Luigi Amerio • B. Segre (Eds.)

Sistemi dinamici e teoremi ergodici

Varenna, Italy 1960

(3) Springer

FONDAZIONE

Luigi Amerio • B. Segre (Eds.)

Sistemi dinamici e teoremi ergodici

Lectures given at the
Centro Internazionale Matematico Estivo (C.I.M.E.), held in Varenna (Como), Italy, June 2-11, 1960

C.I.M.E. Foundation
c/o Dipartimento di Matematica "U. Dini"
Viale Morgagni n. 67/a
50134 Firenze
Italy
cime@math.unifi.it

ISBN 978-3-642-10943-0
e-ISBN: 978-3-642-10945-4
DOI:10.1007/978-3-642-10945-4
Springer Heidelberg Dordrecht London New York
©Springer-Verlag Berlin Heidelberg 2011
Reprint of the $1^{\text {st }}$ ed. C.I.M.E., Florence, 1960
With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

CENTRO INTERNATIONALE MATEMATICO ESTIVO (C.I.M.E)

Reprint of the $1^{\text {st }}$ ed.- Varenna, Italy, June 2-11, 1960

SISTEMI DINAMICI E TEOREMI ERGODICI

P.R. Halmos: Entropy in ergodic theory 1
E. Hopf: Some topics of ergodic theory 47
J. Massera: Les equations différentielles linéaires dans les espaces de Banach 113
L. Amerio: Funzioni quasi-periodiche astratte e problemi di propagazione 133
L. Markus: Sistemi dinamici con stabilità strutturale 149
G. Prodi: Teoremi ergodici per le equazioni della idrodinamica 159
A. N. Feldzamen: The Alexandra Ionescu Tulcea proof of Mcmillan's theorem 179

CENTRO INTERNATIONALE MATEMATICO ESTIVO (C.I.M.E)

PAUL R. HALMOS

ENTROPY IN ERGODIC THEORY

CONTENTS

PREFACE
CHAPTER I. CONDITIQNAL EXPECTATION
Seotion 1. Definition
Seotion 2. Examples
Section 3: Algebraio properties
Section 4. Dominated convergence
Seotion 5. Conditional probability
Section 6. Jensen's inequality
Seotion 7. Trsnsformations
Section 8. Lattioe properties
Section 9. Finite fields
Section 10. The martingale theorem
CHAPTER II. INFORMATION
Seotion 11. Motivation
Section 12. Definition
Seotion 13. Transformations
Seotion 14. Information zero.
Seotion 15. Additivity
Seotion 16. Finite additivity
Seotion 17. Convergence
Seotion 18. MoMillan's theorem
CHAPTER III. ENTROPY
Seotion 19. Definition
Section 20. Transformations
Section 21. Entropy zero
Section 22. Concavity

Section 23. Additivity
Section 24, Finite additivity
Seotion 25. Convergenoe
MHAPTER IV. APPLICATION
Seotion 26. Relative entropy
Seotion 27. Elementary properties
Seotion 28. Strong monotony
Seotion 29. Algebraic properties
Section 30. Entropy
Section 31. Generated fields
Section 32. Examples

PREFACE

Shannon's theory of information appeared on the mathematical soene in 1948 ; in 1958 Kolmogorov applied the new subjeot to solve some relatively old problems of ergodic theory. Neither the general theory nor its speoial application is as well known among mathematioians as they both deserve to be; the reason, probably, is faulty communication. Most extant expositions of information theory are designed to make the subject palatable to non-mathematioians, with the result that they are full of words like "source" and "alphabet". Such words are presumed to be an aid to intuition; for the serious student, however, who is anxious to get at the root of the matter, they are more likely to be confusing than helpful. As for the recent rgodic applioation of the theory, the communioation trouble there is that so far the work of Kolmogorov and his sohool exists in Doklady abstraots only, in Russian only. The purpose of these notes is to present a stop-gap exposition of some of the general theory and some of its applications. While a few of the proofs may appear slightly different from the corresponding ones in the literature, no claim is made for the novelty of the results. As a prerequisite, some familiarity with the ideas of the genersl theory of measure is assumed; Halmos's Measure theory (1950) is an adequate reference.

