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INTRODUCTION 

The purpose of these lectures is to develop some deeper re- 

sults in a-recursion theory which will hold in somewhat more 

general setting than L(a) and in particular in many other admiss- 

ible sets and structures. In addition, I will briefly mention 

some applications to structures which arise from other areas of 

recursion theory and which are inadmissible. 

An important underlying idea behind many of these theorems 

is the notion of a dynamic argument. In general what is meant 

by this is the following: In w-recursion theory, the starting 

point for all of these generalizations, the exceedingly strong 

closure properties of w are used in almost every construction, 

often without a second glance. Almost any operation on finite 

sets yields a finite set and in particular the image of a finite 

set under any function is finite. Uhen we consider a-recursion 

theory, a C1-admissible, we of course loose a great deal of 

the closure present in w-recursion theory. However we still 

have a certain weak closure property - the image of an a-finite 
set under a C (L 1 function is a-finite. But as soon as we do a 

I a 
construction in which a C (La) (or C (L ) . . . .) function arises, 3 a 



and such does occur in almost every priority argument, then we 

immediately run into trouble. (We will see a concrete example of 

this shortly when we start talking about Post's problem in this 

setting. 

While we have lost the strong closure properties in L(a) 

we have gained the use of much work in set theory, mainly by 

~ o d e l  and Jensen, in which many deep properties of L have been 

developed. It is just these properties of L which often save us 

when we run into trouble because of a lack of closure under cer- 

tain functions. 

Now some properties of L work, under suitable conditions, in 

other settings, while others are really peculiar to L. In part- 

icular many of the deeper results about L depend on taking 

Skolem hulls of certain sets in L(a), taking the tranitive col- 

lapse of that Skolem hull, and being able to determine exactly 

what that transitive collapse looks like, namely, an initial 

segment of L(a) (an L (y) for some ~ ( a ) .  

These collapsing arguments tend to be very specific to L and 

almost never work in other settings. In particular, they fail 

when the universe is changed by constructing L relative to a 

given predicate. So, to get constructions to work in more gen- 

eral settings, we need to eliminate, if at all possible, these 

collapsing arguments peculiar to L. We want to give a "dynamicn 

argument (basically more similar to the original one for w), 

which views r.e. sets is being listed and increasing in an 

effective manner, not as being defined by a El-formula which is 

really the crucial property making collapsing arguments work. 

In order to make this more explicit I want now to turn to a 



couple of concrete examples. Both examples depend upon the same 

method and so the second will be given in much less detail. 

After presenting these examples I will indicate some extensions 

and applications of these results to other areas and in parti- 

cular to admissible sets and structures. We will also, and of 

course this is the reason these methods were first developed, 

gain some knowledge of the structure of a-r.e. degrees. 

In what follows I am assuming a familiarity with the 

basic facts and definitions of a-recursion theory. These are 

given in the first of Sacks' lectures in this volume. For a 

more detailed account see the papers by simpsonpg or ~hore(141. 

1. Post's Problem for a-Recursion Theory 

Let o be a C1-admissible ordinal. We want to prove the 

following theorem. 

Theorem: There exists two a-r.e. sets which are incomparable 

with respect to < . This theorem was originally proved by Sacks 
-a 

and Simpson 1111. Their argument depended heavily on using 

properties of Skolem hulls in L. 

I will present another way of proving this theorem based 

largely on ideas of R. ~horeb41 , (161 . Shore's ideas were 

applied to this problem by Simpson t191 The proof is more 

dynamic, more "constructive" if you will, than the original 

proof and, as we will see, is more adaptable to other settings. 

It is not so dependent on the special properities of initial 

segments of L. 

The argument will be presented by starting out with the 

basic ideas for solving Post's problem from w-recursion theory. 



I assume some familiarity with that argument. As we try to 

carry out the argument in the setting of L(a) we will meet with 

various difficulties for which we will propose solutions. Fin- 

ally, we will put all of this together to get the actual con- 

struction and proof. 

Now, we are going to construct two a-r.e. sets A and B. 

We require that A g a B  and BfaA. In fact we will construct them 

to satisfy the stronger incomparability, A dWaB and B &,,A. 

