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PREFACE 

Shannon's theory of information appeared on th,mathematical 

soene in 1948; in 1958 Kolmogorov applied the new subject to sol

ve some relatively old problems of ergodic theory. Neither the ge

neral theory nor its speoial applioation is as well known among 

mathematioians as they both deserve to be; the reason, .probably, 

is faulty oommunioation. Most extant expositions .of inflormation 

theory are designed to make the subjeot palatable to non,mathema

tioians, with the result that they are full of words like "souroe" 

and "alphabet". Suoh words are presumed to be an aid to intuition; 

for the serious student, however, who is anxious to get at the 

root of the matter, they are more .likely to be oonfusing than help

ful. As for the recent ~godic applioation of the theory,the com

munioa~on trouble there is that so far the work of Kolmogorov and 

his .sohool exists in Doklady abstracts only, in Russian .only. The 

purpose ·of these notes is to present a stop-gap exposition of so

me ·of the general theory and some of its applioations. While a few 

of the proofs may appear slightly different from the oorrespon

ding ones in the literature, no claim is m~de for the novelty of 

the results. As a prerequisite) ' some familiarity with the ideas 

of the general theory of measure is assumed; Halmos's leasure 

theory (1950) is an adequate referenoe. 

Chapter I begins. with. ,elatively well known faots about con

ditional expeptations; for the benefit of the reader who does not · 

know this technioal.prohabilistioooncept, several standard proofs 

are reproduced. Standard referenoe: Doob, ~tochastic processes 

(1953). A speoial oase of the martingale convergence theorem is 

proved by what is essentially L6vy's original method (Thdorie de 



6

- 2 -

P.R.Halmos 

~1addition des variabLes aLlatoires (1937)). The reader who kn ows 

the martingale theorem can skip the whole chapter, except possi b ly 

Section 9, and, in partioular" equation (9.1). 

Chapter II motivateeanddefines infor.mation. Standar.d refe

rence: Khinohin, MathematicaL foundations of information theory 

(1957). The ,mor.e reoentbook of Feinstein) Foundations of informa

tion theory (1958}, ,is quite ,teohnioal, but highly recommended. 

The .chapter ends with Ii. pnoof :MoMillan f s theonem Gmean ,convergen

oe}; the reader who knows that theorem oan skip the chapter after 

looking at .it .just long enough to absorb the notation. Almost eve

rywhereoonvergence probably holds. ' A recent paper :by :Breiman (Ann. 

Math. Stat. 28 (1957) 809-811) asserts ,it, but that paper has an 

error j at the time ,these lines ,were written the correction has not 

appeara,p. yet. In any ·oase, for the ergodic application not even 

mean oonvergence is neoessary; all th,t is needed .isthe convergen

ce of the integrals,whioh ,is easy to prove direotly. 

Chapter iIII studies entnopy (average amount of .infollmation) j 

.all .the faots .hene ane dir.eot :oonsequenoes .of the definitions, via 

the 'maohinery ,built up .in .the first two chapters. 

Chapter ,IV ,contains ,the application to ergodic .theory . In ge

neral terms, the idea is ,that information theory suggests a new 

invariant (entropy)ofmeasure~presenving transfonmations. The new 

invar.iant ,is shanp enough :to distinguish ,between some hitherto 

indistinguishable transformations (e.g., the 2-shift and the 3-

.shift). The ,original idea ,of using this invariant is due to K01-

mogorov ' (Do~lady 119 fi958) 861-864 and 124 (1959) 754-755). An 

improved ,version of the definition is, given .by. Sinai (Doklady 

124 (1959) 768-771l, who also oomputesthe entropy of ergod i c 
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automorphisms of the torus. The new invariant is in some resp ec ts 

not so sharp as older ones. Thus for instanoe Rokhlin (Doklady 

124 (1959) 9BQ~983) asserts that all translations (in oompaot a

belian groups) have the same entropy (namely zero); he also begins 

the study of the oonneotion between entropy and speotrum. Muoh re

mains to be done along all these lines. 
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CHAPTER I. CONDITIONAL EXPECTATION 

SECTION 1. DEFINITION .We :shall work, throughout what follows, 

with a fixed probability space 

(X, ~, . pl. 