Chapter I begins with felatively well known facts about conditional expeotations; for the benefit of the reader who does not know this technical prababilistic concept, seversl standard proofs are reproduced. Standard reference: Doob, Stochastic processes (1953). A special oase of the martingale convergence theorem is proved by what is essentially Lévy's original method (Théorie de
liaddition des variables aléatoires (1937)). The reader who knows the martingale theorem can skip the whole chapter, except possibly Section 9, and, in partioular, equation (9.1).

Chapter II motivates and defines information. Standard reference: Khinohin, Yathematical foundations of information theory (1957). The more recent book of Feinstein, Foundations of information theory (1958): is quite teohnical, but highly recommended. The chapter ends with a proof MoMillan's theorem (mean convergenO日); the reader who knows that theorem oan skip the chapter after looking at it just long enough to absorb the notation. Almost everywhere oonvergence probably holds. A recent paper by Breiman (Ann. Math. Stat. 28 (1957) 809-811) asserts it, but that paper has an error; at the time these lines were written the oorrection has not appeared yet. In any case, for the ergodic application not even mean convergence is necessary; all that is neededis the convergence of the integrals, whioh is easy to prove direotly.

Chapter III studies entropy (average amount of information); all the facts here are direat aonsequences of the definitions, via the machinery built up in the first two chapters.

Chapter IV contains the application to ergodic theory. In genersl terms, the ides is that information theory suggests a new invariant (entropy) of measureapreserving transformations. The new invariant is shanp enough to distinguish between some hitherto indistinguishable transformatians (e.g.l, the 2-shift and the 3shift). The original idea of using this invariant is due to Kolmogorov (Doklady 119 (1958) 861-864 and 124 (1959) 754-755). An improved version of the definition is given by Sinai (Doklady 124 (1959) 768-771)., who also oomputes the entropy of ergodic

P. R.Halmos
automorphisms of the torus. The new invariant is in some respects not so sharp as older ones. Thus for instance Rokhlin (Doklady 124 (1959) 980-983) asaerts that all translations (in oompaot abelian groups) have the same entropy (namely zero); he also begins the study of the oonneotion between entropy and speotrum. Muoh remains to be done along all these lines.

CHAPTER I. CONDITIONAL EXPECTATION

SECTION 1. DEFINITION. We shall work, throughout what follows, With a fixed probability space

$$
(x, \wp, P) .
$$

Here X is a non-empty set, \mathcal{f} is a field of subsets of X, and P is a probability measure on δ. The word "field" in these notes is an abbreviation for "oolleotion of sets closed under the formation of complements and countable unions". A probability measure on a field of subsets of X is measure P such that

$$
P(X)=1 .
$$

Suppose that \mathcal{G} is a subfield of \mathcal{O} and f is an integrable resl function on X. If

$$
Q(C)=\int_{C} \rho d P
$$

for each C in \mathcal{G}, then Q is a signed measure on \mathcal{G}, absolutely continuous with respeot to P (on, rather, with respeot to the restriction of P to $\left.G_{6}\right)$. The Radon-Nikodym theorem implies the existence of an integrable function f^{*}, measurable \mathcal{G}, suoh that

$$
Q(c)=\int_{C} f^{*} d P
$$

for each C in \mathscr{C}, The funotion f^{*} is uniquely determined (to within a set of measure zero); its dependence on f and ζ is indioated by writing

$$
f^{*}=E(f / \zeta) .
$$

The funotion $E(f / G)$ is called "the conditional expectation of f with respeot to \mathcal{H}^{\prime}. It is worth while to repeat the characteristic properties of conditional expeotation; they are that

$$
\begin{equation*}
E(f / \zeta) \text { is measurable } \mathscr{G} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{C} E(f / \mathscr{G}) d P=\int_{C} f d p \tag{1.2}
\end{equation*}
$$

for esch C in ζ.

