi- 

tive Radon measure called harmonic measure (with an interpretation 

in balayage theory) . 
A boundary point x is said to be regular, if H (x) tends to 

0 f 
f(x0) (x+xO) , f finite continuous . When all  points a re  regular , 

Hf is the  classical solutionfi. Only in 1933 , EVANS [17] (after 
2 

KELLOGG in R ) proved that the set  of irregular points is a local- 

ly polar set ,  i.e. such that there exists locally (or in a bounded 

domain containing ij ) a superharmonic > 0 function (or a potential 

of measure > 0 ) which is t w on the set  (notion introduced la ter  

by BRELOT , 1941) . At this time, i t  was called a set  of capacity 

zero in the sense of inner capacity (notion without difficulty in R ~ ,  

n >, 3 , inspired by electrostatics, made precise by WIENER - EVANS- 
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de LA VALLEE POUSSIN ; actually, a s  H. CARTAN showed later ,  

polar se t  = set  of outer capacity zero).  A little l a t e r  by studying 

the case  of any f , I proved ( [4]) that the resolutivity is equi- 

valent to the dpx-summability (independent of x). These features and 

key resul ts  a r e  preserved at least  partly in modern axiomatic theo- 

r ies ,  a s  they will be considered in the courses of BAUER and BONY. 

About at the same  t ime in 1935, FROSTMAN [18] managed to 

make rigorous and precise the famous work of GAUSS. He used 

Radon measure,  and weakened the resul ts  of GAUSS (actually valid 

with restr ict ions on the boundary), thanks to "exceptional se ts"  of 

inner capacity zero (actually even locally polar se t s )  . His proofs 

were based on two st i l l  important principles: the principle of energy 

saying that the energy U d/u of any /U (with'compact support and I "  
newtionian potential u*) i s  >/ 0 , and zero only when /u = 0 ; 

and a maximum principle saying that up for ,U > 0 is ma- 

jorized by the sup on the compact support of p . Moreover, 

the notion of capacity was deepened, and the potentials with kernel 

studied too, a s  M. RIESZ did before him. 

We arr ive  about at  1940. One could think potential theory was 

over. Actually the las t  thirty years  have been extraordinarily fruitful. 

3. T h i r d  p e r i o d  ( a b o u t  1 9 4 0 - 1 9 5 5 L :  R o l e  of t o p o -  ............................ -------------- 
l o g i e s  a n d  e x t r e m e  e l e m e n t s ,  e n e r g y  a n d  -----.---------------------------------- 
S c h w a r t z  d i s t r i b u t i o n s .  ...................... 

Firs t  further improvements were made. Note a key-convergence 

theorem on decreasing superharmonic >, 0 functions ; the inf 

of such a sequence becomes superharmonic by changing the value on 
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an  "exceptional1' set .  It was known that this se t  has Lebesgue mea- 

su re  zero, and I proved in 1938 (C. R .  Acad. Sc. Pa r i s ,  t .  207, 

1938, p. 1157) it i s  locally of inner capacity zero.  CARTAN [8] 

improved that by changing inner to  outer (i. e .  the set  is locally 

polar)  and the sequence to  any family. We have now resul t s  and 

proofs which a r e  valid (and more  o r  l e s s  strong with more  o r  fewer 

hypotheses) under general axiomatic conditions, but the proof of 

CARTAN was based on the case  of potentials of finite energy, on the 

use of a norm-energy and of a corresponding sca l a r  product. This 

idea gave an interpretatinn of the balayage process  in the basic case  

a s  a projection in a prehilbertian space. This opened the way to 

a deep study of the role of energy, even under l a rge r  conditions. 