Here X is a non-empty set, ~ is a field of subsets of X, and P is 

a prpbabili ty measure on -8 ., The word "field" in these notes is 

an abbreviation for "oolleotion of sets olosed under the forma-

tion of oomplements and countabLe unions". A probability measure 

,on a fieid .of subsets of X is a measure P suoh that 

p(X) = .1 

Suppose that S is a subfield of ~ and f is an integrable 

real funotion an X. If 

Q(C) = J f dP 
C 

for eaoh C in & , then Q is a signed measure on (; , absolute l y 

ooptinuous with respeotto P (all, rather, with respeot to the re-

striation of P to ~ ). The Radon-Nikodymtheorem implies the exis-

.t ence of an integrable funotion flf , measurable 13 , such that 

Q(C) = J fit dP 
C 

for eaoh C in S ' The funotion fit is uniquely determined (t o 

within a set of measure zero); its dependenoe an f and ~ i s in-

dioated by writing 

The funotion E{r/!!) is oalled "the oonditional expectation 

of f with respeot to ~ ". It is worth while to repeat the aharac-

teristic properties of oonditional expeotatibn; they are that 

(1. 1) E(f/~) is measurable ~ 
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and 

(1. 2) I E(f/~) dP = I f dP 
C C 

for each C in ~ . 

SECTION 2. EXAMPLES. If t; is the hrgest subfield of 6 ' 
that is (;=,(; ,then r i tseU satisfies (1.1) and (1. 2), so tltat 

E(f/~ ) = f . 

This result has a trivial generalization: since f always satisfies 

(1. 2) (fc f dP = Ic f dP), it follcws that if the field I; is such 

that f is measurable 13 , then 

(2. 1) E (f/ ~) = f 

To look at the other extreme, let 2 be the smallest sub field of 

~ , thH is the field whose only non-empty member is X . Since 

the only functions .measurable 2 are constants, and since the only 

constant (in the role of E(f/S )) that satisfies (1.2) is Ic f dP, 

it follows that 

(2. 2) E(r/2) = I r dP . 

The constant I f dP is sometimes called the absolute (as oppose d 
C 

toconditionall expectation of r , and, in that case, it is denc-

ted by E(f). 

Here is an illuminating example. Suppose that X is the unit 

square, with the collection of Borel sets in the role of 4 and 

Lebesgue measure in the role of P . We Bay that a set in ~ is 

"vertical" in case its intersection with each vertical line L in 

the plane is either empty or else equal to X n L . The collection 

~ of all vertical sets in ~ is a subfield of ~ . A function f 
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i:sme!isur'lble 1$ if and only if it does not depend on its second 

(vertioal) argument; it follows easily that if f i~ integr!!.ble, 

.then 

E(f/~ lex, y) = J f(x, u) du . 

SECTION 3. AL~EBRAIC ·PROPERTIES. 'Conditional expectation is a 

generalized integral and in one form or another it has all the pro~ 

perties of an integral. Thus, for instance, 

(3.1) E(l/~) = 1, 

W!,0l'e this equation, as well as '111 other asserted equations and 

inequalities involving oonditional expeotations, holds almost eve-

rywhere. (To prove (3.1), apply (2~1).) If f and g are integrable 

funotions and if a and .b are oonstants, then 

(3.2) "-ECaf+bg/~) =aECf/~) +bECg/(:;) 

' (Proof: if C is in ~, then the integrals over C of the two sides 

» of (3.2) are equal to eaoh other). If f:;: 0 , then 

~(f/~) ~ O. 

(Proof,: if C= .h E(f/!)(x) < Ot,then C is in ~ and 

J f dP = 0; this implies that P(C) = 0 ). It is a consequence of 
C 

(3.3) that 

(Proof: both If I - f ~ 0 and 1r:1 + f; 0, and therefore, by 

(3.2) and (3.3), both E(-f/~) .~ Eclfl/~) and E(f/~) ~ E(lfl /~) ) . 

Conditional expeotations also have the following multipli c!!.ti -

ve property: if f is integrable and if g is bounded !!ond measurabl e 
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~, then 

(3. ·5) 

Sinoe the right side. of (3.5) is measurable ~ , the thing to prove 

is that 

(3.6) J E(f/b)gdP=J fgdP c C 

for eaoh C in ~. In oase g is the oharacteristio funotion of a 

set in I; , (3.6) follows from the defining equation 0.2) for 

oonditiona1 expeotations. This implies that (3.6) holds whenever 

g is a finite linear oombination of suoh oharaoteristio funotiens J 

and henoe, by approximation, that (3.6) holds whenever gis a .boun

ded funotionmeasurab1e ~. 

SECTION 4. DOMINATED CONVERGENCE. The .usua1 .limit theorems 

for integrals also have their analogues for oonditional expeata

Hons. Thus if f, g, and fn are integrable funotions, if Ifni ~ g 

and f ~ f almost everywhere,. then 
n 

(4.1) E(f It;) -+ E(fl G) 
n 

almost everywhere and, also, in the .mean. For, the. proof) . write. 

g = sup. (I f 
n n 

- fl, If 
1I.1.1 

-fl, If -fl,.· .. ); 
n.+2 

observe that the sequence{g } tends monotone1y to 0 almost every
/l 

where and, that g ~2g, .. It follows that the sequenoe{E:(g It )} n . ' . n 

is monotone decreasing and, therefore, has a limit h almost every-

where. Sinoe 

(4. 2) Jh dP ~ J E (g/ ~,) dP = J gn dP , 
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and since J gn dP'" 0, this implies that E(g/~) ~ 0 almost every

where. Since, finally, 

(4.3) 

the proof of almost everywhere convergenoe is complete. 

