A. Pignedoli (Ed.)

CIME Summer Schools

Some Aspects of Diffusion Theory

Varenna, Italy 1966

Some Aspects of Diffusion Theory

Lectures given at a Summer School of the
Centro Internazionale Matematico Estivo (C.I.M.E.), held in Varenna (Como), Italy, September 9-27, 1966

C.I.M.E. Foundation
c/o Dipartimento di Matematica "U. Dini"
Viale Morgagni n. 67/a
50134 Firenze
Italy
cime@math.unifi.it

CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C.I. M. E.)
 4° Ciclo - Varenna - dal 9 al 27 settembre 1966

"SOME ASPECT'S OF DIFFUSION THEORY"

Coordinatore : Prof. A. PIGNEDOLI

V.C.A.FERRARO	:Diffusion of ions in a plasma with applications to the ionosphere	
P.C.KENDALL	: On the diffusion in the atmosphere and ionosphere	pag. 81

(C.I. M. E.)

V. C. A. FERRARO

DIFFUSION OF IONS IN A PLASMA WITH APPLICATIONS TO THE IONOSPHERE

DIFFUSION OF IONS IN A PLASMA WITH APPLICATIONS TO THE IONOSPHERE by
V.C.A. Ferraro
(Queen Mary College, University of London)
\section*{I. Derivation of the diffusion equations in plasmas}

1. The term 'plasma' was first used by Langmuir for the state of a gas which is fully ionised (for example, the high solar atmosphere) or only partially ionised, (for example, the ionosphere). Our main interest in this course will be the diffusion of ions in such a plasma, arising from non-uniformity of composition, of pressure gradients or electric fields.

We begin by considering the simple case of a fully ionised gas and for simplicity restrict ourselves to the case when only one type of ion and electrons are present.

2. The velocity distribution function

We make the familiar assumption of molecular chaos, in which it is supposed that particles having velocity resolutes lying in a certain range are, at any instant, distributed at random. It is therefore most convenient to use six dimensional space in which the coordinates are the resolutes of the position vector \underline{r} and velocity \underline{v}. The state of the plasma can then be specified by the distribution functions $f_{\boldsymbol{\alpha}}(\mathrm{t}, \underline{\mathrm{r}}, \underline{\mathrm{v}})$, where t is the time, that characterise each particle component α, for example, the ions or the electrons The quantity

$$
\begin{equation*}
\mathrm{f}_{\alpha}(\mathrm{t}, \underline{\mathrm{r}}, \underline{\mathrm{v}}) \mathrm{dr} \mathrm{~d} \underline{v} \tag{1}
\end{equation*}
$$

then represents the number of particles in the six dimensional volume element $d \underline{r}$ dy. In the simplest case, the plasma consists of single

V. C.A. Ferraro

ions ($\boldsymbol{\alpha}=$ i) and electrons ($\boldsymbol{\alpha}=$ e). In more complicated cases, the plasma may consist of several ion species in addition to neutral partickles ($\boldsymbol{\alpha}=\mathrm{n}$) such as atoms, molecules, exited atoms, etc. The total number of particles of constituent $\boldsymbol{\alpha}$ in the element $d \underline{r}$ is obtained by integrating (1) throughout the velocity space. This number is, by hypothesis, $\mathrm{n}_{\boldsymbol{\alpha}} \frac{\mathrm{dr}}{}$ and thus $\mathrm{n}_{\boldsymbol{\alpha}}=\int_{\mathrm{f}_{\boldsymbol{\alpha}}}\left(\mathrm{t}, \underline{\mathrm{r}},{\underset{-\boldsymbol{\alpha}}{ }}\right.$) ${\underset{\sim}{\mathrm{v}}}_{\boldsymbol{\alpha}}(2)$. The betaviour of the ionised gas is described by a system of equations (Boltzoan equations) which can be derived as follows. Suppose that each particle of mass m_{α} is acted on by force $m_{\alpha} \stackrel{F}{-}$, then in a time $d t$ in which the particles of constituent $\boldsymbol{\alpha}$ suffer no collisions, the same particles that occupy the volume of phase space $\frac{d r}{d v}{ }_{\alpha}$ at time t would occupy the volume of phase $\left(\underline{x}+\underline{v}_{\alpha} d t\right)\left(\underline{v}+F_{\alpha} d t\right)$ at time $t+d t$. The number in this set is

$$
\mathrm{f}_{\alpha}\left(\mathrm{t}+\mathrm{dt}, \mathrm{r}+{\underset{\alpha}{\alpha}}_{\mathrm{v}} \mathrm{dt}, \mathrm{v}+{\underset{-}{\boldsymbol{F}}}^{d t)}\right.
$$

and the difference

$$
f_{\alpha}\left(\mathrm{t}+\mathrm{dt}, \underline{\mathrm{r}}+\underline{\mathrm{v}}_{\boldsymbol{\alpha}} \mathrm{dt}, \underline{\mathrm{v}}_{\boldsymbol{\alpha}}+\underset{\alpha}{\mathrm{F}} \mathrm{dt}\right)-\mathrm{f}_{\boldsymbol{\alpha}}\left(\mathrm{t}, \underline{\mathrm{r}}, \underline{\mathrm{v}}_{-\alpha}\right) \xrightarrow{\mathrm{dr}} \xrightarrow{\mathrm{dv}}
$$

therefore represent the difference in the gain of particles by collisions to this final set and the loss of the particle to the original set in time dt . This must be proportional to $\frac{\mathrm{dr}}{\mathrm{dv}} \underset{\alpha}{\mathrm{dt}}$; and we denote it by $C_{\alpha} \underline{d r}$. $\frac{\mathrm{dv}}{\boldsymbol{\alpha}}{ }^{\mathrm{dt}}$. Taking the limit as $\mathrm{dt} \rightarrow 0$, we arrive at Boltzmann's equation for ${ }^{f} \boldsymbol{\alpha}$, viz

$$
\begin{equation*}
\frac{\mathrm{f}_{\alpha}}{\mathrm{t}}+\left(\underline{\mathrm{v}}_{\alpha} \cdot \nabla\right) \mathrm{f}_{\alpha}+\left(\underline{\mathrm{F}}_{\alpha} \cdot \underline{\mathrm{v}}_{\alpha}\right) \mathrm{f}_{\alpha}=\mathrm{C}_{\alpha} \tag{3}
\end{equation*}
$$

where $\nabla_{\underline{v}_{\alpha}}$ stands for the gradient operator $\frac{\partial}{\partial u_{\alpha}}, \frac{\partial}{\partial v_{\alpha}}, \frac{\partial}{\partial w_{\alpha}}$ in velocity space.