Finally, DENY [ll] developed a potential theory in R~ with fini- 

te  energy, where the kernel is a Schwartz distribution (notion intro- 

duced in the context of a problem of potential theory) ; the given mas- 

s e s  become a variable s imi l a r  distributinn, and the potential i s  

given by convolution of both distributions. Under some restr ict ions,  

the Cartan theory may be adapted. This is connected with the s o  

called BL and BLD (Beppo-Levi-Deny) functions, generalizing regu- 

l a r  functions with finite Dirichlet integrals. Finally, BEURLING, then 

BEURLING-DENY (first  in [2] ) were led ten yea r s  ago to a 

theory of Dirichlet spaces which is an axiomatic of energy, that 

will be developed in the course of DENY . 
Another axiomatic effort began in about 1940 with general 

kernel-functions N(x, y)  (and la ter  kernel-measures)  in -- general  

topological space.  It was obvious many classical  arguments were 

valid under conditions much l a rge r  than the newtonian kernel 
3 

11 I X  - Y 1  in R , by supposing a s  axioms some propert ies o r  



- 8 -  M. Brelot 

~ ~ p r i n c i p l e s l ~  of the classical theory. Much research was made in 

France and independently, chiefly, in Japan (KUNUGUI, KAMETANI, 

NINOMYA, . . . )  , and continues till now. They have not stopped, 

because of the complexity of all  principles, and because the use of 

nonsymmetric kernels introduces difficulties. That will not be deve- 

loped here, because another type of kernel appeared which is more 

important, a s  we shall see  la ter .  

This introduction of fundamental topological spaces in potential 

theory takes place in a general and varied use of --- topologies. 

CARTAN used various topologies on measures.  A notion of thinness 

(1940) , I introduced and continued to deepen till now, generali- 

zing the regular boundary points and unstable ones in a kind of 

Dirichlet problem for compact sets,  led CARTAN to the equivalent 

notion of fine topology, the coarsest  one making continuous all 

superharmonic functions. This gave final improvements in potential theo- 

ry  and general results on the behaviour of superharmonic functions 

and of functions of a complex variable. For  instance, if v is 

superharmonic 

point (that means 

v and v/h 

3 0  on an open set w , xo an irregular boundary 

actually Cw is thin at x0) , and h equal to 
2-n 

log l/[xg - X I  o r  log l/bo - x [  in R~ , then 

have a t  x fine limits (i. e. limits according to 
0 

the fine topology) , and that means ordinary limits outside a suita- 

ble set  thin at x . On the other hand, new boundaries 
0 

were introduced, for instance, by completion of a metric compatible 

with the topology, after some particular cases  in the previous period. 

The most important one is the Martin boundary, introduced in 1941 ([24]) . 
Consider the normalized Green function of a bounded domain 9 

of R~ (or even of a "Green space1! which is ,  for example, connected 

locally euclidean with a Green function) which will be K(x, y)  = 
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= G(x, y ) / ~ ( x ,  y ) (y E R) . There  exists  a unique compact space 6 
0 0 

(up to an homomorphism) in which R i s  dense, such that al l  

functions x j  K(x, y) may be continued continuously and separa te  

the new boundary A = 6 - R . We denote by a, the se t  of 

points X such that the corresponding K(X, y) is a minimal 

harmonic function, i. e .  such that any other smal ler  harmonic >O 

function is proportional. Now any harmonic h > 0 has a unique r e -  

presentation 

where ph i s  a Radon measure  > O  on a , but supported 

. If we consider the cone of the positive harmonic functions, 

and the base B of the functions equal to 1 a t  yo , A l  
corresponds to  the se t  of the extreme points of B in the vector 

space of the differences of positive harmonic functions. Later ,  this 

led CHOQUET to a general and deep study of the extreme points 

and of a corresponding integral representation, probably the most 

important discovery in analysis in the las t  twenty years .  

The Martin topology allows a Dirichlet problem with A , but 

is not sufficient for a study of behaviour a t  the boundary. We shall  

come back l a t e r  on that point with recent results .  

Let us complete the period 1940-1955. Another axiomatic effort  

i s  the study of CHOQUET ( [9] ) of the notion of capacity, which 

has become a basic and general  tool in analysis. 