That is, for each e e L(a), we want to ensure that 

A : {elA + B S e and 

A bit of notation is necessary here. Requirements of the 

B form ~ f t  are called A-requirements, requirements of the form Se 

are B-requirements. In these requirements we are identifying a 

set C with its characteristic function, 

For any set CSa, we let F = a-C. In the construction of A and 

B we let A' (Ba) = set of elements enumerated in A (B) by stage 

a. Finally let A" = A ~ ,  B<' = U B6. 
6<a 6<a 

The method used to satisfy the above requirements is the 

A same as for U-recursion theory. Consider (el # B. At various 

stages of the construction it will appear that we can use A to 

to enumerate E. That is, at a stage a we will see that - 
(e]ti%O for some x which is in B". We would like to put x into 

Bar insuring that ~ ( x )  = 1, and at the same time try to keep 
A< a the computation {el (x) = 0 correct. This computations uses 



- 
a-finite subsets of A'' and A'' and so we try to keep the u- - 
finite subset of A'' from intersecting A. 

B 
Of course, we do the same for requirements {e'l # A. For 

such requirements we try to keep elements out of B and to put 

them into A,so they tend to conflict with the A-requirements. 

Such conflicts ariseinclassical recursion theory as well and 

are resolved by giving priority to a requirement s over a 

B requirement Set if, say, e 2 el. If we do this, an inductive 

argument then proves that each requirement is eventually acted 

upon successfully. In addition, for any e, there is a stage of 

the construction by which any action taken on behalf of require- 

ments sA or sB , where eO, el < e, has already been taken. In 
0 1 

other words all activity on behalf of such requirements has al- 

ready settled down. 

This gives rise to the first major problem in doing this 

argument for a. The function taking the eth requirement to the 

first stage at which it has settled down is C2(L(a)) and so we 

can't use the admissibility to get a bound on the activity of 

the requirement. 

For example, lets look at the particular admissible ordinal 

a = It could be that 5: does not stop acting until after 
I I A 

stage S: until after stage A1, the S1 until after stage 
x2, etc. If this were the case then there might be no stage 

A 
past which the requirements, is never injured, there being no 

bound on the activity of the first ,-many requirements. 



Picture: 

requirements stages past which 
requirements have 
settled down 

The problem is that our priority listing of requirements is too 

long. If we just list our requirements in the usual, most 

B 
straightforward way, 6, s t ,  4, s:, S$, ..... 8, e set --, e<a, 
an initial segment of this list may never settle down.* 

Shore devised the following method to avoid this problem. 

Note that requirements of the same kind do not conflict. We 

take advantage of this trivial fact by arranging our require- 

ments in groups or blocks, each block containing requirements 

In fact it can be shown that this problem is avoided for this 

particular a. However for many admissible a this is the crucial 

problem. 



of the same type. We essentially treat each block as a 
A B B 

single requirement. So we will have blocks Ro, Ro, R;, R1.. . 
B 

where R: is a block of A-requirements, Re a block of B-require- 

ments. Each block consists of lots of requirements but as 

they don't conflict we give each requirement the same priority. 

By doing this we can, for troublesome a, get away with less 

than a-many priorities and blocks and so will be able to 

bound the activity of an initial segment of blocks, even 

though the function giving this bound is 5 (L(a) 1. 

How short do we need to make the list of blocks? Short 

enough so that no 5 function from an initial segment of the 
list of blocks to a is unbouriddd. 

Definition: Let A = Z, cf(a) = least 5 a such that the there 

is an f:B+a, f % ( L ( a ) )  and range(f) unbounded in a. 

We will make the list of blocks have length A, thus ensuring 

the above property. 

Now this takes care of part of the problem as there are 

now not too many blocks. Within each block, requirements 

don't conflict. We need to make sure that no block is too 

large so that we can find a stage at which all activity in 

a given block has settled down. Let's look at the very first 

block. The requirements in this block, since they have the 

highest priority, are all acted upon once at most. The set 

of requirements which are acted upon is a-r.e.. If we could 

ensure that this set is a-finite, we could then conclude there 

is a stage past which no requirement in the first block is 

acted upon. How can we do this? Make the block bounded 

below a*, for any a-r.e. set bounded below a* is a-finite. 



(For a proof see Devlin 131 or Sacks' lectures in this 

volume.) To accomplish this we will use a projection 
1-1 

p: a --+a* to enumerate our requirements in a list of length 

a*. Our blocks will then be subsets of a*. 

We have one more problem to surmount. We would like to 

divide a* into C 2cf(a) many blocks. We could divide a* into 

C 2cf (a*) many blocks, where C 2 ~ f  (a*) = least B 5 a such that 

there is an f: (3 + a*, f C (L (a) ) and range (f) unbounded in 

a*, but this could be too many blocks. The following crucial 

lemma says that this cannot happen. 

Lemma: C2cf (a) = C 2 ~ f  (a*). 