V.C.A.Ferraro

3. Charge neutrality and the Debye distance

In general a plasma will rapidly attain a state of electrical neutrality; this is because the potential energy of the particle resulting from any space charge would otherwise greatly exceed its thermal energy. Small departures from strict neutrality will occur over small distances whose order of magnitude can be obtained as follows. The electrostatic potential V satisfies Poisson's equation.

$$
\begin{equation*}
\nabla^{2} \mathrm{~V}=-4 \pi\left(\mathrm{Zn}_{\mathrm{i}}-\mathrm{n}_{\mathrm{e}}\right) \mathrm{e} \tag{4}
\end{equation*}
$$

Here Ze is the charge on an ion and -e that of the electrons. In thermodynamic equilibrium, the number densities of the ions and elections respectively are given by

$$
\begin{equation*}
n_{i}=n_{i}^{(0)} \exp \left(-Z e V / k T_{i}\right), \quad n_{e}=n_{e}^{(0)} \exp (e V / k T e) \tag{5}
\end{equation*}
$$

where k is the Boltzmann constant, T_{i}, T_{e} are the ion and electron temperatures and $n_{i}^{(0)}$ and $n_{e}^{(0)}$ are the values of n_{i} and n_{e} for strict neutrality so that $n_{e}^{(0)} \stackrel{e}{Z_{i}}{ }_{i}^{(0)}$. In general, departures from neutrality are small so that we may expand the exponential to the first power of the arguments only. We have approximately

$$
Z n_{i}-n_{e}=Z n_{i}^{(0)}\left(1-\frac{\mathrm{ZeV}}{u T i}\right)-n_{e}^{(0)}\left(1+\frac{e V}{u T e}\right)
$$

and hence

$$
\begin{equation*}
\nabla^{2} v=\frac{V}{D^{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\left\{\frac{k T_{e} \mathrm{Ti}}{\left.4 \pi \mathrm{Ze}^{2}{ }_{\left(\mathrm{n}_{\mathrm{i}}\right.}^{(0)} \mathrm{T}_{\mathrm{i}}+\mathrm{n}_{\mathrm{e}}^{(0)} \mathrm{Te}\right)}\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

V. C. A. Ferraro

The quantity D has the dimensions of a length and is called the Debye distance. The solution of (6) for spherical symmetry is

$$
\begin{equation*}
V=\frac{e^{\boldsymbol{e}}}{r} \exp \left(-\frac{r}{D}\right) \tag{8}
\end{equation*}
$$

where e_{α} is the charge on the particle. For small distances r from the origin ($\mathrm{r} \ll \mathrm{D}$), (8) reduces to the pure Coulomb potential of the charged particle. For large distances $(\mathrm{r} \gg \mathrm{D}), \mathrm{V} \rightarrow 0$ exponentially. Thus in a neutral plasma in thermodynamical equilibrium the Coulomb field of the individual charge is cut off (shielded) at a distance of order D. Hence, we may assume that the particles do not interact in collisions for which the impact parameter is greater than D. The Debye shielding is not established instantaneously; oscillations of the space charge will have a frequency $\omega_{o}=\left(4 \pi n_{e}^{2} / m e\right)^{\frac{1}{2}}$ (since the displacemente of the electrons (or ions) bodily by a distance x gives rise to an electric field of intensity $4 \pi n_{e}$ ex lending to restore neutrality). Thus the time required to establish shielding is of the order

$$
\tau \sim \frac{1}{\omega_{0}}
$$

4. Diffusion of test particles in a plasma

A particular particle, which we call 'test particle', in a plasma will suffer collisions with the other particles in the plasma, which we call 'field particles'. Electrostatic forces between the particles have a greater range than the forces between neutral molecules in an ordinary gas. Consequently, the cumulative effect of distant encounters will be far more important than the effect of close collisions, which change comple-

V. C. A. Ferraro

tely the particle velocities. We shall therefore suppose that the deflections which the test particles undergo are mostly small. The motion of the test particle is most conveniently descibed in the velocity space, i.e., a space in which the velocity vector \underline{v} is taken as the position vector and the apex of this vector is called the velocity point of the particle. Referred to Cartesian coordinates the coordinates of these points will be denoted by v_{x}, v_{y}, v_{z}.

As the test particle changes its position in ordinary space, its position in velocity space changes either continuously or discontinuously due to encounter with fixed particles. In general the displacement is complicated.(Fig. 1)

FIG. 1.

Suppose these are concentrated around the point $\quad{ }_{-}$in the velocity space. At subsequent times the cloud will spread, changing both its size and shape, as a result of successive encounters.

V. C. A. Ferraro

We assume that all the encounters are random, but as we have already seen, we cannot predict the change $\Delta \mathrm{v}_{\mathrm{x}}$ for a single test particles. However, we can define an average value of $\Delta_{v_{x}}$, say ${\bar{\Delta} v_{x}}$ for the large assembly of particles under consideration. If the distribution of velocities is isotropic, then $\overline{\Delta_{\mathrm{v}}} \equiv 0$, by symmetry, and likewise $\overline{\Delta_{\mathrm{v}}} \equiv 0$. But $\overline{\Delta_{\mathrm{v}}}$ need not vanish since the assembly (or cloud) has an initial velocity in the z-direction. However the mean square of $\Delta v_{x}^{2} \frac{\text { will }}{2}$ not vanish. This mean value will contain terms of the form $\left(\Delta v_{x}\right)_{i}^{2}$ and $\overline{\left(\Delta v_{x}\right)_{i}\left(\Delta v_{x}\right)_{j}}$: If the collisions are small we may expect that successive collisions will produce, on the average, the same average change as the first collisions. Thus the N terms $\overline{\left(\Delta_{v_{x}}\right)_{i}^{2}}$ are all equal. But the mixed products $\left(\Delta v_{x}\right)_{i}\left(\Delta v_{x}\right)_{j}$ will vanish when averaged over all particles considered since successive collisions are uncorrelated . Hence

V.C.A. Ferraro

$$
\begin{equation*}
\overline{\Delta \mathrm{v}_{\mathrm{x}}^{2}}=\mathrm{N} \overline{\left(\Delta_{\mathrm{v}_{\mathrm{x}}}\right)_{\mathrm{i}}^{2}} \tag{9}
\end{equation*}
$$

The dispersion of the points in Fig. 2 will therefore increase like $\sqrt{ } \mathrm{N}$, but not, in general, equally in all directions. But the centre of gravity may be displaced by an amount proportional to N. (Fig. 2)

The dispersion of the points in the velocity space produced by collisions of the test particles with the field particles is analogous to the diffusion of particles in an ordinary gas. To measure the rate of diffusion in the v_{x} direction, we consider the average value of ($9+$ per unit time. The resultant value of $\overline{\Delta_{v_{x}}{ }^{2}}$, measuring the increase of velocity of dispersion of a group of particles per second, will be denoted by $\left\langle\Delta v_{x}{ }^{2}\right\rangle$ and called a 'diffusion coefficient', a term due to Spitzer . If the velocity distribution of the field particles is isotropic, the diffusion coefficients $\left\langle\Delta \mathrm{v}_{\mathrm{x}}\right\rangle$ and $\left\langle\Delta \mathrm{v}_{\mathrm{x}} \Delta \mathrm{v}_{\mathrm{y}}\right\rangle$ vanish identically,

The encounters between test and field particles which we are considering are assumed to be binary encounters only . (*) Let \underline{v} be the velocity of a field particle relative to a test particle. Then there will be only three independent diffusion coefficients, namely, $\left\langle\Delta \mathrm{v}_{\|}\right\rangle,\left\langle\Delta \mathrm{v}_{\|}^{2}\right\rangle$ and $\left\langle\Delta \mathrm{v}_{\perp}^{2}\right\rangle$, where $\mathrm{v}_{\|}$and v_{\perp} are measured respectively parallel and perpendicular to $\underline{\mathrm{v}}$. Their values will depend on the velocity distribution function of the field particles.
(*)
The justification for this will be given in Section 7.