Let us mention finally an  attempt by TAUTZ of an axiomati- 

zation of harmonic function, which i s  valid for solutions of equations 

of elliptic type, by start ing from an abstract  Poisson integral. That 

was the beginning of important researches  I shall now speak of .  
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4. M o d e r n  p e r i o d  p r o m  1 9 5 5 )  : P r o b a b i l i s t i c  i n t e r p r e -  -------------- -------- 
t a t i o n ,  H u n t ' s  k e r n e l s ,  m x i o m a t i c s  of h a r m o n i c  a n d  ................................................ 
s u p e r h a r m o n i c  f u n c t i o n s ,  D i r i c h l e t  s p a c e s ,  b o u n d a r y  .................................................. 
b e h a v i o u r  of f u n c t i o n s .  ..................... 

I already mentioned the researches on Dirichlet spaces S ta r~  

ting from [2], to be developed here by DENY , and also the work 

which continues on kernel-functions and deep discussion on principles 

(CHOQUET [lo] , CHOQUET-DENY [ll] , NINOMYA, KISHI, FUGLE- 

DE [20] , DURIER, . . . ) . 
But the most striking new field in potential theory is the rich 

connection with probability. It i s  not surprising, when comparing the 

mean value property of harmonic functions, and the fact that in a 

brownian motion the probability of the motion from a point is the 

same in all  directions. DOOB deepened this remark, and founded the 

modern field of probability-potential theory. Let us mention only that, 

starting from a few axioms, a little like TAUTZ, he defines ([14]) 

axiomatic harmonic functions in a locally compact metrizable space, and 

considers a sequence x1,x2, ,, . , x , . . . and open sets  (regular, 
n 

i. e.  allowing a Dirichlet problem, with a unitary harmonic measure) 

w a x  with dw 3 x 2 ,  w 2 3 x  with r)w 3 x 3 ,  ... . 
1 1  1 2 2 

The har- 

monic measure on 3 wn-l at x will be taken a s  probability 
n- 1 

of choice of xn€)wn- . A suitable Markov process corresponds 

to this 'Itransition probability1I. Under some conditions, DOOB stu- 

e s  the values of any corresponding superharmonic function along 

the corresponding trajectories, and finds the existence of a limit 

for Italmost a l lu  trajectories. 

I was so  much interested in the starting axioms of these general 

axiomatic developments that I deepened the question, and by changing 
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more or  l e s s  the axioms and sometimes adding one, I tried to develop 

a theory close to the classical one, a s  follows ( [ 5 ] )  : in a connected, 

locally compact, but not compact space R , we consider on any open 

set  a vector space of finite real  continuous functions (called harmonic). 

They must define a sheaf (axiom 1). As axiom 2 ,  we suppose the 

existence of a base of l l r e g u l a r ' ~ o m a i n s ,  i . e .  such that there exists 

a unique solution of a Dirichlet problem (increasing with the finite 

continuous boundary function) . As axiom 3, any increasing directed 

set  (or equivalently sequence) of harmonic functions on a domain tends 

to +a, o r  to a harmonic function. Note that the quotients by a finite con- 

tinuous h > 0 give another sheaf satisfying the axioms ; if h is 

harmonic R , we get a case where the constants a re  harmonic (as 

DOOB supposed) . 
Easy definition of superharmorlic function of potential (i. e .  super- 

harmonic with every harmorlic minorant < 0) : By supposing the exi- 

stence of a potential > 0 and often a countable base in R , a l a r -  

ge development is possible a s  in the classical case (Dirichlet problem 

with resolutivity theorem ; lattice properties and extension of the 

Riesz-Martin representation ; thanks to extreme elements, Martin 

boundary in case of proportionality of the potentials with point-support 

and corresponding Dirichlet problem . . . ) ; with a supplementary 

"axiom D* (dominatinn axiom) , it i s  possible to adapt the greater 

part of the classical theory (first  the great convergence theorem with 

i ts  consequences). See C5]. Many important parts or  complements 

were given by Mme HER& [21] with a theory of an adjoint sheaf, 

BOBOC-CONSTANTINESCU-CORNEA, GOWRISANKARAN, LOEB, B. 

