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BASIC NOTIONS AND APPLICATIONS O F  THE THEORY OF DECIDABILITY 

by 

H. Hermes (Freiburgr  Germany) 

Preliminary Remarks. The f i rs t  three lectures contain an exposition of the 

fundamental concepts of some main theorems of the theory of recursive functions. 

One of the more difficult theorems of the theory of recursive functions i s  FI-ied- 

berg-Muxniks theorem which a s s e r t s  the existence of non-trivial enumerable 

degrees.  In Lectures 4 and 5 we prove this theorem, following the t reat -  

ment given by Sacks, but s t ress ing somewhat more the combinatorial part  

of the proof (Lecture 4). Lecture 6  deals with problems in the theory of 

primitive recursive functions. As a typical example of the application of the 

theory of recursitivy we give in Lecture 7 in detail a proof for the unsolva- 

bility of the domino problem in the simplest case of the origin-restricted 

problem and ehow in Lecture 8 how the domino problem i s  connected with 

the case of the Entscheidungsproblem. 

Lecture 6  has been given before Lectures 4 and 5. The inter- 

change is due to systematical reasons. 

The interdependece of the lectures  may be indicated a s  follows: 

1 2  3 4 5 , 2  6 , 2  7 8 .  
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L e c t u r e  1 :  C o m p u t a b i l i t y  E n u i i ~ e r a b i l i t y ,  b e c i d a b i l i t y  

1. Algorithmic procedures and calculi always have been an essential 

part  of mathematics. In the l a s t  thirty o r  forty years  a theory has been develo- 

ped in o rder  to  study the fundamental notions which a r e  connected with this 

part  of mathematics. Everybody knows algorithmic procedures for computing 

the sum of two decimals. The existence of such procedllres shows that the 

sum-function is a computable function. If a mathematical theory T is given based 

on a finite number of axioms and on the rules  of first-order logic calculus, 

we may generate one by one the theorems of T. Hence the se t  of theorems of 

T is' a generable set. Using lexicographical principles it is possible co get 
nd 

theorems in a sequence, s o  that we may speak of the (Ith, lst, 2 , . . . 
theorem of T. In this way we get an (effective) enumeration of T, and we 

call T an enumerable set. The notions of generability and enumerability may be 

identified. F o r  any natural number i t  is decidable whether it is a prime o r  

not. Hence the set  of pr imes is called a decidable set. 

The concepts of computability, enumerability and decidability a r e  

narrowly related (cf.no.4). In order to be able to develop a mathematical 

theory concerned with these notions it is necessary to replace intuitive con- 

cepts by precise  mathematically defined concepts. For  each of these concepts 

different definitions have been proposed and proved to be equivalent to  each 

other. Practically everybody is convinced that the precise notions correspond 

llexactlyll to  the intuitive concepts. This fact, the so-called Church's Thesis 

(1936), may be compared with the statement that there exists no perpetuum 

motiile. In the following (cf. no. 5 ,6 ,8  and Lecture 2 ) we give several  precise  

concepts which lead to definitions of enumerability and computability. Refer- 

ring to such definitions we have notions l ike Turing-computability, recursir  

veness, /u, -recursiveness etc. But since these concepts can be proved to be 

extensionally equivalent, we la ter  on may interchange them arbitrari ly.  
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2. In o rder  to  compute (calculate) i t  is necessary to  manipulate 

objects, i.e. to t r ea t  objects by manual means. Not every set  S has the 

property that every element of S can be used in this way (e.g. the classi-  

ch1 se t  of r ea l  numbers). A set  of objects which can be used for computa- 

tion may be called a se t  of manipulable objects. Typical example for  mani- 

pulable objects a r e  the words composed of l e t t e r s  from a given finite alpha- 

bet A. If A has  only one element, these words may be identified with the 

natural numbers. An infinite se t  S of manipulable objects is denumerable. 

If S1 and S a r e  two (infinite) s e t s  of manipulable objects there  exists 
2 

a 1 - 1 mapping f from S onto S which is effective in both ways, 
1 2 

i.e. : if any x S is given i t  is possible to  compute f(x), and if any 
1 - 1 

y S2 is given i t  is possible to compute f (y) . Such a mapping is often 

called a ~'ddelization, especially if S coincides with the se t  of natural num- 
2 

be rs  (in this case  f(x) is called the Gtidel number of x). In principle it 

is irrelevant on which (infinite) se t  of manipulable objects the theory is 

based. Very often (following Gb'del) we choose for this purpose the se t  

of natural numbers. But many applications may be much easier  if other se t s  

a r e  chosen. - We speak of an enumerable o r  of a decidable se t  S only if a 

fixed se t  St of manipulable objects is given and if =St. 

3. For  most questions concerning computability if is irreleveant 

whether we consider 1-place o r  n-place functions (o r  similarly 1-place o r  n- 

place predicates). L e t  us consider e.g. n=2 . It may be easily shown that 

there  exist computable functions CS 2, d21s &22, S.t. 

(1.1) d2(  6)21(~)s %(x)) = x for each natural number x 

(1.2) d 2 ( x 9 ~ ) )  = x for each pair  x, y of natural numbers 

(1.3) GZ2( g 2 ( %  Y)) = Y 

Using these functions we may associate with every 2-place functionj f 

a 1- place function g, defined by 
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(1 .4)  

Now we get 

(1.5) f(x,y) = g( 6'2(x, Y)) . 
As fa r  a s  questions of computability a r e  concerned we may r e -  

place f by g. 

4. The following statements hold intuitively: 

(1.6) A se t  i s  enumerable i f f  it i s  void o r  the range of a computable func- 

tion. 

(1.7) A 1-place function is computable, iff the 2-place relation R is 

enumerable, where R holds for y and x iff y=f(x). 

(1.8) A set  S is decidable iff S and i ts  complement a r e  enumerable. 

(1.9) A set  S is decidable iff i t s  characterist ic function f i s  computable. 

f (x) has the value 0 o r  1 according a s  x ES o r  x 4  S. 