V.C.A. Ferraro

5. Binary encounter of two charged particles

(Hyperbolic orbit) Consider the motion of charge e_{2} relati-
 ve to charge e_{1}; let $\quad \underline{r}_{1}$ and \underline{r}_{2} be the position vectors of e_{1} and e_{2} relative to a Newtonian origin. Then the equation of motion of the charges are respectively

$$
m_{1} \underset{\sim}{\ddot{r}}=+\frac{e_{1} e_{2} \underline{r}}{r^{3}}, m_{2} \ddot{\bullet}_{2}=-\frac{e_{1} e_{2} r^{r}}{r^{3}}
$$

where $\underline{r}=\underline{r}_{2}-\underline{r}_{1}$ and m_{1} and m_{2} are the masses of the charges. Hence

$$
\ddot{\underline{r}}=\ddot{\mathrm{r}}_{2}-\ddot{\mathrm{r}}_{1}=-\mathrm{e}_{1} \mathrm{e}_{2}\left(\frac{1}{m_{1}}+\frac{1}{\mathrm{~m}_{2}}\right) \frac{\underline{r}}{3}
$$

that is, the relative motion is the same as that of a particle under a central force at A varying inversely as the square of the
FIG. 3. $m_{12}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass. (Fig. 8).

Let v_{∞} be the relative velocity of the charges at infinity and p the impact parameter. The energy integral is, with the usual notation,

$$
v^{2}=\frac{e_{1} e_{2}}{m_{12}}\left(\frac{2}{r}+\frac{1}{a}\right)
$$

whence

$$
\begin{equation*}
v_{\infty}^{2}=\frac{\mathrm{e}_{1} \mathrm{e}_{2}}{\mathrm{~m}_{12} \mathrm{a}} \tag{10}
\end{equation*}
$$

The polar equation of the orbit is

V.C.A. Ferraro

$$
\begin{equation*}
r=\frac{\ell}{1+e \cos \varphi} \tag{11}
\end{equation*}
$$

where ℓ is the semi-latus rectum and e the eccentricity. As $\mathrm{r} \rightarrow \infty, \varphi \rightarrow \pi-\mathrm{w}$ so that (11) gives

$$
\cos w=\frac{1}{\mathrm{e}}
$$

Also $\mathrm{AC}=\mathrm{ae}$; hence

$$
\sin w=\frac{p}{a e}
$$

Thus $1=\sin ^{2} w+\cos ^{2} w=\frac{1}{e^{2}}+\frac{p^{2}}{a^{2} e^{2}}$ or $e^{2}=1+\frac{p^{2}}{a^{2}}$ giving

$$
\cos w=\frac{1}{\sqrt{1+\frac{p^{2}}{2}}}, \sin w=\frac{p}{\sqrt[a]{1+\frac{p^{2}}{2}}} \quad \tan w=\frac{p}{a}
$$

or using (1)

$$
\begin{equation*}
\operatorname{tanw}=\frac{\mathrm{pv}^{2}{ }_{\infty}^{\mathrm{m}} 12}{\mathrm{e}_{1} \mathrm{e}_{2}} \tag{12}
\end{equation*}
$$

6. Calculation of diffusion coefficients

Consider the scattering of test particles (α) by a flux of field particles (β). The spatial density of the latter is

$$
\mathrm{dn}_{\boldsymbol{\beta}}=\mathrm{f}_{\boldsymbol{\beta}}\left(\underline{v}^{\prime}\right) \mathrm{d} \underline{v}^{\prime}
$$

where $\quad \underline{v}$ is the velocity of the particles and $f_{\boldsymbol{\beta}}$ the distribution function of the field particles. Consider the collision of a test particle ($\boldsymbol{\alpha}$ with a field particle β of this flux. Then the velocity \underline{v} of the test particle is related to the velocity v_{g} of the centre of mass of the two particles and their relative velocity \underline{u} by

V.C.A. Ferraro

$$
\underline{v}_{\alpha}=\underline{v}_{g}+\frac{m_{\beta}}{m_{\alpha}+m_{\beta}} \underline{u} ;
$$

hence, since \underline{v}_{g} is unaltered by the encounter,

$$
\begin{equation*}
\Delta \underline{v}_{\alpha}=\frac{m_{\alpha \beta}}{m_{\alpha}} \Delta \underline{u} \tag{13}
\end{equation*}
$$

where $m_{\alpha \beta \beta}$ is the reduced mass of m_{α} and m_{β}, and $\Delta \underline{u}$ the change in $\underline{\mathbf{u}}$ produced by the encounter.

Also, in taking the average of the change of velocity over the test particles in the assembly, the summation reduces to a summation over all particles of the flux incident on a fixed scattering centre. The number of particles moving through an area $d A=\operatorname{dpd} \varphi$ of a plane
π perpendicular to $\underset{\sim}{\boldsymbol{u}}$ in unit time is

$$
\begin{equation*}
\mathrm{dn}_{\beta}|\underline{u}| \mathrm{dA}=\mathrm{f}_{\boldsymbol{\beta}} \underline{\left(v^{\prime}\right) \mathrm{d} \underline{v}^{\prime} \mathrm{u} d A} \tag{14}
\end{equation*}
$$

Multiply this by the components of the vector $\Delta_{\underline{\mathrm{V}}_{\alpha}}$ given by (13) and integrate over all the plane π and then over the velocities of the field particles we find

$$
\begin{equation*}
<\Delta \mathrm{v}_{\mathrm{k}}>=\int \mathrm{f}_{\beta}\left(\underline{v}^{\prime}\right) \mathrm{w}_{\mathrm{k}} \mathrm{dv}^{\prime} \quad(\mathrm{k}=\mathrm{x}, \mathrm{y}, \mathrm{z}) \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
w_{k}=\frac{m_{\alpha \beta}}{m_{\alpha}} \int_{\text {plane }} \Delta u_{k} u d A, \\
\left\langle\Delta v_{k} \Delta v_{l}\right\rangle=\int f_{\beta}\left(v^{\prime}\right) w_{k} \ell^{d v^{\prime}}, \quad(k, l=x, y, z)
\end{gather*}
$$

where

$$
\mathrm{w}_{\mathrm{k} \ell}=\left(\frac{\mathrm{m}_{\alpha \beta}}{\mathrm{m}_{\alpha}}\right)_{\text {plane }}^{2} \int_{\mathrm{k}} \Delta_{u} \Delta u_{\ell} \text { idA }
$$

(15) and (16) are the diffusion coefficients. It will be convenient to compate these integrals relative to a coordinate system in which the z-axis

V.C.A. Ferraro

is along \underline{u}.
For referring to Fig. a, and Fig. Ab .