WALSH (with the role of nuclear spaces and cohomology) , MOKOBOD- 

ZKI, D. SIBONY, A. de LA PRADELLE (quasi-analyticity), TAYLOR, 
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etc. See [61 . It is easy to see that the solutions of elliptic partial dif= 

ferential equations of 2nd order,  with smooth coefficients, satisfy the 

previous axioms. 

The same i s  true, but difficult, for discontinuous coefficients 

with suitable definitions, a s  was proved by Mme H E R V ~ .  

This allows simplification of the difficult direct study of these 

equations (see STAMPACCHIA [34]) . 

Now the solutions of parabolic equations do not satisfy the previous 

axioms-(actually 3 and D), whereas they did a least for the heat equa= 

tion in the Doob's axiomatic. Therefore H. BAUER, in order to gather 

all these possible applications, weakened the previous axioms by repla= 

cing the third one by weaker versions of a Doob's cconditions, by adjoi= 

ning another one implying a maximum principle which is a key to our 

classical and axiomatic theories (see a final form of the Bauer's 

axiomatic, in [I]  ). 

He succeeded in extending nearly all the previous results inde= 

pendent of D, except those depending on the Choquet theory of extreme 

elements. The corresponding integral representation (generalizing the 

Martin-Riesz one) was made la ter  by MOKOBODZKI, but cannot be gi= 

ven in the same useful form. Further important complements were gi= 

ven by various pupils of BAUER (HANSEN, HINRICHSEN, GUBER, 

SIEVEKING, BLIEDTNER, . . . ), and weaker axiomatics were also con= 

sidered (BOBOC-CONSTANTINISCU-CORNEA). 

The course of BAUER will develop partly his axiomatic, and 

give shortly relations with Markov processes and probabilistic interprez 

tations of some key tools of potential theory. 

The research of sheaves satisfying these a~ iomat ics ,  or  even 

wheaker ones, has been undertaken by BONY( [3]) . For smooth functions i n  
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n 
R , it is very interesting to  see the identity with solutions of a suita= 

ble partial differential equation of 2nd order. A deep discussion of 

relations between the previous axiomatics and partial differential equa= 

tions (and more precisely a characterisation of various axiomatics by 

different differential operators) will be given in the course of BONY. 

The previous theories have a local character.  It remains essentid- - 
ly to speak of the fundamental globalHuntts theory of kernels ( [23J ) , publi- 

shed in 1957158. Avoiding any details and restrictions and speaking roughly, 

let us consider for a space R (abstract o r  locally compact) a measure ,L+ 
X 

depending on a point x E R , that i s  written also N(x, e )  , called a kernel. 

Given a function f >, 0, we associate the function Nf= 

or  with another common notation f(y) N(x, dy) . Given a measure 

0 , we associate the measure 
I 

that contains nearly all basic notions of potential theory. F o r  example, 

in the classical  case ( ~ 3 ,  newtonian kernel-function I /  I x - 1 ) , 
let  us choose N(x , e)  = 1, (11 I x - yl  ) d h  (y) ( d A .  Lebesgue 

measure). Now, Nf = (f/ I x - y l  ) d h  (y), which is the newtonian 

potential of the measure with density f (relative to d h  ). Then 

It is a measure with a density which is the ordinary newtonian 

potential of 8. In a difficult theory, HUNT [23] shows that under c e r =  

tain conditions (satisfied in our applications), there exists for an N a 

semi-.group P (t > 0) of kernels (i. e. satisfying P = Ps. P with 
t s+t t 

a suitable convention) such that 
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Corresponding excessive functions a r e  defined for f >, 0 by the 

conditions 

and &,- Pt f = f . 
In case of equality, f is said to  be invariant. When an excessir 

ve function f >, 0 has no invariant minorant >, 0, except 0, it is 

called a (probability) potential. 

Now under suitable conditions, P may be interpreted a s  the 
t 

"transition semi-group1' of a Markov process. Details will be found 

also in the books of P. -A. MEYER ( [25] , [26] ), and given in 

BAUER's course. 