5. Here and in no. 6 we give two definitions of the notion of enu- 

merability. Here we a r e  concerned with s e t s  whose elements a r e  words over 

a finite alphabet. 

Let be given four mutually disjoint alphabets A, B, C, D. The ele- 

ments of A a r e  called constants, the elements of B variables, the elements 

of C predicates. With each predicate i s  associated a natural number n l  1 

a s  i t s  place number. D = ) ; ,*. The words over A called proper words, 

the words over AvB te rms .  If P is an n-place predicate and t . , t n  

a r e  terms,  then Ptl;, . . ;t is called an atomic formula. If p p 
n 1' 2'"" 

a r e  atomic formulas, then the words pl,  pl+p 2, p 1 4 p 2 w 3  etc. a r e  called 

formulae. Rule 1 permits  the transition from a formula F to a formula G 

by substituting a proper word for a variable, Rule 2 the transition from an 

atomic formula p and a formula p+F to  the Formula F. A formal 

system (Smulyan) is given by a finite se t  4 of formulae. A formula is 

derivable in a formul: system @ , if it can be obtained by applications of 

Rule 1 and/ o r  Rule 2, start ing with the elements of @. An n-place 

relation R between words over a finite alphabet A. is enumerabld (in the sen- 
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s e  of Smullyan) iff there i s  a formal system , belonging to the alphabets 

0 

@ 
A, B, C, D, where A C A, and an n-place predicate P, s. t. for each 

n-tuple w w of words over A the formula Pw .;w is deriva- 
1'"" n o n 

ble in 4 iff R holds for w1, ..., w . n 

6. Another way to define enumerable relations is given by Fi tchfs  

minimal logic. We s ta r t  with the 3-letter alphabet 4 ( , ),*) . A word over 

this alphabet is called an expression if i t  coincides with i , o r  if it may 

obtained, start ing with ;W. , by the rule which permits to go over from 

words a and b to the word (a, b). (r (*+)) is an example for an expres- 

sion. Take the se t  of all expressions a s  the underlying set  of manipulable 

objects. We choose certain expressions and call  them = , 4  , / \ ,V,V,  11, 

12, 13,. . . . With these expressions a r e  connected certain rules. We confi- 

ne ourselves here  to indicate the rules  connected with =, v, V, and 11: 

(1.10) For  each expression a we may write down the expression =aa( this  

is an abbreviation for ((=a)a) (parentheses to the left, also in the 

following). 

(1.11) For  a l l  expressions a, b we may go over from a to  Vab  . 
(1.12) For  all  expressions a, b we may go over from b to  v a b .  

(1.13) For  all  expressions a b we may go over from ab to Va. 

(1.14) For  a l l  expressions a, b, c, d, where a is variable, and d the re -  

sult of substituting c for a in b, we may go over from d to 

l l a b c  . 
(These rules a r e  s imilar  to rules  of logic, hence "minimal logicm.) An 

expression is called (lerivable if i t  can be obtained by the rules. E.g. the 

derivation ( w  (d), (Vjt), V\/) dhows, that (vV) is derivable . A relation 

T between expressions i s  (Fitch-) enumerable iff there i s  an expression 

r s. t. for  each n-tuple a l ,  ..., a of expressions, the expression 
n 

ra l . .  . an  i s  derivable iff R holds for a . . ,an .  
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7. The las t  example shows that the enumerable s e t s  (of expressions) 

a r e  manipulable themselves, because they may be given by expressions, 

and each expression determines such an enumerable set .  Unfortunately we 

do not have this pleasant fact for the computable functions. In order  to 

show this le t  us assume that we have an enumerable set  S of words 

s . t .  (a) each element of S determines effectively a unary computable fun- 

ctinn and that (b) each such function may be given in this way (think of 

the elemets of S being descriptions of the computing processes).  Then we 

get a contradiction a s  follows : We get in a effective way for each 

n a prescription how to  compute a certain unary function . We intro- 
fn 

duce a new function f by postulating that f(n) = f (n)+l. According to 
n 

our assumptions there  is an m s.t. f=f This leads to a contradiction 
m ' 

for the argument m . (A diagonal argument of this kind is often used in 

the theory of recursive functions). 

It is possible to  remedy this defect by enlarging the se t  of functions 

hitherto considered. Until now we only have admitted total functions. 

The domain of an n-ary total function consists of all  n-typles of objects 

in question. We now consider partial  functions. The domain of an n-ary 

total function consists of an n-ary partial  Tunction does not necessarily 

have all  n-tuples a s  elements, i t  may even be void. Intuitively a partial  

function is called computable, if there is a procedure which terminates 

for a given argument iff the function has a value for this argument which 

determines in that case  that value. 

With partial  function we do not get the contradiction of no. 7 .  It 

is only possible to conclude that f is not defined for  the argument h. 

If we admit a lso  partial  functions, the statement (1.7) remains 

true. (1.6) may be simplified : 

(1.15) A se t  is enumerable iff it is the range (or the domain) of a com- 

putable partial. function. 



H. Hermes 

8. There a r e  different important precise  definitions for computabili- 

ty for partial functions. For  Turing-computability and /1L. -recursivity cf. 

Lecture 2. Here we mention only the concept of Markovfs algorithm. 

Let be given a finite alphabet A and words A ., B. ( i = l ,  . . . , p) over A. 
1 1  

A Markovfs algorithm i s  given by sequence 

where "(. )I1 indicates that there  niay be a dot behind the arrow o r  not. (1.16) 

determines a unary partial  function. f . The domain and range of f a r e  con- 

tained in the se t  of all  words over A. For  any word W over A we deter- 

mine uniquely a sequence w=w(O), ~ ( l ) ,  w ( ~ ) ,  . . . of words. f is defined 

iff the sequence terminates, and in that case f(W) is the las t  element of 

the sequence.. 

If w ( ~ + ' )  is defined we will have a uniquely determined number 

( l < ~ , + ~ < p ) ,  which describes in the sequence (1.16) the rule which i s  

responsible for the transition from w ( ~ )  to w ( ~ + ' )  . 
We call a word K a part of L iff there  a r e  words K1, K2 S. t. 