Proof (simpson 1191 ) : 
1- 1 

Let p: a + a* be a-rec. Using the admissibility of 

u ~t is straightforward to show that if X S a  is unbounded then 

Pm is unbounded in a*. 
NOW let 6 < a, g: 6- be C (L(a) ) with range (g) 

unbounded in a. The peg: 6---* is C2 (L (a) ) and by the 

above fact, range(pog) is unbounded in a*. So Z2cf(a*) 5 

C2cf (a) . 
Conversely let h: y - ~ *  be C (L (a) ) and range (h) 

unbounded in a*. Define k: y--4-a by, for v < y, 

k is C (L (a) ) and range (k) is unbounded in a. 

SO c p f  (a) 5 C2cf (a*). 



2. The Construction and Proof 

Using the above lemma we can now put all of our consid- 

erations together and give the blocking construct-ion. 

Let H: A = C 2cf (a) = C2cf (a*) -4 a* be a C2 ( ~ ( a )  ) function. 

Without loss of generality we can assume, 

1. ~ ( 0 )  2 H(1) 2 . . . < H(y) 5 . . . < a* and - 
2. H ( 0  = yy6~(y)r for any limit ordinal 6. 

For details of this and other properties of the blocking 

function H and its approximation see Simpson rl91 . 
Using the above H function we can now say precisely what 

our blocks R:, R ,  4, R . . . of requirements will be. 
A A A A  A Ro = SO, S1, S2, . . . , Se, . . . e < H(0) 
B  B B  B  Ro = So, S1, . . . , Se, . . . e < H(1) 

A A A R: * So, S,, . . . , Sen . . . e < H(2) 

B B B  B  R2 = So, S1, . . . , SeI . . . e < H(3) 

The picture is: 

We will now give the construction of the a-r.e. sets 



A and B. In this construction three "details" are left out. 

These require some care but tend to obscure the proof so I 

will briefly describe them here and leave them to you. 

1. It is convenient to keep the witnesses x for different 

requirements disjoint and necessary to make sure we have an 

endless supply of them. To do this, break a up into a-many 

disjoint a-rec. sets, each unbounded in a. Assign one such 

set to each requirement in each block. The witnesses for 

a requirement are constrained to come from the associated set. 

2. Since H is E *(L(a)) we cannot effectively calculate its 

value. Instead we approximate H with an a-rec. function G. 

G has the property that when restricted to an initial segment 

of A, G equals H on all but initial segment of stages. We 

will refer to H in the construction but keep in mind that 

what we really do is calculate values of G, a "nice" approx- 

imation to H. 
1 - 1 

3. Using the a-rec. projection p: a -+- a* we can assume 

that the requirements are enumerated via ordinals less than 

B a*. So from now on we assume we have requirements <, Se 
where e < a*. Of course many of these requirements are 

undefined but all of the original requirements are contained 

in this enumeration. 

The construction takes place in a-many stages. Initially 
0 AO = B = 8. 

Stage a: 

Step 1: For each odd v < A proceed as follows. Find 

the least e < H(v) and the least x < o in the witness set 

for S: such that 



A 
1. There is no requirement for Se. 

2. B<'(x) = 0 = {ela (XI. 

3 .  x is not being kept out of B for some requirement in an 

earlier block. That is, a requirement in some block deter- 

mined by H ( v '  ) where v '  < v. 

If no such e and x exist do nothing and proceed with 

step 2. 

Otherwise put x in B' and create a negative requirement 

keeping out of A all elements of A" used in the computation 

of {elf:x) = 0. If x is contained in any negative require- 

ment on B that requirement is destroyed. 

Step 2: Do the same as in step 1 only for even v  < X 

interchanging the roles of A and B. 

The following claim is the main ingredient in showing 

that the construction works. 

Claim 1: For each v  < A there is a stage a. such that all 

activity on all blocks 2 v  has ceased. i.e. At no stage 

past a. is any requirement in any block 5 v  injured or acted 

upon. 

Proof: By induction on v < A .  

Case 1: v  = 0 

The proof here is the same as in the successor case 2. 

Case 2: v  = v '  + 1 

By induction there is a stage a such that by stage a 1 1 

all blocks up to and including v '  have settled down. Then 

past stage al no requirement in block v  can be injured. 

Consider the set I = {ele < H ( v )  and for some a2 1 alr 



A Se is acted upon a't stage up} (Without loss of generality 

we are assuming here that v is odd.) I is a-r.e. and 

I "(v) < a*, hence I is a-infinite. 

Define f: I ---+ a by 

f (el = least a (st is acted upon at stage 0). Then 

f [a is bounded by the desired stage ao. 
Case 3: v a limit ordinal 

Define g: u 4 a by, for y < v, g (y) = least a (block 

y has settled down by stage a), Then g is C (L (a) ) and SO 

since v < A ,  g rv] is bounded by the desired stage oo. __I 
We can now prove the theorem. 