Then MEYER proved that in the axiomatic I had developed, 

and BAUER will show it  is the same in his one, hyperharmonic non-ne= 

gative functions a re  the excessive functions corresponding to  a suita= 

ble family {pt\ . Hence the probabilistic interpretation of the axio- 

m a t i c ~ .  

The previous local o r  global theories study the cones of hyper= 

harmonic or  excessive functions. The inverse problem of starting 

from a cone of functions, and studying when they a re  hyperharmonic 

functions in a local axiomatic, or  excessive functions in a suitable even 

extended Hunt's theory, was studied by MOKOBODZKI and D. SIBON'J. 

The f i rs t  problem ( [2g ) i s  closely connected to  the mini= 

mum principle, the second one will be deepened in the course of 

MOKOBODZKI. 

We a re  in the heart  of the latest general researches in poten= 

tial theory. 

Thece a re  important questions that were mentioned very 

-1igntly or  nor at all in this survey, for instance further connections 
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with probabilities (see MEYER [25] , [26] , DYNKIN, GETOOR, 

BLUMENTHAL, K. ITO, . . . ) and applications to  function theory. 

(See old classical results in the book of TSUJI [33] , and mo= 

dern developments in the lecture of DOOB, Colloquium on potential 

theory, Paris-Orsay (1964) , and in a survey of BRELOT, Colloquium 

of Erevan (1965). ) 

Let us emphasize only, among the roles of topology, the que- 

stion of the behaviour of some types of functions connected with poten= 

tial theory at a suitable boundary. A course on that subject would ha= 

ve been desirable too, because of the possible improvements, comple= 

ments and applications. 

But that would require a large knowledge in potential theory, and 

basic courses had first  to be developed. 

However I would like to  give an idea of this question by means 

of examples. Aside of the use of the so  called Choquet boundary and 

Kuramochi boundary, let us consider first  the classical case, the Martin 

space & , the Martin boundary , and its  minimal part nl . 
Thanks to  a notion of thinness of a set at any x E A (NfiIM 

[28] ), the fine topology introduced on n may be continued o n n  uAl. 
in such a way that v/h ( v v superharmonic 3 0, h harmonic > 0 ) 

has a fine limit at any x E , except on a set  of 4 ph - measure 0 

(DOOB [15] , [16] ). That is true also for v = BLD function , h = 1 , 

or  v = h - BLD function in a suitable sense. 

As a smooth euclidean boundary is homeomorphic to the Martin 

boundary, the general results imply and extend old Fatou theorems 

for the disk ; in the case of the disk, the general results yield angu= 

l a r  limits for harmonic functions, radial limits for superharmonic 
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functions. There a r e  of course applications to and contacts with func= 

tions of a complex variable, and maps between Riemann surfaces (for 

these maps, see CONSTANTINESCU-CORNEA in pure potential theory, 

and DOOB in probability), and let us suggest that the detailed theory 

of cluster se ts  had to  be adapted with the previous fine topology (Sy= 

stematic adaptations were made in the frame of the axiomatic of Bre= 

lot, with applications to  the correspondence between two such "harmo= 

nic spacesH (CONSTANTINESCU-CORNEA, D. SIBONY) and to partial 

differential equations, but probabilistic interpretations a r e  incomplete. ); 

see [6] and also a detailed survey, with an abstract axiomatic intro= 

duction and bibliography in [7] . 
May these preliminares help lecturers and audience, and 

suggest also new research. 



M. Brelot 

SHORT BIBLIOGRAPHY 

(Some classical fundamental works and recent basic or  introductory pa= 

1 BAUER (H. ). - Harmonische Ragme und ihre Potentialtheorie. - 

Berlin, Springer-Verlag, 1966 (Lecture Notes in Mathematics, 

22). 

[2] BEURLING (A. ), DENY (J. ). - Espaces de Dirichlet. Le cas 

ClCmentaire, 'Acta Math., Uppsala, t. 99, 1958, p. 203-224. 

[3] BONY (J. -M.). - DCtermination des axiomatiques de th6orie du 

potentiel dont les  fonctions harmoniques sont differentiables, 

Ann. Inst. Fourier,  Grenoble, t. 17, 1967, nol, p.353-382. 