L=K KK Given K, there may be different decompositions of L of this 
1 2' 

kind. If K has minimal length, the decomposition of L is uniquely deter- 
1 

mined and called the normal decomposition.We now procede to define 

w ( ~ + ' )  and p - 
n+l ' 

w(n+l) and pn+l a r e  only defined if there i s  an i s. t. A .  is a part  
1 

of w ( ~ )  and if n=O o r  (n>O and the pth t e r m  of (1.16) has no dot ) . In 
n 

this case let be p the smallest  i, 5.t. A. i s  a part  of w ( ~ )  . Let be 
n+ 1 

w ( ~ ) = K  A K the normal decomposition of W(') relative to Ai. Now W (n+ll  
l i 2  

= K1 BiKZ. 

A unary partial  function &whose domain and range i s  contained in 

the se t  of dl words over a finite slphabet) is called computable by a Mar- 

kovls algorithm over an alphabet A, iff A CA and if for each word W 
0 
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over A (a) if f (the function determined by this algorithm) is defined for  W 
0 

if f(W) is a word over A then g is is defined for W and g(W)=f(W), and 
0' 

(b) if g is defined for W then also f is defined for  W and again f(W)= 

=g(W). 

R E F E R E N C E S: Davis. [l], Hermes [I ,  (also for  the minimal logic ------------ 
of Fitch). 

Kleene 111 , [23 . Markov [I], Rogers [I) , Smul- 

lyan 117 . 

L e c t u r e  2 : +- Recursiveness, Enumerability, Decidability. 
-------we-- ...................... 

1. In no. 1 we use natural numbers a s  manipulable objects. Let be 
1 

the 0-place function with value 0, S the 1-place successor-function and 
n 

U. the n-ary function whose value coincide with the i-th argument 
1 

(i  = 1, . . . , n). The functions 
O l n  

Co, S , U. a r e  called initial functions. The 

initial functions a r e  computable total functions. 

The process of substitution leads from function g, hl, . . . , h t o  r 
a function f = g(h 

1'"" 
h ), where 
r 

(2.1) f(xl, . . . . x,) = g(hl(xl, . . . , x r ), . . . , hr(xl. . . . , xn)) . 
Substitution preserves  totality and computability. 

The process of primitive recursion leads from functions g, h to  

a function f, where 

(2.2) f(xl.. . . , x n ' 0) = g(xl.. . . , xn), 
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Primitive recursion preserves totality and computability. 

The process of application of the - operator leads from a func- 

tion g to a function f, where 
r 

( p y  = the leas t  y. p y  g(xl,. . . , x , y) = 0 is defined iff there  is a y 
n 

s. t .  for all  z < y g(xl, .  . ., x , z) is defined and # 0 and if g(x 
n l a * * *  . . . , x , y) = 0; in this case y = y g(xl, .  . . , x , y)=O. Application of the 

n n 
/IC operator preserves  computability but in general not totality. Computabi- 

l i ty would not generally be preserved if we would not postulate that 

g(xl,. . . ,xn, z) be defined for z < y. 

~ h e p - o p e r a t o r  may also  be applied to a relation R. We define 

py Rxl.. .xny by p y  g(xl, .  . ., x y)  = 0, where g i s  the characterist ic 
n 

function of R. 

The functions which may be obtained start ing with the initial fun- 

ctions and using substitution and primitive recursion a r e  called primitive 

recurs ive  functions. If we admit in addition the application of the p o p e -  

ra to r  we get the /L -recursive functions. Every primitive recursive fun- 

ction is total and computable. The ,h - recurs ive  functions coincide with 

the computable (partial) functions. There a r e  total -recursive functions 

which a r e  not primitive recursive.  
r 

2. Turing machines. A TM (Turing machine) M is given by (a) 

a finite (ordered) alphabet ao , . . . , a  
N 

, (b) a finite (ordered) se t  of 

s ta tes  qO. . . . , qp and a ffnite (ordered) se t  of quadruples. (The set  

of quadruples i s  often called the table of M.) A quadruple is of the form 

q a b ql, where q, q1 a r e  states, a i s  a le t ter  (of the alphabet), and b 

either a le t ter  o r  one of the symbols R ("right1' o r  L (llleftll). (We assu- 
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m e ,  that  the  s e t  of l e t t e r s ,  the  s e t  of s t a t e s  and t h e  s e t  R ,  L a r e  mutual ly 

d i s jo in t . )  We r e q u i r e  t h a t  t h e r e  i s  a t  m o s t  one quadruple  in  the  s e t  of qua-  

d r u p l e s  which begins with qa ,  w h e r e  q is a fixed s t a t e  and a is a f ixed  

l e t t e r .  

A t a p e  is a two-way infinite sequence  of s q u a r e s .  (Somet imes  a l s o  

one-way infinite t a p e s  a r e  c o n s i d e r e d . )  An inscr ip t ion  I is a mapping of 

the  s e t  of s q u a r e s  into t h e  alphabet .  We a s s u m e  tha t  i n  I a l m o s t  e v e r y  

s q u a r e  is blank (empty) ,  i . e .  mapped on  the  l o i d  l e t t e r  a A (comple te )  
0' 

configurat ion C i s  a t r i p l e  C = (I, s, q) ,  where  I is a n  inscr ipt ion,  s is a ---- 
s q u a r e  and  q a s t a t e .  We w r i t e  C = (I(C), s ( C ) ,  q(C))  . s(C) is ca l led  the  

scanned  s q u a r e  of C, a n d  a ( C )  = I(C) ( s ( C ) )  the l e t t e r  on  t h e  scanned  squa-  -- 
r e  of C. C is cal led t e r m i n a l ,  i f  t h e r e  is no quadruple  i n  M which beg ins  - 
with q(C),  a ( C )  . O t h e r w i s e  we a s s o c i a t e  with C in a unique way a con-  

f igurat ion C , ca l led  t h e  s u c c e s s o r  of C : l e t  be q (C)  a (C) b q* t h e  --- 
quadruple  of M which beg ins  with q (C)  a ( C )  . We want t o  define 

C1 = (I '  , s , ql ) .  We put q1  = q . I' and  s depend on  b. We d i s t inguish  

two c a s e s  : 

(1) If be  is a l e t t e r ,  we pu ts  s t  = s and I1 = I with the  Goss ib le )  

except ion that  I ' ( s l )  = b .  