Claim 2: A f waB and B 1 waA. 
Proof: We will show A f waB. 

Assume not, then A = {elB for some e < a*. Let v < A be the 

least even ordinal such that e < H(v). Let uo be a stage 

past which all blocks 5 v have settled down. Then there is 

an x < u0 in the witness set for sB as a v-requirement and 
< 5 

a stage al > X, u0 such that {elB (XI = A<',(X) = 0. AS 
O1 

x > ao, x is not in any negative requirement for A of higher 

priority and x jf A. So at stage ul either x is put into 

~'1, contradicting x # A or there is a requirement for 
B S present at stage al and hence never injured, insuring 
e 

that {elB f A. + 



3. The Splitting Theorem 

The blocking method described in the previous sections was 

first developed by Shore to prove the following generalization of 

Sacks' splitting theorem. 

Theorem (Shore C163 : Let C and D be regular a-r.e. sets with 

D not a-recursive. Then there exists a-r.e. sets A and B such 

that ~n B = $, A U  B = C, A ,  c D{~A and D&B. 

All of the usual corollaries of the splittinq theorem 

concerning Turing degrees are true for a-degrees as a conse- 

quence of this theorem. For instance below any non-zero 

a-r.e. degree there are two incomparable a-r.e. degrees. 

We have already encountered in our proof of Post's problem 

all of the major obstacles to provinu Shore's splitting theorem. 

This being so I will constrain myself to briefly mentionins 

the main ideas of the proof. 

The requirements which we satisfy are of three types: 

s:: {elA f D 
s:: {elB f D 

R : x E C + X E A U B  

As usual we construct A and B in a-many stages. To 

satisfy S: we follow Sacks' original strategy of trying to 

preserve the equality {elA = D on lonsek and longer initial 

segments of a. The idea here is that if we succeed in pre- 

serving eauality all the way up to a then we could compute D 

a-recursively. Since D is not a-recursive this can't happen, 

but if {elA = D we could show that the preservation up to a 

A would succeed. So Se must be satisfied. S: is handled 

similarly. To satisfy R we insist that when an ordinal x 



appears in the a-recursive enumeration of C at some stage of 

the construction, it is immediately put into exactly one of A 

or B. Such an x is put into A or B so as to preserve the 

highest priority negative requirements on A or B which contains 

x. These negative requirements are created for A and B as a 

B result of action taken for S: and Se. 

The construction is carried out just as in the above proof 

B of Post's problem. As there, the requirements sA and Se e 

are enumerated via ordinals less than a* and a* is divided 

into C2cf(a)-many blocks. The stages of the construction are 

carried out just as for the previous proof. Of course, action 

on behalf of the various requirements is different as de- 

scribed above. 

The proof that the construction works is also very similar 

to that of Post's problem. As before an inductive argument 

is necessary to show that every block eventually settles down. 

Once this is shown the various properties of A and B are easily 

shown. For a more detailed and precise account of this argument 

see Shorerl41 or 1161. 

4. Applications 

The arguments we have discussed so far have been refined 

and applied to several other areas of recursion theory. The 

major area we will consider is admissible sets and structures, 

but before doing this I want to look briefly at two other 

places where these methods have been of use. 

The first of these is Kleene recursion in an object of 

finite type. For the relevant definitions see Sacks' article 



in this volume or Kleene r9J. Harrington 1 7 1  was able to apply 
the results of a-recursion theory to solve a particular version 

of Post's problem for higher types. In order to do this 

Harrington used the following strong solution to Post's-problem 

for a-recursion theory. 

Theorem (Shore h7)): There exists a pair of integers m,n 

such that for a11 B and a where (L~KB], r ,  B) is admissible, 

m and n are indices for a-B-r.e, hyperregular sets such that 

neither is a-B-recursive in the other. 

The proof of this theorem is a refinement and extension 

of the blocking proof presented earlier. In particular, extra 

requirements are necessary to make sure the sets constructed 

are hyperregular. To make the construction uniform the para- 

meters used in the construction, a* and E2cf (a) , cannot be 
used outright but must be "guessed at", that is approximated, 

during the construction. 

Harrington's version of Post's problem considers reduction 

procedures which allow subconstructive parameters. These para- 

meters are essentially ordinals which arise from computations 

in an object of type n + 2 with type n - 1, that is sub- 
individual, parameters. Harrington 1 7 1  shows that there are 
two r.e. sets of subconstructive ordinals which are incomparable 

with respect to the above reducibility. 