[4] BRELOT (M.). - Familles de Perron e t  probleme de Dirichlet, 

Acta Scient. Math. Szeged, t. 9, 1939, p. 133-153. 

[5] BRELOT (M. ). - Lectures on potential theory. - Bombay, Tata 

Institute, 1960 , 2nd edition : 1967 (Tata Institute.. . Lectures 

on Mathematics, 19). 

[6] BRELOT (M. ). - Axiomatique des fonctions harmoniques. Cours 

d16t6 1965. - MontrCal, Les Presses  de 11Universit6 de Mon= 

trCal, 1966 , 2nd edition : 1969 (SCminaire de MathBmati= 

ques sup6rieures, 14). 

[I] BRELOT (M.). - La topologie fine en th6orie du potentiel, Sym= 

posium on probability methods in analysis [1966. ~ o u t r a k i ]  , 

p. 36-47. - Berlin, Springer-Verlag, 1967 (Lecture Notes 

in Mathematics, 31). 

[8] CARTAN (H. ). - Theorie du potentiel newtonien, knergie, ca= 

pacit6, suites de potentiels, Bull. Soc. math. France, t. 73, 

1945, p. 76-100. 



M. Brelot 

CHOQUET (G. ). - Capacites, Ann. Inst. Fourier,  Grenoble, 

t. 5, 1953154, p. 131-295. 

CHOQUET (G. ). - Sur l e s  fondements de l a  th6orie fine du po= 

tentiel, SCminaire Brelot-Choquet-Deny : Theorie du poten= 

tiel, I r e  annbe, 1957, nol, 10 p. 

CHOQUET (G. ), DENY(J.). - Mod6les finis en th6orie du po= 

tentiel, J. Anal. math. J6rusalem, t. 5, 1956157, p. 77-134. 

DENY; (J. ). - Les  potentiels dlCnergie finie, Annals of Math., 

t. 82, 1950, p. 107-183 

DENY (J. ). - Sur l e s  espaces de Dirichlet, S6minaire Brelot- 

-Choquet-Deny : Th6orie du potentiel, I r e  annee, 1957, 

no 5, 14 p. 

DOOB (J. L. ). - Probability methods applied to the f i rs t  boun= 

dary value problem, Proceedings of the 3rd Berkeley Sym= 

posium ... [1954/55], Berkeley , "01. 2, p. 49-80. - Ber= 

keley, University of California P ress ,  1956. 

DOOB (J. L. ). - Conditional brownian notion and the boundary 

l imits of harmonic functions, Bull. Soc. math. France,  t. 85, 

1957, p. 431-458. 

DOOB (J. L.). - A non probabilistic proof of the relative Fatou 

theorem, Ann. Inst. Fourier,  Grenoble, t. 9, 1959, p. 293- 

- 300. 

EVANS (G. C. ). - Applications of PoincarC sweeping out pro= 

cess ,  Proc. Nat. Acad. Sc. U. S. A., t. 19, 1933, 

p. 457-461. 

FROSTMAN (0.). - Potentiel d16quilibre et  capacit6 des en= 

sembles, Thhse Sc. math. Lund Univ., 1965 (Matem. Sem., 

3). 



M. Brelot 

FUGLEDE (B.). - On the theory of potentials in locally com= 

pact spaces, Acta Math. Uppsala, t. 103, 1900,p. 139-205. 

GAUSS (C. ). - Allgemeine Lehrsatze in Beziehung auf die in 

verkehrten VerhHltnisse des Quadrats der Entfernung wir= 

kenden Anziehungs-und Abstossungs -KrHfte (1 84O), Gauss 

Werke, Band 5, p. 197-242. - Guttingen, Kihigliche Ge= 

sellschaft der Wissenschaften, 1867. 

H E R V ~  (Mme R. -M: ). - Recherches axiomatiques sur  l a  thCo= 

r ie  des fonctions surharmoniques et du potentiel, Ann, Inst. 

Fourier,  Grenoble, t. 12, 1962, p. 415-571. 