(2 )  If b = R(L), s t  is t h e  r igh t  (left) neighbor of s and  It  = I. 

If we  s t a r t  with a n  a r b i t r a r y  C, we  obtain in a unique way a s e -  

quence C, C1, Cv  = (C1)I , C1I1,. . . , which m a y  b e  f ini te  o r  infinite. "To 

s t a r t  with C" m a y  be  e x p r e s s e d  a s t 1  t o  apply M on  I(C) i n  s (C)"  , if 

q (C)  = qO. I'To proceed  f r o m  C to C1 Itmay b e  e x p r e s s e d  a s  pr int ing,  i f  

we have c a s e  (I), and a s  going t o  r igh t  (left),  if we have c a s e  (2). I1M 

ha l t s ,  s t a r t i n g  with C, a t  c*" means ,  that  the  sequence  C, C:. . . 
h a s  a l a s t  t e r m i n a l  t e r m  which is C" . 

3 .  With each  T u r i n g  machine  M and  e a c h  n a t u r a l  n u m e r  n we 

a s s o c i a t e  a n  n - a r y  p a r t i a l  function f b .  (We a s s u m e  in t h e  following 
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tha t  t h e  alphabet  of M h a s  a t  l e a s t  t h e  le~;er-s  a (blank) and  a l . )  
M 

0 

L e t  b e  x x n a t u r a l  n u m b e r s  and a configurat ion with 
1'"" n C x l . . . . , r n  

M M 
) = q,, l (Cxl . .  . x ) a n  inscr ip t ion  w h e r e  the  a r g u m e n t s  

q ( C x l . .  . x  n n 

x1 , . . . ,X  a r e  r e p r e s e n t e d  by s e q u e n c e s  of (x +l), . . . , (x  + l )  c o l ~ s c c u -  
n 1 

t i v e  s q u a r e s  which b e a r  t h e  l e t t e r  a and a r e  s e p a r a t e d  f r o m  e a c h  o t h e r  
M 1 

by one blank s q u a r e ,  and 
s(Cxl .  . . x 

) i s  t h e  f i r s t  s q u a r e  on t h e  t a p e  
n 

which b e a r s  t h e  l e t t e r  a F o r  any  configurat ion C l e t  b e  v (C) 
1' 

( the value of C) the  number  s q u a r e s  which b e a r  the  l e t t e r  a in I(C) . 1 
Now we introduce f, a s  follows: f i ( x l ,  . . . , x ) i s  defined iff t h e r e  i s  

* 
a C* s . t .  M, s t a r t i n g  with cM , h a l t s  a t  C ; in  t h i s  

x- x ~ 9 * . * 1 x  n 
c a s e  f&(xl, . . . . x ) = v(C ) . An n - a r y  function f i s  cal led T u r i n g  

n n 
computable  if t h e r e  i s  a Tur ingmachine  s. t .  f = f 

M' 

4. Re la t ive  computabi l i ty .  Mathemat ic ians  not only a r e  i n t e r e s t e d  

i n  the  quest ion whether  a p a r t i a l  function f is computable ,  but a l s o  in 

t h e  quest ion whether  a p a r t i a l  function f is computable  if we  suppose  

tha t  s o m e  o t h e r  p a r t i a l  function g is computable  (where  g m a y  

b e  computable  o r  not). T h i s  ques t ion  h a s  a pos i t ive  a n s w e r  iff t h e r e  i s  

a p r o c e d u r e  t o  ge t  the  va lues  of f under  t h e  assumpt ion  tha t  t h e  va lues  

of g a r e  given. It i s  not a s s u m e d  t h a t  t h e  v a l u e s  of g a r e  given 

by any  effect ive p r o c e d u r e .  If f is computable  under  the  a s s u m p t i o n  

tha t  g is computable ,  we c a l l  f computab le  r e l a t i v e  - t o  g o r  

g-computable  g - r e c u r s i v e )  and  w r i t e  f ,< g. A s  a n  example  we  have 
2 

g ,< g f o r  e v e r y  function . f: 
A p r e c i s e  definition f o r  t h e  re la t ion  f 4 g r u n s  a s  follows : 

We have  f 4 g fo'r exact ly t h o s e  funct ions f which may b e  obtained 
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s ta r t ing  with the initial functions (cf. no. 1)  and g , using substitution, 

primit ive recurs ion  and the application of the p - opera tor .  

It is obvious that  -& is reflexive and t rans i t ive  . Hence the relat ion de- 

fined by (f & g and g&f) divides the c l a s s  of al l  (par t ia l )  functions in mu- 

tually disjoint subclasses .  These  c l a s s e s  a r e  called d e g r e e s  (of unsolvabi- 

Ilty). L e t  be - f the c l a s s  t o  which f belongs. It i s  possible t o  define 

f < g by f ( g. Hence the s e t  D of degrees  i s  a part ial ly o rde red  

se t .  D h a s  a l ea s t  element 0 which cons is t s  of a l l  ( p-) r ecu r s ive  fun- 

ctions. Not in every  deg ree  we leave a total  function (Medvedev 1955, 

cf. Roge r s  [I] ) . Degrees  which have total  functions a s  e lements  a r e  cal-  

led  total  degrees .  A total  degree  may be identified with the  s e t  of a l l  to- 

t a l  functions belonging to  it. The s e t  T of total deg rees  i s  not only 

part ial ly o rde red  but in addition a semi-upper-lat t ice:  Le t  be f, g total  

unary functions and h(x, y) = d 2 ( f ( x ) ,  g(y)). Then i s  the l ea s t  upper 

bound of f and g with respect  to < . 