The proof proceeds by reducing PosC1s problem in the above 

setting to Post's problem for an admissible structure of the 

form < L ~  187, E ,  8) and then applying Shore' s result. 

Recently, a strong version of Post's problem for higher types 

has been proved by Sacks. The blocking method is also an 



ingredient of his proof. For a more detailed discussion of 

this see Sacks' article in this volume. 

A second area of application for these methods has been 

to B-recursion theory where B is a weakly admissible ordinal 

(that is Zlcf(B) 2 B*). Post's problem was originally solved 

for weakly admissible ordinals 6 by Sy Friedman 147 . 
Friedman's proof was very close to the above argument for 

a-recursion theory. The one important difference is that 

requirements have to be added to insure that the two sets 

constructed are tamely-0-r.e.. The splitting theorem works 

similarly in this case, (see Homer MI. It should be noted 

that the admissible collapse of Maass 501 can be used to get 
these results directly from the corresponding results of 

a-recursion theory. 

Admissible Sets 

In this section I want to present the axioms for admissible 

sets due to Kripke and Platek. Models for these axioms were 

envisioned as structures within which to do recursion theory. 

As such, it is natural to try to determine the solution to 

Post's problem in various admissible sets. In particular, it 

would be interesting to see if there are certain necessary and 

sufficient conditions for Post's problem to have a positive 

solution in an admissible set. Before addressing this 

question we need to briefly investigate How much recursion 

theory can be developed in these structures. For an in-depth 

look at admissible sets see Barwise r21. 

Definition: An admissible set A is a transitive set satisfying 
1. union: x E A - UX E A 



2. pairing: x,y E A - {x,yl E A  

3. AO-comprehension: If 4 (x) is any A0 formula, 

VaJb)/x(x c b - x E a 4 #(XI). 

4. b0-bounding: if ((x,y) is any A0 formula, (Vx3y((xIy))-r 

(\ds3tVx E ~ 3 y  E ~('$(xIY))). 

There are many stronger forms of comprehension and bounding 

which are provable from these axioms. We now state one of 

these in order to relate these axioms to the replacement 

principle of a-recursion theory. 

Theorem (C1-replacement): If A is admissible, a E A  and f is 

Zl(A) then ffa is an element of A. 

Hence we see that the same replacement principle is present 

in both a-recursion theory and the theory of admissible sets. 

The hope is that by studying this theory we will gain some 

understanding of exactly what properties are most important 

to carry out various recursion theoretic arguments. Studying 

admissible sets allows us to try to apply our methods to 

structures other than L(a) without giving up the strong closure 

properties provided by admissibility. 

Typical examples of admissible sets are the collection 

of hereditarily finite sets, sets of hereditary cardinality 

less than K ,  for any cardinal K ,  and models of ZF. The 

following definition links up the notions of admissible set 

and admissible ordinal. 

Definition: Let A be admissible. Then I A ~  = ordinal height of 

A = least a(a is an ordinal and a / A). 
Claim: a is an admissible ordinal iff a = I A l  for some admis- - 
sible set A. 



Sketch of proof: Assume a is an admissible ordinal. Since 

then L(a) satisfies C1-replacement it is easy to check that 

L (a) satisfies the axioms for an admissible set and I L  (a) 1 = a. 

Conversely assume a = I A ~  for some admissible A. Now carry 

out the construction of L(a) within A. By absoluteness, this 

is the real L(a) and by Z1-replacement in A, L(a) satisfies 

C -replacement. So a is an admissible ordinal. 
1 --i 

We now turn to exploring recursion theory on admissible 

sets. 

Definition: Let A be admissible. 

1. B 5 A is A-r.e. if B is E1(A). 

2. B S A  is A-rec. if B is A1(A). 

3. B A is A-finite if B E A. 

Theorem (Enumeration Theorem): There is a universal A-r.e. 

relation W(x,y) such that, if Wa = { y l ~  W(a,y)), Wa ranges 

over all A-r;e. sets as a ranges over A. 

Corollary: There is a non-A-recursive, A-r.e. set. 

The above two facts are about as far as we can go without 

any additional assumptions on the admissible set. In particular, 

there is no hope of a positive solution to Post's problem for 

all admissible sets as the following theorem of Harrington 

shows. 

Theorem (Harington 171): There exists an admissible set A in 

which every A-r.e. set is A ~ ( A )  or zl-complete. 

There are a couple of interesting open problems associated 

with this result. The admissible set which Harrington con- 
: 

structs has height a2. 
Tt is not known if Post's problem can fail in an admissible 