FIG. Lb
we have

$$
\begin{aligned}
& \Delta u_{x}=u \sin \theta \cos \varphi \\
& \Delta u_{y}=u \sin \theta \sin \varphi \\
& \Delta u_{z}=-u(1-\cos \theta)
\end{aligned}
$$

Also from (12) and the fact that $\theta=\pi-2 w$ we have

$$
\begin{equation*}
\tan \frac{\theta}{2}=\frac{\mathrm{p}_{1}}{\mathrm{p}} \tag{17}
\end{equation*}
$$

where

$$
p_{\perp}=\frac{e_{\alpha}^{e} \beta}{m_{\alpha \beta^{u}}{ }^{2}}
$$

Then

$$
\begin{aligned}
& \Delta u_{x}=2 u \frac{p p_{\perp}}{p^{2}+p_{\perp}^{2}} \cos \varphi, \quad \Delta \beta_{u^{\prime}}=2 u \frac{p p_{\perp}}{p^{2}+p_{\perp}^{2}} \sin \varphi \\
& \text { tegration with respect to } p u_{z}=-2 u u_{p^{2}+p_{1}^{2}}^{p^{2}} \text { and } \varphi \text { over the plane gives }
\end{aligned}
$$

$$
w_{x}=0=w_{y}
$$

whilst

$$
w_{z}=\frac{m_{\alpha \beta}}{m_{\alpha}} \int_{\text {plane }} \Delta_{z} u_{z d A} .
$$

V.C.A. Ferraro

If the limits of integration for p are 0 and ∞, the integral diverges; however, we have already seen that the Coulomb field of individual charges is cut of f at distance of order D, the Debye distance. Hence we can take D as the upper limit for p in the integral. We then find

$$
\begin{align*}
w_{\chi} & =-\frac{1+\frac{m_{\alpha}}{m_{\beta}}}{4 \pi u^{2}}\left(\frac{4 \pi e_{\alpha} \ell_{\beta}}{m_{\alpha}}\right)^{2} \int_{0}^{D} \frac{p \mathrm{dp}}{p^{2}+p_{1}^{2}} \\
& =-\lambda \frac{1+\frac{m_{\alpha}}{m_{\beta}}}{4 \pi u^{2}}\left(\frac{4 \pi_{\alpha}^{2} e^{2}}{m_{\alpha}}\right)^{2} \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda=\int_{0}^{D} \frac{\mathrm{pdp}}{\mathrm{p}^{2}+\mathrm{p}_{\perp}^{2}}=\log \mathrm{e} \frac{\left(\mathrm{D}^{2}+\mathrm{p}_{1}^{2}\right)^{\frac{1}{2}}}{\mathrm{p}_{\perp}} \tag{19}
\end{equation*}
$$

It has been tacitly assumed that $D \gg p_{\perp}$; to illustrate that this is likely to be the case in general, let us take $\mathrm{T}_{1}=\mathrm{T}_{\mathrm{e}}=$ $=1$ me $V\left(10^{70} \mathrm{~K}\right), n_{i}=n_{e}=10^{5} \mathrm{~cm}^{-3}$, and $Z=1$, then

$$
D=\left(\frac{\mathrm{kT}}{8 \pi r \mathrm{e}^{2}}\right)^{\frac{1}{2}} \sim \frac{1}{2} \times 10^{-3} \mathrm{~cm}
$$

and

$$
p_{i}=\frac{e^{2}}{3 \mathrm{kT}} \sim \frac{1}{2} \times 10^{-10} \mathrm{~cm}
$$

so that $D / p_{\perp} \sim 10^{7}$. Hence in (19) we may neglect p_{\perp} compared with D in the numerator and write

$$
\begin{equation*}
\lambda \sim \log _{\ell} \frac{D}{p_{\perp}}=\log _{\ell}\left\{\frac{3}{2 e^{3}}\left(\frac{k^{3} T^{3}}{2 \pi n}\right)^{\frac{1}{2}}\right\} \tag{19a}
\end{equation*}
$$

V.C. A. Ferraro

Likewise

$$
\begin{aligned}
w_{x x} & =\left(\frac{m_{\alpha \beta}}{m_{\alpha}}\right)^{2} \int\left(\Delta_{u_{x}}\right)^{2} u d A=\left(\frac{m_{\alpha \beta}}{m_{\alpha}}\right)^{2} \int_{\text {plane }}\left(2 u \frac{p p_{L}}{p^{2}+p_{\perp}^{2}} \cos \varphi\right)^{2} \text { updpd } \varphi \\
& =\frac{1}{4 \pi u}\left(\frac{4 \pi e_{\alpha} e^{\prime}}{m_{\alpha}}\right)^{2} \int_{0}^{D} \frac{p^{3} d p}{\left(p^{2}+p_{\perp}^{2}\right)^{2}} \\
& \simeq\left(\lambda-\frac{1}{2}\right) \frac{1}{4 \pi u}\left(\frac{4 \pi e_{\alpha \beta} e_{\beta}}{m_{\alpha}}\right)^{2} \text { neglecting terms of order }\left(\frac{p_{\lambda}}{D}\right)^{2}
\end{aligned}
$$

Again $w_{y y}=w_{x x}$ and $w_{\alpha \beta}=0, \alpha \neq \beta$: Finally

$$
u_{z z}=\left(\frac{m_{\alpha \beta}}{m_{\alpha}}\right)^{2} \int\left(\Delta u_{z}\right)^{2} u d A=\left(\frac{m_{\alpha \beta}}{m_{\alpha}}\right)^{2} \int_{\text {plane }}\left(-2 u \frac{p_{\perp}^{2}}{p^{2}+p_{\perp}^{2}}\right) \text { updp d } \varphi
$$

and the integration with respect to p can, in fact, be carried out from 0 to ∞ since the integral is finite;
we find

$$
w_{z z}=4 \pi\left(\frac{l_{\alpha} l_{\beta}}{\left.m_{\alpha}\right)^{2}} 2\right.
$$