5. 1.f g i s  a unary total function the relat ion f <  g may be de- --- 
fined using an  extended concept of Tur ing  machines. Here  we admit  a l sc .  

quadruples q a b q t  where  b i s  a s t a t e  (cf. no. 2)  . If a configuration 

C is not t e rmina l  (no. 2) we associa te  with C a s  i t s  succes so r  a confi- 

guration C1 depending on g. Cr  i s  determined by the quadruple which 
g g 

begins with q(C) , a (C) (cf. no. 2). Let  be q a b q '  this  quaduple. 

If b is not a s t a t e  we define C' = C1 (no.2). If b = q" we define 
g 

C1 = (I(C), s(C),  qf  ) where  qa = q t  if g(  G2 l ( v ( ~ ) ) ) )  = G' 2Z(v(C),, and 

q9 = q n  otherwise.  Hence in o r d e r  t o  get  Cf one has  in genera l  t o  
g 

a sk  an  "oracle" (Turing) about the value of g for  a ce r t a in  argument.  

With each Turing machine (of the extendet kind), each  function 

g and each  natural  number  n we associa te  an n-ary  function f'" 
n M, g' 

The definition runs  l ike  the definition of f M  in no. 2, 3, but with 



in place of C' . 
An n-ary (partial) function i s  called Turing computable relative to  

n 
iff there is a Turing machine (off the extended kind) s. t .  f=f . 

M, g 

6. It is often convenient to identify a predicate (set, relation) with 

i ts  characterist ic function (which i s  a total function). Hence we may speak 

of the degree of a relation and extend < to relations. 

R E F E R E N C E S  : See Lecture 1. ------------- 

Lecture 3: Kleene's Normal Form Theorem; the Jump Operator, ............................................... 
1, With each total degree d it i s  possible to associate a 

degree dl (the jump of d) which has the property that d < d'  (but d' 

is  not an upper neighbor of d\. To prepare the definition of d' we in- 

troduce Kleene's normal form for g-recursive total functions. 

2. In the following we assume that we have mutually disjoint infi- 

nite seouences ao, a l ,  a2 , .  . . Bnd qO, q l ,  q2 , .  . ., and that the alphabets 

and s ta tes  of any Turing machine a r e  initial segments of these sequences 

(which i s  not a ser ious  restriction). A Turing machine M (of the extended 
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kind, cf. Lecture,  no. 5) may be described by i ts  Godel number G(M). 

We assume in addition that a lso  finite sequences Co, C1, . . . , Cm of con- 

figurations a r e  described by Giddel numbers G(CO, . . . , C ). The follo- m 
wing constructions depend on the (fixed) ~b 'del iza t ion G. 

We want to introduce a unary total function U and for each n an 

(ni-2)-place predicate T~ (which depends on a total function g) in o rde r  to 
g 

describe the function F (cf. also Lecture 2, nos. 2, 3 , 5 )  . Let be 
M, g 

the value v(C ) i f  there  is a sequence of configurations 
m 

(3.1) u(g)  = c O ,  ..., 'm s. t .  g = G ( c ~ ,  . . . , c,), 
0 otherwise. 

n 
(3.2) T zx . . . x  y iff there a r e  a Turing machine M and configurations 

g l  
Cm), C = C 

M 
CO, . . . , C S. t .  z = G(M), y $ G(CO, ... , 

m 0 X l . . . X  ' n 
C. = (C.)'  depending on M) and Cm is terminal.  

3+1 J g 

Now we repeat the definition of fn (Lecture 2, no. 5) by writing 
M, 2 

This i s  Kleenets Normal Form T h e o r -  It shows that each n-ary g-recur-  

sive function may be represented by U ( ) ~ ~ T ~ X ~ .  . .xny) with suitable z. 

It is easy (but somewhat tedious) to show that U is a recursive function 

and T~ a g-recurs ive  predicate (i. e. it-s characterist ic function is 
g n 

g-recursive (g-computable)). F rom this we infer that U ( p  yTg zxl.. . xny) 

is an n-ary g-recursive (partial) function for every z. Hence, varying 

the number z = 0,1,2, . . . we get every n-place g-recursive function. 

In addition it can be shown that in order  to  obtain U and the cha- 

rac ter is t ic  function of Tn start ing with the initial functions Bn'd the  fun- 
g 
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ctions g, (cfr. Lecture 2, no. 4) it is not necessary to apply the F -Ope- 
r a to r  (U  and T~ areItg-primitive recurs iveff)  . Hence (3.3) shows that 

g 
we get every g-recursive function by applying the -operator at most 

once. 
P 

For  l a te r  application it i s  convenient to notice that 

1 
M, start ing with C: , halts iff VYT G(M)xy 

g 

Finally we remark  that for the usual choice of and of 
2 1 

G(Co, . . . , C ) we have m 

1 
This shows that in o rder  to check whether T zxy holds o r  not, the oracle 

g 
for g is asked' only for arguments which a r e  l e s s  than y . 

3. For  each total unary function g we define 

1 
(3.5) g' = characterist ic function of the unary predicate VyT xxy. 

g 
We want to show that 

(3.6) g <  g f  > 

(3.7) - g # - g1 (hence with (3.6) g < g1 ), 

(3.8) f ,< g 4 f t < g ' .  

Using (3: 6), (3.7), (3.8) we may extend the operator '(jump) to elements 

of T(tota1 degrees) by defining (:)I = (a. It follows that d < df  . 

4. We obtain (3.7) by proving (Church) : 
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Otherwise  l e t  be  g t  5 g. We introduce a total  function h by 

(3.10)  
h(x) = { U ( p T g x x y ) + l ,  if t h i s  i s  defined f o r  x ,  

0 o therwise .  