SECTION 2. EXAMPLES. If \mathscr{G} is the largest subfield of \mathcal{B}, that is $\zeta=\delta$, then f itself satisfies (1.1) and (1.2), so that

$$
E(f / \mathcal{S})=\rho .
$$

This result has a trivial generalization since f always satisfies (1.2) $\left(\int_{C} f d P=\int_{C} f d P\right)$, it follows that if the field ζ is such that f is measurable \mathscr{C}, then

$$
\begin{equation*}
E(f / \zeta)=f . \tag{2.1}
\end{equation*}
$$

To look at the other extreme, let 2 be the smallest subfield of $\&$, that is the field whose only non-empty member is X. Since the only functions measurable 2 are constants, and since the only constant (in the role of $E(f / \mathscr{G})$) that satisfies (1.2) is $\int_{C} f d P$, it follows that

$$
\begin{equation*}
E(\rho / 2)=\int \rho d P . \tag{2.2}
\end{equation*}
$$

The oonstant $\int_{C} f d P$ is sometimes called the absolute (as opposed to oonditionall expectation of f, and, in that case, it is denoted by $E(f)$.

Here is an illuminating example. Suppose that X is the unit square, with the collection of Borel sets in the role of δ and Lebeague measure in the role of P. We say that a set in $\&$ is "vertical" in case its intersection with each vertical line L in the plane is either empty or else equal to $X \cap L$. The collection Cof all vertical sets in δ is a subfield of \mathcal{S}. A function f

P.R.Halmos

is messurable ζ if and only if it does not depend on its second (vertioal) argument; it follows easily that if f is integrable, then

$$
E(f / \mathcal{G})(x, y)=\int f(x, u) d u .
$$

SECTION 3. ALGEBRAIC PROPERTIES. Conditional expectation is a generalized integral and in one form or another it has all the properties of an integral. Thus, for instance,

$$
\begin{equation*}
E(1 / \zeta)=1, \tag{3.1}
\end{equation*}
$$

where this equation, as well as sll other asserted equations and inequalities involving oonditional expectations, holds almost everywhere. (To prove (3.1), apply (2.1).) If f and g are integrable funotions and if a and b are oonstants, then

$$
\begin{equation*}
-E(a \rho+b g / \zeta)=a E(f / \zeta)+b E(g / \zeta) . \tag{3.2}
\end{equation*}
$$

(Proof: if C is in \mathcal{G}, then the integrals over C of the two sides of (3.2) are equal to each other). If $f \geqslant 0$, then

$$
\begin{equation*}
B(f / \mathscr{G}) \geqq 0 . \tag{3.3}
\end{equation*}
$$

(Proof: if $C=\{x: E(f / \mathcal{E})(x)<0\}$, then C is in \mathscr{G} and $\int_{C} f d P=0$; this implies that $P(C)=0$). It is a consequence of (3.3) that

$$
\begin{equation*}
\left|E\left(\rho^{\prime} / \zeta\right)\right| \leqq E(|\rho| / \zeta) . \tag{3.4}
\end{equation*}
$$

(Proof: both $|f|-p \geqq 0$ and $|f|+p \geqq 0$, and therefore, by (3.2) and (3.3), both $E(-f / \zeta) \leqq E(|f| / \zeta)$ and $E(\rho / \zeta) \leqq E(|\rho| / \zeta)$).

Conditional expectations also have the following multiplicative property: if f is integrable and if g is bounded and measurable

$$
\begin{equation*}
E(f g / \xi)=E(f / \xi) g . \tag{3.5}
\end{equation*}
$$

Since the right side of (3.5) is measurable \mathcal{G}, the thing to prove is that

$$
\begin{equation*}
\int_{C} E(f / \zeta) g d P=\int_{C} f g d P \tag{3.6}
\end{equation*}
$$

for esch C in \mathcal{G}. In case g is the characteristic function of a set in G, (3.6) follows from the defining equation (1.2) for conditional expeotations. This implies that (3.6) holds whenever g is a finite linear combination of such characteristic functions, and hence, by approximation, that (3.6) holds whenever g is a bounded funotion measurable \mathcal{G}.