Since this is λ times smaller than $w_{x x}$ or $w_{y y}$ it may be set to zero. We can now express w_{k} and $w_{k} \ell$ as a vector or tensore respectively. In fact,

$$
\begin{align*}
w_{k} & =-\lambda \frac{1+\frac{m_{\alpha}}{m_{\beta}}}{4 \pi u^{2}}\left(\frac{4 \pi l_{\alpha} l_{\beta}}{m_{\alpha}}\right)^{2} \quad \frac{u_{k}}{u} \tag{20}\\
w_{k l} & =\left(\begin{array}{lll}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{array}\right)-\left(\begin{array}{lll}
0, & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & A
\end{array}\right) \\
& =A\left(\delta_{k l}-\frac{u_{k}^{u} \ell}{u^{2}}\right) \tag{21}
\end{align*}
$$

V.C.A.Ferraro

where

$$
\begin{equation*}
A=\left(\lambda-\frac{1}{2}\right) \frac{1}{4 \pi u}\left(\frac{4 \alpha_{\alpha} e_{\beta}}{m_{\alpha}}\right)^{2} \tag{22}
\end{equation*}
$$

Finally

$$
\begin{align*}
& \left\langle\Delta v_{k}\right\rangle=-\left(1+\frac{m_{\alpha}}{m \beta}\right) Q_{\alpha \beta} \int \frac{u_{k}}{3} \quad f_{\beta}\left(v^{\prime}\right) d \underline{v}^{\prime} \tag{23}\\
& \left\langle\Delta v_{k} \Delta v_{\ell}\right\rangle=\frac{Q_{\alpha \beta}}{4 \pi} \int\left(\frac{\delta k \ell}{u}-\frac{u_{k}^{u} \ell}{u^{3}}\right) f_{\beta}\left(v^{\prime}\right) d \underline{v}^{\prime} \tag{24}
\end{align*}
$$

where

$$
\underline{u}=\underline{v}-\underline{v}^{\prime}
$$

$$
\begin{equation*}
Q_{\alpha \beta}=\lambda\left(\frac{4 \pi_{\alpha \beta} g_{\beta}{ }^{2}}{m_{\alpha}}\right) . \tag{25}
\end{equation*}
$$

It can be shown that the third and higher diffusion coefficients $<\Delta v_{k} \Delta v_{\boldsymbol{l}} \Delta v_{m} . .>$ are smaller than the first two diffusion coeffients by a factor of $\boldsymbol{\lambda}$. This means that the motion of Coulomb particles can be visualized as a diffusion in velocity space. The approximation in which only the first two diffusion coefficients are considered is called the Fokker- Planck approximation.
7. Justification of the assumption of binary encounters in the theo-
ry.
The assumption is certainly justified for short-range force. If the interaction range d(effective diameter of the molecule) is much smaller thatn the mean distance between the particles, $n^{-1 / 3}$, where n is the density of the gas, the sphere of action, of volume $\sim d^{3}$, will contain only a small number of particles N_{d}, that is

$$
N_{\mathrm{d}}=n \mathrm{~d}^{3} \ll 1
$$

V. C.A.Ferraro

Under these conditions the probability of multiple collisions, involving three or more particles simultaneously, is very small. A description in terms of binary collisions is adequate.

Coulomb forces acting between particles of a plasma are not short-range forces. The potential energy between two such charges e_{1} and e_{2} is

$$
\begin{equation*}
\frac{\mathrm{e}_{1} \mathrm{e}_{2}}{\mathrm{r}} \exp \left(-\frac{\mathrm{r}}{\mathrm{D}}\right) \tag{26}
\end{equation*}
$$

where r is the distance apart of the charges. Thus the interaction between them extends at least as far as the Debye distance D, and for conditions in which we are interested $D>n^{-1 / 3}$ and the sphere of action contains many particles, i.e.,

$$
\begin{equation*}
\mathrm{N}_{\mathrm{D}}=\mathrm{nD}^{3} \gg 1 \tag{27}
\end{equation*}
$$

In this case a given particle will interact simultaneously with many particles and the results derived earlier on the basis of binary collisions is suspect. A rigorous analysis shows that the formulae derived yield logarithmic accuracy. However, a non-rigorous, but plausible discussion can be given along the following lines.

Let us consider a test particle moving through the plasmaand suppose that it is so massive that its velocity can be treated as constant. Draw a cylinder of radius p with the trajectory as axis (Fig. 5)

FIG. 5.

V.C. A. Ferraro

Collisions of the test particles with field particles for which $\mathrm{p} \gg \mathrm{n}^{-1 / 3}$ will be many-body collisons. Those characterized by immact parameters $\mathrm{p} \ll \mathrm{n}^{-1 / 3}$ are binary collisions. We shall show that the method used to treat binary collisions need not be restricted to collisions with impact parameters $\mathrm{p} \ll \mathrm{n}^{-1 / 3}$, but can be extended to parameters $\gg \mathrm{n}^{-1 / 3}$.

Now, when $\mathrm{r} \ll \mathrm{D}$, the potential energy between the charges is simply $e_{1} e_{2} / r$ so that the presence of other particles has no effect on the interaction between two particles separated by a distance smaller than D. Thus results derived on the hypothesis of binary collisions apply for all impact parameters smaller than the Debye radius, i.e., $\mathrm{p} \ll \mathrm{D}$. Because $\mathrm{D} \gg \mathrm{n}^{-1 / 3}$, in the present case the collisions can be regarded as binary interactions even when $p \gg n^{-1 / 3}$ as long as $p \ll D$. Accordingly, even if $p \sim D$, the difference between the exact interaction formulae which takes account of other particles, and a pure Coulomb interaction, is small (by a factor of order 1). Thus, cutting off the Coulomb interaction for the impact parameter $p=D$ provides an approximate method of taking into account the effect of multiple collisions for which $\mathrm{p} \gg \mathrm{n}^{-1 / 3}$.

8. Diffusion in velocity space.

From a microscopic point of view, the change of spatial coordinates of a particle during a collision can always be neglected. Hence, as far as the spatial part of the phase space is concerned, the motion of a particle corresponds to a continuous point to point variation.

On the other hand, collisions have a marked effect on the continuity of motion in the velocity space. The velocity can be changed abruptly

V. C.A. Ferraro

by a single near collision: essential in a vanishingly small time interval. Hence, a particular velocity point \underline{v} in a cloud of particles in velocity space can be 'annihilated' by a collision and 'recreated' at some remote point without passing through intermediate points in the velocity space. Thus in general the effect of collisions cannot be expres-

effect of remote interactions and the changes in velocity are small. For example, if $\boldsymbol{\lambda}=15$, then the relative change in particle velocity

$$
\frac{|\Delta \mathrm{v}|}{\mathrm{v}}=\frac{\mathrm{p}_{1}}{\mathrm{p}}=\mathrm{e}^{-\lambda} \frac{\mathrm{D}}{\mathrm{p}} \sim 10^{-6}\left(\frac{\mathrm{D}}{\mathrm{p}}\right)
$$

and so very small.
If these interactions are referred in velocity space, the whole process may be regarded as a form of diffusion. The motion can be regarded as nearly continuous.
9. Calculation of the diffusion coefficient for a Maxwellian distribution of velocities.