Under o u r  assumpt ion  g t  < g we find h i s  g-computable . Henee acco rd ing  
1 

t o  no. 2 t h e r e  is a n u m b e r  s. t .  h(x) = u ( r y ~ g  zxy) f o r  eve ry  x. We 
1 

ge t  a s  a spec i a l  c a s e  h(z)  = U(/U y T  zpy), which cont rad ic t s  ( 3 .  10). 
g 

5. In o r d e r  to  obtain (3.6)  and (3 .8)  we prove  the  following Theo rem 

(Kleene). L e t  be g a unary  and to ta l  function, R a 2-place re la t ion  and  

R <  g. Then t h e r e  i s  a computable total  unary  function r s.t. 

1 
(3.11)  V y  ~ x y  iff VYT r ( x )  r ( x )  Y . 

g 

Proof: F o r  each  number  x i t  i s  poss ib le  t o  cons t ruc t  effectively a n  ex-  

M(x) (where t i s  a n  a r b i t r a r y  tended T M  M(x) s . t .  s t a r t i ng  with C, 
L 

natura l  number)  we get  a sequence M(x) 
co = ct , c, =(Co); : ,  C 2 =  

=(C )I of configurat ions s. t .  the  following s t a t emen t s  hold : T h e r e  
1g"" 

i s  a k s . t .  I(C ) is void. F o r  a number  k > k we have - CM(x) 
k 0 - x, 0' 

0 

Using the  assumpt ion  R < g, M now "checkst t  whether  RxO o r  not. If 

not, t h e r e  will be a k > k o  s . t .  
1 

- M(x) Now M t tcheckstf  
Ckl - cx, 1 . 

whether  R x l  o r  not, e tc .  If t h e r e  ex i s t s  no y s. t.  R x y ,  M(x) does  not 

halt.  But if t h e r e  a y s. t .  Rxy, M(x) will hal t .  Hence we have 

(3.12)  M(x) , s t a r t i ng  with c ~ ( ~ )  , hal t s  iff Vy Rxy. 
t 

Now l e t  be r (x )  = G(Nl(x)) . r i s  a computable total  function. F r o m  (3.4)  

we infer:  

1 
(3.13)  ~ ( x ) ,  s t a r t i ng  with c ~ ' ~ ) ,  ha l t s  iff VY T G(M(x))) t y  . t 
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Comparing (3.12) and (3.13) we get (introducing r(x))  

(3. 14) 
1 

V y  'Rxy ; iff VyT r(x)ty , 
g 

which gives (3. 11) for t = r(x) . 

6. We now apply Kleenels Theorem in o rde r  to  prove (3.6) and 

(3.8). 

Proof of (3.6): We introduce R by postulating 

R x Y iff g (Gz l (x ) )  = Gz2(x) A Y = Y. 

It is obvious that R <  g . Hence according to Kleene we have a computa- 

ble total function r s. t .  

(3.15) v y R x y iff V ~ T '  r (x)  r (x )  y . 
g 

The left side i s  equivalent to  g( cg (x)) = 6/  (x) . Hence from (3.15) we 
2 1 22 

obtain g < g l ( r )  , and trivially g l ( r )  6 g1 . 
1 

Proof of (3.8) : Let  be f 6 g. We define Rxy by Tf xxy . R \< g, since 
1 

Tf \< f <  g. Using Kleenels theorem we have 

1 
. ~ y  ~ : x x y  iff V ~ T  r(x)  r (x)  y . 

g 

which shows that f1 = g f ( r )  < g1 . 

7. The upper-semi-lattice T '  (lecture 2, no. 4) with the additional 

jump-operator i s  a very cornplrex s t ructure  which has  been intensively 

studied. I want to mention only two results: 

(1) Every countable partially ordered se t  i s  imbeddable in T. 
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(2)  The complete degrees (e.g. the degrees of the form dl) coinci- 

de with the degrees > 0 ' .  - 

8. Of special interest  a r e  the degrees of enumerable sets.  These de- 

grees  a r e  called enumerable degrees. About the enumerable degrees we ---- 
have the following elementary facts: 

(a) 0  i s  an enumerable degree, since every decidable se t  belongs 

to 0  and every decidable se t  i s  enumerable. 

(b) Going back to the intruitive notion of enumerability it is easy 

to  s e e  that every enumerable se t  may be expressed in the form Vy Rxy, 

where R is decidable. Conversely each se t  of this form with decidable 
1 

R is enumerable. If is a computable total function (e.g. f = S ) then 
1 1 

Tf xxy i s  decidable. Hence YyT xxy is enumerable. This shows that 
Y 

O 1  is an enumerable degree (cf. (3.5)) . 
(c) As we have seen in (b) , each enumerable se t  S may be 

expressed in the form Vy Rxy with decidable R. Using Kleenets Theorem 

(3.11) for a computable total unary function g, we obtain the result  that 

degree of S = g t ( r )  < g1 = 01. --- - 
We have shown that 0  and 0' a r e  enumerable degrees and that for 

every enumerable degree we have 0  < d < O t .  Post (1944) has asked whether - - 
there  a r e  enumerable degrees other then O , O 1 .  This question has been an- 

swered (positively) not before 196617. Cf. Lecture 4 and 5. 

R E  F E  R E N C E S :  See Lecture 1. - Kleene and Post  [I] , Post ll] ------------ 
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L e c t u r e  4: T h e o r e m  of F r i e d b e r g - ~ u & n i k ,  P a r t  I .................................... 

1. The  Fr iedberg-Mucnik  T h e o r e m  a n s w e r s  in  t h e  a f f i rmat ive  the  

quest ion whether  t h e r e  a r e  e n u m e r a b l e  d e g r e e s  b e s i d e s  0 and 0 '  (cf. 

L e c t u r e  3, no. 8) . We follow t h e  t r e a t m e n t  of Sacks  who t r i e s  t o  s e p n r a -  

t e  a combina tor ia l  p a r t  of t h e  proof  (which h e  c a l l s  "pror i ty  method")  

f r o m  t h e  r e s t  which u s e s  r e c u r s i v e  concepts .  T h i s  l e c t u r e  is devoted t o  

t h e  combina tor ia l  p a r t .  T h e  proof  is f inished i n  t h e  next l e c t u r e  . F o r  

o t h e r  p roofs  cf.  t h e  r e f e r e n c e s .  