IIILBERT (D. ). - fiber das Dirichletsche Prinzip, Jahresber. 

Deutschen Math. Verein., t. 8, 1900, p. 184-188. 

HUNT (G. ). - Markov processes and potentials, I, 11, 111, Illi= 

nois J. of Math., t. 1, 1957, p. 66-93, 316-369 ; and 

t. 2, 1958, p. 151-213. 

MARTIN (R. S. ). - Minimal positive harmonic functions, Trans. 

Amer. Math. Soc., t. 49, 1941, p. 137-172. 

MEYER (P. -A.). - ProbabilitCs et potentiels. - Paris,  Her= 

mann, 1966 (Act. scient. et ind., 1318) and in English : 

Boston, Blaisdell Publishing Company, 19 66. 

MEYER (P. -A. ). - Processus de Markov. - Berlin, Springer- 

-Verlag, 1967-1968 (Lecture Notes in Mathematics, 26 and 77). 

MOKOBODZKI (G. ) et SIBONY (D. ). - Principe de minimum 

et maximalit4 en theorie du potentiel, Ann. Inst. Fourier,  

Grenoble, t. 17, 1967, no 1, p. 601-661. 

N A ~ M  (L,).  - Sur le  ra le  de l a  frontihre de R. S. Martin 

dans l a  th6orie du potentiel, Ann. Inst. Fourier,  Grenoble, 

t. 7, 1957, p. 183-281. 



M. Brelot 

[29] PO IN CAR^ (H. ). - Theorie du potentiel newtonien. - Paris ,  G. 

CarrC et  C. Naud, 1899. 

[303 RIEMANN (B;). - Grundlagen fiir eine allgemeine Theorie der 

Funktionen einer ve rhder l i chen  komplexen GrBsse (Inaugu= 

raldissertation, GBttingen, l85 l ) ,  Riemann's Gesammelte ma= 

thematische Werke, p. 3-45. - Leipzig, B. G. Teubner, 

1892 ; Reprinted : New Nork, Dover Publications, 1953. 

[31] RIESZ (F.). - Sur l e s  fonctions subharmoniques e t  leur  rapport 

B l a  th6orie du potentiel, Acta Math., Uppsala, t. 48, 1926, 

p. 329-343, and t. 54, 1930, p. 321-360. 

[32] STAMPACCHIA (G. 1. - Equations elliptiques du second ordre B 

coefficients discontinus. Cours dlCtC 1965. - MontrCal, Les  

P resses  de llUniversitC de Montreal, 1966 (SCminaire de Ma= 

thkmatiques supCrieures, 16). 

[33] TSUJI (M. ). - Potential theory in modern function theory. - 
-Tokyo, Marueen Company, 1959. 

b43 WIENER (N. ). - Certain notions on potential theory, J. of Math. 

and Phys., t. 14, 1924, p. 24-51. 

F o r  a large  bibliography, t i l l  1953 see a paper of BRELOT 

" ~ a  thCorie moderne du potentiel, Ann. Inst. Fourier,  Grenoble, t. 4, 

1952, p. 113-140", and la ter  a course of BRELOT "Elements de la  

theorie classique du potentiel, 4th edition. - Paris ,  Centre de Documen- 

tation universitaire, 196911. See also a book in Russian, of N. S. LANDKOF: 

nFundamentals of modern potential theory - Moskva, Izdatel. Nauka, 1966" 

Let us mention the Seminars on potential theory o r  probability, 

in Par is ,  Strasbourg, Erlxigen, and the Annales de ltInstitut Fourier , 



M. Brelot 

which have been publishing, for a long time, many important papers 

on potential theory, for example those of a Colloquium on this field in 

Paris-Orsay (1964), vol. 15, 1967, no 1. 



CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

(C. I. M. E. ) 

H. BAUER 

HARMONIC SPACES AND ASSOCIATED MARKOV PROCESSES 

C o r s o  t e n u t o  a S t r e s a  d a l  2 a 1  1 0  l u g l i o  1 9 6 9  