Mean oonvergence is implied by the inequality 

(4.4) 

and the Lebesgue dominated convergence theorem. 

SECTION 5. CONDITIONAL PROBABILITY. If A is a measurable set 

(that is A is in ~ ) and if 

f = 0 (A) 

(where c(A) is the charaoteristic function of A), ~e write 

E(f/t;) = P(A/~) • 

The function P(AI ~) is called lithe conditional probability of A 

with respeot to ~ ". The oharacteristic properties of conditional 

probability are that 

a,nd 

p('V ~) is measurable ~ 

J P(A/t',) dP ::: peA n 0) 
o 

for each 0 in G . If A is in ~, then 

(5. 1) l' (AI ~) = 0 (A) , 

and, in any oase, 

p(A/2) = P(A). 

For this reason the constant peA) is sometimes called the absolu-
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te (as opposed to oonditional) probability of A. 

The oonverse of the oonolusion (5.1) is true and , sometimes 

useful. The assertion is that if P(A/G) is the oharacteristic func-

tion of some set, say B, then 

A is in t; 

(and therefore B = A). To prove this, note that 

J o(B) dP = p(An C), 
C 

and therefore peA n C) = PCB n C) for eaoh C in ~ .' Since p(AI ~) 

is measurable ~, the set B itself belongs to ~ . It is therefore 

permissible to put C = B and to put C = X - Bi it follpws that B c: A 

and AC B (almost), so that B = A (almost). 

Just as oonditional expectation has the properties of an inte-

gral, oondit~onal probability has the properties of a probability 

measure. Thus if A is Ii measurable set, then 

and if ,{An} is a disjoint sequence of measurable sets with union 

A, then 

P.(AI e) = L peA II:':,) n n 

SECTION 6. JENSEN'S INEQUALITY. A useful analytic property of 

integration is known as Jensen's inequality, which we now proceed 

to state and prove in its generalized (conditional) form. 

A real-valued funotion F defined on an interval of the real 

line is oalled convex if 

F (ps + qt) < pFeil) + qF(t) 

whenever sand t are in the domain of F and p and q are non-negative 
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numbers with sum 1. It follows immediately, by induotion, that if 

t l ,· •• ,t n are in the domain of F and Pi'" "Pn are non-negative 

numbers with sum 1, then 

(6. 1) 

Suppose now that F is a oontinuous oonvex funotion whose do-

main is a finite subinterval of [0,00), suppose that g is a mea

surable funotion on X whose range is (almost) included in the do

main of F, and suppose that ~ is an arbitrary subfield of -0 
Jensen a inequality asserts that under these conditions 

(6. 2) F(E(gl ~ )) ~ E(F(g) / ~) 

almost everywher.e. Sinoe ~ is the limit of an increasing sequence 

of simple funotions, and sinoe F is continuous, it is suffioient, 

to prove (6.2) in oase 

where the summation extends over the atoills of some finite sub

field of 0 . If g has this form, then 

and 

Sinoe E(F(g)/~) :; 2 p(A/~)F(t ), the inequality (6.2) is in 
A A 

this oase a special oase of (6.1). 

In the extreme oase, i::; -b , the conditional form of Jensen's 

inequality reduces to a triviality (F(g) ~ F(g)); in the other 

extreme oase, ~:; 2, it becomes the olassioal absolute Jensen's 

inequality 
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F(I g dP) S I F~g) dP . 

SECTION 7. TRANSFORMATIONS. Later we shall need to know the 

effeot of measure-preserving transformations on oonditional expec-

tations and probabilities. Suppose therefore that T is a measure-

preserving transformation on X; this means that if A is measurable, 
, -1 

then T A is measurable and 

-1 
peT A) = peA) . 

(For present purposes T need not be invertible). 

If ~ is a sUbfieU of ~ , then 

T-~~ 

(field) 
-1 

is the colleotion of all sets of the form T C with C in 

~; if f is a funotion on X, then fT is the oomposite of f and T. 

The basic ohange-of-variables result is that if f is integrable, 

then 

Ic f dP = I - fT dP 
. T- 1C 

for eaoh measurable set C. If, in partioular, C is in ~, then 

-1 
I -1 E(fT/T ~) dP = I -1 fT dP 

T C T C 

= I f dP = I \ E(f/~) dP c- C 

= I -1 E(fl t;)T dP . 
T C 

1 -1 
Since both E(fT/T- ~) and E(fl ~)T are measurable T ~, it fol-

lows that 

(7. 1) 
-1 

E(ft/T ~)= E(fl ~)T . 

Since o(A)T 
-1 = 0 (T A), this implies that 

(7. 2) 