2. T h e  individuals  c o n s i d e r e d  h e r e  a r e  n a t u r a l  n u m b e r s .  L e t  b e  

E, F, F' unary  and  H, D b i n a r y  p r e d i c a t e s ,  and  g a to ta l  u n a r y  fun- 

ct ion (whose a r g u m e n t s  and v a l u e s  a r e  na tura l  n u m b e r s  ). We in t roduce  

t h e  following abbrev ia t ions  : 

(4.1) L r s  f o r  O<r<s A 7F1 r A Fr A ~ H r s  - 1, 

(4.2) Ps f o r  Vr(gr)<g(s)  A L r s  A D r s )  , 

(4.3) Qs f o r  V r ( g ( r )  = g(s)  A L r s )  , 

(4.4) $) s k  f o r  O<s A T F I  s A Fs n g(s)  = k, 

(4.5)  s k  f o r  V r ( r < s  A 4 r k  A ~ H r s  - 1 4 H r s ) ,  

(4.6) @ (k) f o r  [s: 4 rk) , 

(4 7) p ( k )  f o r  p : Y / s k ]  . 
T h e  der iva t ions  i n  t h i s  l e c t u r e  a r e  b a s e d  on t h e  following 

Al :  

A2: 

A3: 

Axioms: 

S A F s C ) ~ E S  

~ H r s  . -  1 A H r s  --, D r s A y E s  

H s s  + E s  
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A7: Hrs  - 1 4 Hrs 

We f i rs t  prove several  lemmata. The most important a r e  Lemma 4 and 

Lemma 5 which relate the predicates C$ and v .  These lemmata a r e  

used to derive Lemmata 8 and 9 which show that for each k the 

s e t s  (k) and y ( k )  a r e  finite. This immediately leads to Lemma 10. 

Axioms 6 and 7, not used hitherto (and no other axiom) will be used 

in o rder  to derive Lemma 11. In the next lecture we apply only Lemmata 

10 and 11. 

3. Lemmata 1 to 5. 

Lemma 1. 4 s k 4  7 E s .  

Proof: Axiom 1. 

Lemma 2: y s k - - )  7 E s .  

Proof: Axiom 2 .  

Lemma 3. 4 sk- +ss. 

Proof: 
7- 

Lemma 1, Axiom 3. 

Lemma 4: r < s A 4 r k  A @ sk  ->Vu(r<u<s /\ Y u k )  . 
Proof:  F rom @sk  we get -Qs(Lemma 1,Axiom 5). Using O r k  

and (psk we have g ( r )  = g(s). Hence ,Qs gives - L r s .  Since we 

have 0 < r < s ,  7F1r  and F r  (from 4 rk), we get Hrs-1. F rom r k  

w e  obtain ,Hrr (Lemma 3) .  Comparing -->Hrr and Hrs-1 we fina 

that there  i s  a number u s . t .  r < u < s ,  1 H r u - 1  Hru. This together 

with @ r k  gives yuk . 
Lemma 5 :  -- 4 i(i<k A 4 s i )  . 
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Proof :  Using the  definition of '?+/$K we have a n u m b e r  r s. t .  r < s ,  

q r k ,  7 H r s - 1 ,  H r s .  L e t  b e  i  = g(s ) .  R e m e m b e r  that  k = g ( r )  ( f r o m  @-k). 

If we a s s u m e  k~ we get a contradict ion:  Then  we have g ( r ) = g ( s )  and 

L r s  (using 4 r k  and  7 H r s - 1 ) .  Hence we get Q s  and,  with Axiom 5, E s .  But 

w e  a l s o  h a v e i E s  by L e m m a  2. 

If we a s s u m e  k<i we get  a contradict ion:  Then we have g t r )  < g(s) ,  -- - 
L r s  ( a s  above)  and D r s  (using Axiom 2). Hence we  ge t  Ps and (with Axiom 4) 

E s .  But have i E s  by  L e m m a  2. 1 

Hence we  have i < k. F r o m  y s k  we g e t  7Es ( L e m m a  2), then  

-,Ft s and Fs (Axiom 1). Since 0 < s and g(s )  = i we have $ s i 7  - 

4. L e m m a t a  6 to  9. 

L e m m a  6. 

Proof:  L e m m a  5.  

L e m m a  7.  c a r d  ($ (k) 5 c a r d  y ( k ) + l  . 
Proof;  Accord ing  t o  L e m m a  4 between two n u m b e r s  r, s with 

r < s, ($ r k  and  @ s k ,  t h e r e  is a number  u s. t .  p u k .  Hence if @ (k) 

is infinite then a l s o  v ( k )  is infinite. If $ ( k )  is f ini te  l e t  be  

@ ( k )  = 1 S o , . . . , S  'j with s < s <. . . < s . Then  we have n u m b e r s  
0 1 

U 1 . . . . ~ u  
s . t .  s c u  <S <U s U S  t .  Y u l k  ,..., y'unk. Hen- 

n o 1 1 2  2 n n 
c e  c a r d  (k) + 1 > n+l  = c a r d  $(k). - 

L e m m a  a. c a r d  y ( k )  < 2k . 
P r o o f  by induction: ( a )  (0) is void (cf.  L e m m a  5 )  . Hence c a r d  

y(0) < 2' . (b)  L e t  L e m m a  8 b e  t r u e  f o r  a l l  i < k. Then  we have  

c a r d  f i k )  < c a r d  @(d)(~emma 6)  
: - iCk 

< ( c a r d  2fl/(i) + 1 )  ( L e m m a  7 )  - 
i c k  

< 2 2 i  (induction hypothesis)  - 
i c k  
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L e m m a  9. c a r d @ ( k )  & Zk 

Proof :  L e m m a t a  7 ,  8. 

L e m m a  10: A k  v u  A r /I i (u<r A i - < k-+@rilI7yri). 

o f :  The  g i s t  of L e m m a t a  8.9 is t h e  fact  that  $(k) and  y ( k )  a r e  

f ini te  f o r  e a c h  k. F r o m  t h i s  we in fe r  immedia te ly  L e m m a  10. 