The expressions (23) and (24) may be expressed more conveniently by introducing the super-potentials. In fact, since

$$
u=\sqrt{\left(\underline{v}_{k}-\underline{v}_{k}^{\prime}\right)\left(\underline{v}_{k}-\underline{v}_{k}^{\prime}\right)}
$$

we have

$$
\begin{aligned}
\frac{\partial}{\partial v_{k}} \frac{1}{u} & =-\frac{u_{k}}{u^{3}} \\
\frac{\partial^{2}}{\partial v_{k} \partial v_{l}} u & =\frac{\partial}{\partial v_{k}} \frac{1}{2} \frac{2}{u}\left(v_{l}-v_{l}^{\prime}{ }^{\prime}\right)=\frac{\partial}{\partial v_{k}} \frac{v_{l}-v^{\prime}}{u}=\frac{\partial}{\partial v_{k}} \frac{u_{l}}{u} \\
& =-\frac{u_{k}{ }^{u} l}{u^{3}}+\delta_{k l} \frac{1}{u}
\end{aligned}
$$

Hence (23) and (24) can be written

$$
\begin{align*}
& \left\langle\Delta_{v_{k}}\right\rangle=-\left(1+\frac{m_{\alpha}}{m_{\beta}}\right) Q_{\alpha \beta} \frac{\partial \varphi_{\beta}}{\partial v_{k}} \tag{28}\\
& \left\langle\Delta v_{k} \Delta v_{l}>=-2 Q_{\alpha \beta} \frac{\partial^{2} \psi_{\beta}}{\partial v_{k} \partial_{l}}\right.
\end{align*}
$$

where

$$
\begin{align*}
& \varphi_{\beta}=-\frac{1}{4 \pi} \int \frac{f_{\beta}\left(\underline{v}^{\prime}\right) d \underline{v}^{\prime}}{\left|\underline{v}-\underline{v}^{\prime}\right|} \tag{30}\\
& \left.\left.\psi_{\beta}=-\frac{1}{8 \pi} \int \right\rvert\, \underline{v}-v^{\prime}\right) \mid f_{\beta}\left(\underline{v}^{\prime}\right) d \underline{v}^{\prime} \tag{31}
\end{align*}
$$

which have been termed 'super-potentials' by Rosenbluth et al. For a Maxwellian distribution function

$$
f\left(\underline{v}^{\prime}\right)=n\left(\frac{m}{2 \pi n T}\right)^{3 / 2} \quad e^{-\frac{m v^{\prime 2}}{2 k T}}
$$

Chandrasekhar found that

$$
\begin{equation*}
\left\langle\Delta_{v_{\|}}\right\rangle=-\frac{1}{2} n_{\beta}{ }_{\alpha \beta}\left(1+\frac{{ }^{m} \alpha}{m_{\beta}}\right) G\left(\frac{\mathrm{~m}_{\beta} \mathrm{v}}{2 \mathrm{kT} \beta}\right) \tag{32}
\end{equation*}
$$

V. C. A. Ferraro

$$
\begin{align*}
\left\langle\Delta v_{\perp}^{2}\right\rangle & =\left\langle\Delta v_{x x}^{2}\right\rangle+\left\langle\Delta v_{y y}^{2}\right\rangle \\
& =\frac{1}{2 v^{2}} n_{\beta} Q_{\alpha \beta}\left\{\Phi^{\Phi_{\beta}}\left(\frac{m^{k}}{2 T_{\beta}}\right)-G\left(\frac{m_{\beta}{ }^{v}}{2 \mathrm{kT}_{\beta}}\right)\right. \tag{33}
\end{align*}
$$

(34) where

$$
\Phi(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\xi^{2}} d \xi
$$

is the usual error function and

$$
\begin{equation*}
G(x)=\frac{\Phi(x)-x \Phi^{\prime}(x)}{2 x^{2}} \tag{35}
\end{equation*}
$$

Values of G and Φ - G are given by Spitzer and others.
10. Relaxion times. (Collision interval)

The term "relaxation time". is used to denote the time in which collisions will alter the original velocity distribution; or again, the time that the ions and electrons in a gas will attain, through collisions, a Maxwellian distribution.

Various relaxation times can be defined ; the time between calision (collision interval or the reciprocal of the collision frequency) may be defined as the time in which small deflections will deflect test particles through 90°. More precisely, if τ_{D} is the 'deflection time', we have

$$
\begin{equation*}
\left\langle\Delta_{\mathrm{v}_{\perp}}^{2}\right\rangle \tau_{\mathrm{D}}=\mathrm{v}^{2} \tag{36}
\end{equation*}
$$

Substituting from (33) we find

$$
\begin{equation*}
\tau_{D}=\frac{2 v^{3}}{{ }^{n_{\beta} Q_{\alpha \beta}}\left(\Phi_{\beta}-G_{\beta}\right)} \tag{37}
\end{equation*}
$$

An energy exchange time τ_{E} can likewise be defined by the relation

V. C. A. Ferraro

$$
\begin{equation*}
<\Delta \mathrm{E}^{2}>\tau_{\mathrm{E}}=\mathrm{E}^{2} \tag{38}
\end{equation*}
$$

the change of energy

$$
\begin{equation*}
\Delta \mathrm{E}=\frac{1}{2} \mathrm{~m}\left(2 \mathrm{v} \Delta \mathrm{v}_{11}+\Delta \mathrm{v}_{11}^{2}+\Delta \mathrm{v}_{\perp}^{2}\right) \tag{39}
\end{equation*}
$$

If only dominant terms are required

$$
\left\langle\Delta E^{2}>=m_{v}^{2}{ }^{2}\left\langle\Delta v_{11}^{2}\right\rangle\right.
$$

and (38) gives

$$
\begin{equation*}
\tau_{E}=\frac{v^{3}}{4 n_{\beta} Q_{\alpha \beta} G_{\beta}} \tag{40}
\end{equation*}
$$

An important special case is that of a group of ions, or a group of electrons, interacting amongst themselves. If we consider such a group whose velocity has the root mean square value for the group, then $\left(\frac{\mathrm{mv}^{2}}{2 \mathrm{nT}}\right)^{\frac{1}{2}}=1.225$.
In this case we find that $\tau_{D} / \tau_{E}=1,14$ so that $\tau_{D} \sim \tau_{E}$ and is a measure of both the time required to reduce substantially any anisotropy in the velocity distribution function and the time for the kinetic energies to approach a Maxwellian distribution. We shall call this particular value of τ_{D} the 'self-collision interval' for a group of particles and will be denoted by τ_{c} From (37) we have

$$
\begin{equation*}
\tau_{\mathrm{c}}=\frac{\mathrm{m}^{\frac{1}{2}}(3 \mathrm{k} \mathrm{~T})^{3 / 2}}{5.71 \pi_{\mathrm{n}} e^{4} \mathrm{z}^{4} \log _{\Omega}} \lambda \tag{41}
\end{equation*}
$$

where T is in degrees K, m is the mass of a typical particle of the group. It may be written Am_{H} where m_{H} is the mass of a proton. For electrons, $A=\frac{1}{1825}$ so that the self.collision time for electrons is $\frac{1}{43}$ that for protons, provided the ions and electrons have the

V.C.A. Ferraro

same temperatures.