SECTION 4. DOMINATED CONVERGENCE. The usual limit theorems for integrals also have their analagues for oonditional expeatations. Thus if f, g, and f_{n} are integrable funotions, if $\left|f_{n}\right| \leqq g$ and $f_{n} \rightarrow f$ almost everywhere, then

$$
\begin{equation*}
E\left(\rho_{n} / \zeta\right) \rightarrow E\left(\rho / \zeta^{\xi}\right) \tag{4.1}
\end{equation*}
$$

almost everywhere and, also, in the mean. For the proof, write

$$
g_{n}=\sup \cdot\left(\left|f_{n}-p\right|,\left|f_{n+1}-p\right|,\left|p_{n+2}-p\right|, \ldots\right) ;
$$

observe that the sequence $\left\{\hat{g}_{n}\right\}$ tends monotonely to 0 almost everywhere and that $g_{n} \leqq 2 g$. It follows that the sequence $\left\{E\left(g_{n} / \varepsilon\right)\right\}$ is monotone deoreasing and, therefore, has a limit h almost everywhere. Since

$$
\begin{equation*}
\int h d P \leqq \int E\left(g_{n} / \zeta^{\prime}\right) d P=\int g_{n} d P, \tag{4.2}
\end{equation*}
$$

P.R.Halmos

and since $\int g_{n} d P \rightarrow 0$, this implies that $E\left(g_{n} / \xi\right) \rightarrow 0$ almost everywhere. Sinoe, finslly,

$$
\begin{equation*}
\left|E\left(\rho_{n} / \mathscr{\zeta}\right)-E(p / \zeta)\right| \leqq E\left(\left|\rho_{n}-p\right| / \zeta\right) \leqq E\left(g_{n} / \zeta\right), \tag{4.3}
\end{equation*}
$$

the proof of almost everywhere convergence is complete.
Mesn oonvergence is implied by the inequality

$$
\begin{equation*}
\int\left|E\left(\rho_{n} / \zeta\right)-E(p / G)\right| d P \leqq \int\left|\rho_{n}-p\right| d P \tag{4.4}
\end{equation*}
$$

and the Lebesgue dominated convergence theorem.

SECTION 5. CONDITIONAL PROBABILITY. If A is a measurable set (that is A is in X) and if

$$
f=o(A)
$$

(where o(A) is the oharacteristio funotion of A), we write

$$
E(f / \wp)=P(A / \wp) .
$$

The function $P(A / G)$ is oslled "the conditionsl probability of A with respeot to $\}$ ". The ohsracteristio properties of conditional probability are that

$$
P(A / \mathcal{G}) \text { is messurable } \mathcal{G}
$$

and

$$
\int_{C} P(A / \zeta) d P=P(A \cap C)
$$

for each C in G. If A is in G, then

$$
\begin{equation*}
P(A / \mathcal{G})=o(A), \tag{5.1}
\end{equation*}
$$

and, in any oase,

$$
\begin{equation*}
P(A / 2)=P(A) . \tag{5.2}
\end{equation*}
$$

For this reason the constant $P(A)$ is sometimes called the absolu-
te (as opposed to conditional) probability of A.
The converse of the conclusion (5.1) is true sad sometimes useful. The assertion is that if $P(A / \zeta)$ is the characteristic function of some set, say B, then

A is in ζ
(and therefore $B=A$). To prove this, note that

$$
\int_{C} o(B) d P=P(A \cap C),
$$

and therefore $P(A \cap C)=P(B \cap C)$ for each C in ζ. Since $P(A / \zeta)$ is messurable \mathcal{G}, the set B itself belongs to \mathcal{G}. It is therefore permissible to put $C=B$ and to put $C=X-B$; it follows that $B C A$ and $A \subset B$ (almost), so that $B=A$ (almost).

Just as conditional expectation has the properties of an integral, conditional probability has the properties of a probability measure. Thus if A is measurable set, then

$$
0 \leqq P\left(A^{\prime} \zeta\right) \leqq 1,
$$

and if $\left\{A_{n}\right\}$ is a disjoint sequence of measurable sets with union A, then

$$
P(A / \zeta)=\Sigma_{n} P\left(A_{n} / \zeta\right) .
$$

SECTION 6. JENSEN'S INEQUALITY. A useful analytic property of integration is known as Jensen's inequality, which we now proceed to state and prove in its generalized (conditional) form.