L e m m a  11: L e t  be  

(1) g ( s )  = k , 

(2) -F' s, 7Hss- l ,  

( 3 )  u < s, 

(4) /\ r /\ i(u < r A i <  k 4 l @ r i  A 7 y r i ) ,  

(5) A r ( r  ,< u + q D r s )  . 
Then we have 

V r ( q r k 4  ,dm -I H r m )  

Proof: F r o m  (4) we get f o r  r = s and i = k t h a t  - j @ s k .  Looking 

a t  t h e  definition (4.4)  we find that  TFS. Hence Ps V Q s  V H s s -  1 (by 

Axiom 6).  

H s s -  1 is excluded by (2). 

Ps c a n  be  excluded a s  follows: A s s u m e  Ps. Then  t h e r e  is a num- 

b e r  r ,  s. t .  0 < r < s, F r F H - 1  g ( r )  < g(s ) ,  D r s .  L e t  b e  

i = g ( r ) .  Then  we have  4ri .  Now i = g ( r )  < g(s )  = k. Using (4) we ge t  

r \< u. Hence -,Dm by (5), con t rad ic t ing  D r s .  

T h e r e f o r e  we  have Qs .  By definition of Q we have a n u m b e r  r, 

s . t .  0 < r < s, F F l H r s - l ,  g ( r )  = g ( s )  = k . F o r  th i s  r we  

have  @ r k .  We want t o  show that  ~ H r m  f o r  e v e r y  rn. 

We have ~ H r s  - 1. Hence by Axiom 7 we have  - t H r m  f o r  m<s-  1. 

If now H r m  f o r  s o m e  m ,  we have a n u m b e r  m - 2 ~ 9  . s . t  ~ H r m - 1  

and H r m .  T h e r e f o r e  w e  would have q m k  (by definition (4.5)). Now (4)  shows  

tha t  7 H r m  which c o n t r a d i c t s  H r m .  

R e  f e r e  n c e s : F r i e d b e r g  r17, Mucnik rll , Lachlan Ll] , Sacks  [I], Shoenfield 1 
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Lecture 5: T h e o r e m  of F r i e d b e r g - - ~ u F n i k ,  P a r t  I1 ----------------------- ----------- 

1. We want t o  snow that  t h e r e  a r e  e n u m e r a b l e  d e g r e e s  do, d l ,  s . t .  

do$' d l  and dl&do. Since f o r  e v e r y  e n u m e r a b l e  d e g r e e  d we have  

0 < d ,< O f  (cf. L e c t u r e  3, no. 8) n e i t h e r  d n o r  d c a n  b e  0 o r  O f .  
0 1 

In t h i s  l e c t u r e  e v e r y  s e t  ( relat ion,  function) h a s  n a t u r a l  n u m b e r s  a s  

e l e m e n t s  (a rguments ,  values) .  S m a l l  l e t t e r s  r e f e r  t o  n a t u r a l  n u m b e r s .  F o r  
0 1 0 

e a c h  s we wil l  def ine s e t s  A.s, A s t .  t h e  b i n a r y  r e l a t i o n s  xE.A and  
s S 

x&A1 a r e  r e c u r s i v e  ( i .e .  decidable) .  Now we in t roduce  t h e  s e t s  AO, A 
1 

S 

by  

F r o m  t h e  equivalence x PA '  iff v s x e ~ :  we  in fe r  that  A0 is e n u m e r a -  
1 

ble  (cf . L e c t u r e  3, no. 8) . The  s a m e  holds f o r  A . 
T h e  defini t ions of A' and  A' wil l  b e  i n t e r r e l a t e d .  We l a t e r  on  

S 

define s e t s  Ts s.t. x e T s  is a b i n a r y  r e c u r s i v e  re la t ion  and in t roduce  

1 
(5.2)  n C A O  iff 2n E T n €A iff 2 n t l e T  s s- I '  n s-1' 

2. The  s e t s  Ts will  b e  defined toge ther  with s e t s  FS, HS and 

a function g ( s )  by s imul taneous  r e c u r s i o n .  We in t roduce  t h e  following a b b r e -  

viat ions:  

FIS f o r  F' c T ~ -  , F f o r  F' c T , 
s S 

H r s  f o r  B' n T~ j O. D r s  f o r  H~ n F' j 0, 

E s  f o r  T = 
S Ts-l - 



H.. H e r m s s  

The  defini t ions of F' , H', T a n d  g(s )  a r e  given by (5.6) f o r  t h e  c a s e  
S 

s = 0. F o r  the  c a s e  s > O  we d i s t inguish  C a s e  1 w h e r e  we have t h e  defi- 

ni t ions (5.9),  (5. lo ) ,  (5.11) and C a s e  2 w h e r e  we have  t h e  definition 

(5. 12)  f o r  FS, H', and  g(s )  . In bo th  c a s e s  T is given by (5.13)  and  s 
(5. 14) . 

0 0 
(5.6) F = H = T o = 0 (void s e t ) ,  g(0) = 0. 

s- 1 
In o r d e r  t o  define FS , H' and g(s )  f o r  s > O  we suppose  that  F , 

- 1 
and  g(s-1) a r e  defined. Hence a l s o  A: and  A' a r e  given by 

1 
( 5 . 2 ) .  L e t  b e  f , f the  c h a r a c t e r i s t i c  funct ions of A:, A:. L e t  b e  

(5.7) ~ ( s )  = 0 if s is e v e n  , e ( s )  = 1 if s i s  odd, 

(5.8) e ( s )  = the  number  of p r i m e  f a c t o r s  3 occur ing  i n  t h e  p r i -  

m e  n u m b e r  r e p r e s e n t a t i o n  of s. 

Cons ider  the  following condition ( w h e r e  p is the  kth p r i m e  n u m b e r )  : 

We have  Case  1 if (*) is sa t i s f ied ,  o therwise  C a s e  2.  In Case  1 l e t  

be  r ( s )  the  g r e a t e s t  m f o r  which V y  (...) , Then  we define : 