We consider next the approach to equilibrium of a two component plasma; to fix our ideas we consider the case when the constrtuents are ions and electrons. There are three stages involved in the process. First, collisions between ions and electrons lead to an isotropic. velocity distribution of electrons, and the same time collisions between electrons themselves establishes a Maxwellian distribution. Secondly, collisions between the ions themselves establishes an isotropic velocity distribution amongst the ions. Thirdly, the ions and electrons which have already attained Maxwellian distribution, but possibly at different temperatures T_{i} and T_{e}, will be brought to the same temperature by collinsion between the ions and electrons.
$\left.\hat{e}_{\alpha}=\frac{1}{2} \mathrm{~m}_{\alpha} \mathrm{v}^{2}\right)$

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{\zeta}_{\alpha}}{\mathrm{dt}}=\frac{1}{2} m_{\alpha} \frac{\mathrm{d}}{\mathrm{dt}} \overline{v_{i} v_{i}}=m_{\alpha}\left(\frac{1}{2}\left\langle\Delta v_{i} \Delta v_{i}\right\rangle+v_{i}\left\langle\Delta v_{i}\right\rangle\right) \tag{42}
\end{equation*}
$$

using

$$
\begin{equation*}
\overline{\Delta v_{i} \Delta v_{i}}=\overline{v_{i} v_{i}}-\bar{v}_{i} \bar{v}_{i} \tag{43}
\end{equation*}
$$

Using (28) and (29) we find

$$
\begin{equation*}
\frac{\mathrm{d} \xi_{\alpha}}{\mathrm{dt}}=-\mathrm{m}_{\alpha} Q_{\alpha \beta}\left[\varphi_{\beta}+\left(1+\frac{\mathrm{m}_{\alpha}}{\mathrm{m}_{\beta}}\right) \underline{\mathrm{v}} \cdot \nabla \varphi_{\beta}\right] \tag{44}
\end{equation*}
$$

since

$$
\begin{equation*}
\left\langle\Delta v_{i} \Delta v_{i}>=-2 Q_{\alpha \beta} \nabla^{2} \psi_{\beta}=-2 Q_{\alpha \beta} \Phi_{\beta}\right. \tag{45}
\end{equation*}
$$

Since the distribution of velocities are Maxwellian, this may be rewritten
V. C. A. Ferraro
where

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{\zeta}_{\alpha}}{\mathrm{dt}}=-\frac{2 \xi_{\alpha}}{\tau_{\alpha \beta}\left(\xi_{\alpha}\right)}\left\{\frac{\mathrm{m}_{\alpha}}{\mathrm{m}_{\beta}} \mu\left(\mathrm{x}_{\beta}\right)-\mu^{\prime}\left(\mathrm{x}_{\beta}\right)\right\} \tag{46}
\end{equation*}
$$

$$
x_{\beta}=\frac{1}{2} \frac{{ }^{m} \beta^{v^{2}}}{k T_{\beta}}=\frac{m_{\beta}}{m_{\alpha}} \frac{\xi_{\alpha}}{k T_{\beta}} \text {, and } \mu(x)=\Phi(x)-x \Phi^{\prime}(x)
$$

Also

$$
\begin{equation*}
\tau_{\alpha \beta}\left(\xi_{\alpha}\right)=\frac{4 \pi v^{3}}{n_{\beta} Q_{\alpha \beta}}=\frac{\left(\frac{1}{2} m_{\alpha}\right)^{\frac{1}{2}} \xi_{\alpha}^{3 / 2}}{\pi e_{\alpha}^{2} e_{\beta}^{2} n_{\beta} \log \lambda} \tag{47}
\end{equation*}
$$

where $\quad \hat{\sigma}_{\alpha}=k\left(T_{\alpha}+\frac{m_{\alpha}}{m_{\beta}} T_{\boldsymbol{\beta}}\right)$. After some algebra, (46) can be redued to

$$
\begin{equation*}
\frac{\mathrm{dT}_{\alpha}}{\mathrm{dt}}=\frac{\mathrm{T}_{\beta}-\mathrm{T}_{\alpha}}{\tau_{\alpha \beta}^{*}} \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{\alpha \beta}^{*}=\frac{3 m_{\alpha} m_{\beta} k^{3 / 2}}{8(2 \pi)^{\frac{1}{2}} n_{\beta} e_{\alpha}^{2} e_{\beta}^{2} \log \lambda}\left(\frac{T_{\alpha}}{m_{\alpha}}+\frac{T_{\beta}}{m_{\beta}}\right)^{3 / 2} \tag{49}
\end{equation*}
$$

It is easily verified that

$$
\tau_{\mathrm{ee}}^{*}: \tau_{\mathrm{ii}}^{*}: \tau_{\mathrm{ei}}^{*}: \tau_{\mathrm{ie}}^{*}=1: \sqrt{\frac{\mathrm{M}}{\mathrm{~m}}}: \frac{\mathrm{M}}{\mathrm{~m}}: \frac{\mathrm{M}}{\mathrm{~m}}
$$

where $\quad T_{\alpha} \sim T_{\beta}$ and where M is the mass of the ion and m the electronic mass.

Equation (48) was first given by Spitzer; it shows that if the mean square relative velocity, which is $\alpha\left(\frac{\mathrm{T}_{\alpha}}{\mathrm{m}_{\alpha}}+\frac{\mathrm{T}_{\beta}}{\mathrm{m}_{\beta}}\right)$, does not change appreciably, , $\tau_{\alpha \beta}^{*}$ is nearly constant and departure from equipartitions decrease exponentially.
11. Relaxation towards the steady state

The solution of Boltzmann's equation for non-uniform gases is found by successive approximation. We write

$$
\mathrm{f}=\mathrm{f}_{\mathrm{o}}(1+\varepsilon),
$$

where f_{o} is the Maxwellian distribution function and \mathcal{E} is small compared with unity. We have seen that in a plasma of two constituents each constituent: will approach its Maxwellian distribution in a time equal to the relaxation time $\tau_{\alpha \omega}^{*}$ and the two constituents will attain equal temperatures in a relaxation time $\tau_{\alpha \beta}^{*}$. As a first approximation, therefore, we can take the collision term $\mathrm{C}_{\boldsymbol{\alpha}}$ to be of the form

so that if f is the distribution function at time $t=0$ and f the Maxwellian distribution function, then departure from a Maxwellian state $\mathrm{f}-\mathrm{f}_{\mathrm{o}} \rightarrow 0$ with time as $\mathrm{e}^{-\mathrm{t} / \boldsymbol{\tau}}$.
12. Equations of continuity and motion for a fully ionized gas