A real-valued function F defined on an interval of the real line is oalled convex if

$$
F(p s+q t) \leqq p F(s)+q F(t)
$$

whenever s and t are in the domain of F and p and q are non-negative
numbers with sum 1. It follows immediately, by induction, that if t_{1}, \ldots, t_{n} are in the domain of F and p_{1}, \ldots, p_{n} are non-negative numbers with sum 1, then

$$
\begin{equation*}
F\left(\sum_{i=1}^{n} p_{i} t_{i}\right) \leqq \sum_{i=1}^{n} p_{i} F\left(t_{i}\right) . \tag{6.1}
\end{equation*}
$$

Suppose now that F is a continuous convex function whose domain is a finite subinterval of $[0, \infty)$, suppose that g is a measurable function on X whose range is (almost) included in the domain of F, and suppose that G is an arbitrary subfield of S. Jensen s inequality asserts that under these oonditions

$$
\begin{equation*}
F(E(g / \zeta)) \leqq E(F(g) / \zeta) \tag{6.2}
\end{equation*}
$$

almost everywhere. Since \mathbb{G} is the limit of an increasing sequence of simple funotions, and since F is continuous, it is sufficient. to prove (6.2) in oase

$$
g=\Sigma_{A} O(A) t_{A}
$$

where the summation extends over the atoms of some finite subfield of δ. If $\&$ has this form, then

$$
F(g)=\sum_{A} o(A) F\left(t_{A}\right)
$$

and

$$
E(g / \zeta)=\sum_{A} P(A / \zeta) t_{A} .
$$

Since $E(F(g) / \zeta)=\sum_{A} P(A / \zeta) F\left(t_{A}\right)$, the inequality (6.2) is in this oase a special oase of (6.1).

In the extreme case, $\mathscr{C}=\mathcal{S}$, the conditional form of Jensen's inequality reduoes to a triviality $(F(g) \leqq F(g))$; in the other extreme oase, $\mathscr{C}=2$, it becomes the classical absolute Jensen's inequality

$$
F\left(\int g d P\right) \leqq \int F(g) d P .
$$

SECTION 7. TRANSFORMATIONS. Later we shall need to know the effeot of measure-preserving transformations on conditional expectations and probabilities. Suppose therefore that T is a measurepreserving transformation on X; this means that if A is measurable, then $T^{-1} A$ is messurable and

$$
P\left(T^{-1} A\right)=P(A) .
$$

(For present purposes T need not be invertible).

$$
\begin{gathered}
\text { If } \mathscr{C} \text { is a subfield of } \mathcal{B} \text {, then } \\
T^{-1} \mathscr{G}
\end{gathered}
$$

is the colleotion (field) of all sets of the form $T^{-1} C$ with C in ζ; if f is a funotion on X, then $f T$ is the composite of f and T. The basic ohange-of-variables result is that if f is integrable, then

$$
\int_{C} \rho d P=\int_{T^{-1} C} \rho T d P
$$

for each measurable set C. If, in partioular, C is in \mathscr{C}, then

$$
\begin{array}{rl}
\int_{T^{-1} C} & E\left(\rho T / T^{-1} \mathscr{C}\right) d P=\int_{T^{-1} C} \rho T d P \\
& =\int_{C^{-}} \rho d P=\int_{C} E(\rho / \mathscr{C}) d P \\
= & \int_{T^{-1} C} E\left(\rho / \xi^{-}\right) T d P .
\end{array}
$$

Since both $E\left(f T / T^{-1} \zeta\right)$ and $E(f / G) T$ are measurable $T^{-1} \mathcal{G}$, it follows that

$$
\begin{equation*}
E\left(f t / T^{-1} \xi\right)=E(f / \xi) T . \tag{7.1}
\end{equation*}
$$

Since $O(A) T=O\left(T^{-1} A\right)$, this implies that

$$
\begin{equation*}
P\left(T^{-1} A / T^{-1} \zeta\right)=P(A / \zeta) T . \tag{7.2}
\end{equation*}
$$