We consider the plasma to be a mixture of positive ions (i) and electrons (e) and denote their number densities by n_{i} and n_{e}, and their velocities by $\underline{\mathrm{v}}_{\mathrm{i}}$ and $\underline{\mathrm{v}}_{\mathrm{e}}$ respectively. Then

$$
\begin{equation*}
n_{i}=\int f_{i} d v_{i}, \quad n_{e}=\int f e d v_{e} \tag{51}
\end{equation*}
$$

where f_{i} and $f e$ denote the velocity distribution functions for the ions and electrons respectively and $\mathrm{dv}_{-\mathrm{i}}$ and $\mathrm{dv}_{-\mathrm{e}}$ denote an element of volume in the velocity space for ions and electrons, respectively. Denoting their masses by m_{i} and m_{e} and the densities of the ion and electron gas by $\boldsymbol{P}_{\mathrm{i}}$ and $\boldsymbol{P}_{\mathrm{e}}$ respectively, we have

$$
\begin{equation*}
p_{i}=n_{i} m_{i}, \quad P_{e}=n_{e} m_{e} \tag{52}
\end{equation*}
$$

Denote by $\stackrel{\rightharpoonup}{v}_{-i}$ and $\overline{\mathrm{v}}_{\mathrm{e}}$ the mean velocities of the ion and electron gas

V.C.A. Ferraro

in a volume element of the plasma, then

It is convenient to introduce the total number density η_{0} and total mass density P_{0}, defined as $n_{0}=n_{i}+n_{e}$

$$
\begin{equation*}
p_{o}=p_{i}+p_{e} \tag{54}
\end{equation*}
$$

and the mean velocity \underline{v}_{0} of the plasma element defined by

$$
\begin{equation*}
\rho_{0} \bar{v}_{o}=\rho_{i} \bar{v}_{i}+\rho_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}} \tag{55}
\end{equation*}
$$

Let \underline{V}_{i} and $\underline{V}_{\mathrm{e}}$ be the peculiar or thermal velocities of the ions and electrons, respectively, defined by

$$
\begin{equation*}
\underline{V}_{\mathrm{i}}=\underline{\mathrm{v}}_{\mathrm{i}}-\mathrm{v}_{\mathrm{o}}, \quad \underline{\mathrm{~V}}_{\mathrm{e}}=\underline{\mathrm{v}}_{\mathrm{e}} \quad-\underline{\mathrm{v}}_{\mathrm{o}} \tag{56}
\end{equation*}
$$

Then it follows from (55) that

$$
\begin{equation*}
P_{i} \bar{v}_{\mathrm{i}}+P_{\mathrm{e}} \overline{\mathrm{~V}}_{\mathrm{e}}=0 \tag{57}
\end{equation*}
$$

The partial pressure for the ion and electron gases, and total pressres defined in a frame of reference moving with the mean velocity ${ }_{-0}$ are respectively given by

$$
\begin{equation*}
p_{i}=p_{i-i-i}^{V_{i}}, \quad p_{e}=p_{e} \overline{V_{e}} V_{e}, \quad p_{o}=p_{i}+p_{e} \tag{58}
\end{equation*}
$$

The hydrostatic partial pressures for ions and electrons are defined by

$$
\begin{equation*}
p_{i}=\frac{1}{3} \rho_{i} \overline{v_{i}^{2}}, \quad p_{e}=\frac{1}{3} \rho_{\mathrm{e}} \overline{\mathrm{v}_{\mathrm{e}}^{2}} \tag{59}
\end{equation*}
$$

and the corresponding mean kinetic temperature by

V.C. A. Ferraro

$$
\begin{equation*}
p_{i}=k n_{i} T_{i}, \quad p_{e}=k n_{e}^{T} \tag{60}
\end{equation*}
$$

Boltzmann's equation for the two distribution functions f_{i} and f_{e} are

$$
\begin{equation*}
\frac{\partial \mathrm{f}_{\alpha}}{\partial \mathrm{t}}+\left(\underline{\mathrm{v}}_{\alpha} \cdot \nabla\right) \mathrm{f}_{\alpha}+\left(\underline{\mathrm{F}}_{-\alpha} \cdot \nabla_{\underline{\mathrm{v}}_{\alpha}}\right) \mathrm{f}_{\alpha}=\mathrm{C}_{\alpha}, \alpha=\mathrm{i}, \mathrm{e} \tag{61}
\end{equation*}
$$

where $m_{i}{\underset{-i}{F}}^{m}$ and $\underset{e}{ }{\underset{-}{e}}^{\text {are the forces acting on }}$ an ion and electron respectively. If these are produced by an electric field \underline{E} and magnetic field B , then

$$
\begin{equation*}
{\underset{-}{i}}=\frac{e_{i}}{m_{i}}\left(\underline{E}+\underline{v}_{i} \times \underline{B}\right), \quad{\underset{F}{e}}=\frac{\boldsymbol{\ell}_{\mathrm{e}}}{m_{e}}\left(\underline{E}+\underline{v}_{e} \times \underline{B}\right) \tag{62}
\end{equation*}
$$

where e_{i} and e_{e} are the charges carried by an ion and electron respectively.

We next form the moment equations; if $\varphi_{\alpha}\left(\underline{v}_{\alpha}\right)$ be any function of molecular properties for the constituent α of the plasma, then by multiplying equation (61) by Φ_{α}, integrating partially and remembering that

$$
\begin{equation*}
\mathrm{n}_{\alpha} \bar{\Phi}_{\alpha}=\int \varphi_{\alpha} \mathrm{f}_{\alpha} \mathrm{dv}-\alpha \tag{63}
\end{equation*}
$$

we find

$$
\begin{equation*}
\frac{\partial\left(n_{\alpha} \bar{\varphi}_{\alpha}\right)}{\partial t}+\nabla_{\cdot}\left(n_{\alpha} \overline{\varphi_{\alpha}-\frac{v}{\alpha}}\right)-n_{\alpha}-\bar{F}_{\alpha} \bar{\nabla}_{v_{\alpha} \varphi_{\alpha}}=\int \varphi_{\alpha} C_{\alpha}{ }^{d v}-\alpha \tag{64}
\end{equation*}
$$

The right-hand side represents the change of the mean value of $\mathscr{\varphi}_{\alpha}$ due to collisions. This vanishes if $\oint_{\alpha}=1$ and (64) gives

$$
\begin{equation*}
\frac{\partial n_{\alpha}}{\partial t}+\nabla \cdot\left(n_{\alpha} \underline{v}_{0}\right)+\nabla \cdot\left(n_{\alpha} \bar{v}_{\alpha}\right)=\frac{\partial n_{\alpha}}{\partial t}+\nabla \cdot\left(n_{\alpha} \bar{v}_{\alpha}\right)=0 \tag{65}
\end{equation*}
$$

which is the equation of continuity for the component $\boldsymbol{\alpha}$. Multiplying the equations of continuity for the ions and electrons (65) by m_{i} and

