## E. Bompiani (Ed.)

## CIME Summer Schools geometria differenziale in grande

Sestriere, Italy 1958

E. Bompiani (Ed.)

# Problemi di geometria differenziale in grande 

Lectures given at the<br>Centro Internazionale Matematico Estivo (C.I.M.E.), held in Sestriere (Torino), Italy, July 31-August 8, 1958



FONDAZIONE
备 Springer
COOETO Cow

C.I.M.E. Foundation<br>c/o Dipartimento di Matematica "U. Dini"<br>Viale Morgagni n. 67/a<br>50134 Firenze<br>Italy<br>cime@math.unifi.it

ISBN 978-3-642-10894-5
e-ISBN: 978-3-642-10895-2
DOI:10.1007/978-3-642-10895-2
Springer Heidelberg Dordrecht London New York
©Springer-Verlag Berlin Heidelberg 2011
Reprint of the $1^{\text {st }}$ ed. C.I.M.E., Florence, 1958.
With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

# CENTRO INTERNATIONALE MATEMATICO ESTIVO (C.I.M.E) 

Reprint of the $1^{\text {st }}$ ed.- Sestriere, Italy, July 31-August 8, 1958

## PROBLEMI DI GEOMETRIA DIFFERENZIALE IN GRANDE

C.B. Allendoerfer: Global Differential Geometry of imbedded manifolds ..... 1
P. Libermann: Pseudo-groupes infinitesmaux ..... 39

## CHAPTER I

## differentiable manifolds and their Imbedding

1. IIFFERENTIABLE MANIFOLDS. A differentiable manifold, $X^{n}$, is ar astract objeot having the following properties :
(1) It is a topological manifold, covered with cpen sets $U_{i}$. It is usually assumed to be paracompact In most of these lectures we dssume it to be compact
(2) There is a map: $\phi_{i}: U_{i} \rightarrow E^{n}$ for each $U_{i}$ These establish vocrdinates in $U_{i}$.
(3) In overlapping open sets, i.e. in $U_{i} \cap U_{j}$, the corresponding coordinates are related by differentiable functions.
```
    Xn}\mathrm{ is C(r) if these functions have r continous derivatives;
C}\mp@subsup{}{}{\infty}\mathrm{ if all derivatives oxist; C C | if the functions are real analytic
```

2. IMBEDDINGS By virtue of a theorem of Whitney (Annals of Mathematios - 1936) $X^{n}$ can be considered to be a subspace of a Euclidean space of sufficently high dimension. The theorem is:

THEOREM. Let $X^{n}$ be a $C(r)$ manifold ( $1 \leqslant r \leqslant \infty$, not $r=\omega$ ). Then $X^{n}$ is $C^{(r)}$ homeomorphic to an analytic submanifold of $E^{2 n+1}$

If $X^{n}$ carries a Riemann metric : $d s^{2}=\varepsilon_{i j} d x^{i} d x^{j}$, there are additional results for the case of $C^{\omega}$ manifolds. These are :

Bochner (Duke Journal 1937): If $X^{n}$ is $C^{\omega}$ and compact and has an analytic Riemann metric, then $X^{n}$ is $C^{\omega}$ homeomorphic with an analytio submanifold in $E^{2 n+1}$.

Malgrange (Bull, Soc Math, France 1957): Boohner's result for non-compact caso.

Morrey (unpublishod, 1958): If $X^{n}$ is $C^{\omega}$ and compact, $X^{n}$ is ${ }^{\omega}$ homeomorphic with an analytic submanifold in $E^{2 n+1}$. The proof is based on the lemma:

Lemma (Morrey). With each point $P$ of $X^{n}$ are associated $n$ funotions $\phi_{i}(i=1, \ldots, n)$ wioh are $0^{\omega}$ over $X^{n}$ and have linearly indipendent gradionts at $P$. This lomma is an important result in its onn right.

Then $\phi_{i}(P)$ have indopendent gradients in $N(P)$. Cover $X^{n}$ with $N\left(P_{i}\right) \quad i=1 \ldots q$. This gives $\phi_{i a}(i=1 \ldots n, a=1 \ldots q)$. Take these as ooordinates in $E^{n q}$. This is an imbedding whioh is $C^{\omega}$ and looally onerto one. Hence it induces a $C^{\omega}$ Riemann metric. The result now follows from the above theorem of Boohner.
3. ISOMETRIC IMBEDDING. When $\mathrm{X}^{\mathrm{n}}$ has a Riemannimetric, we may further require that the given metrio coinoide with that induced by the imbodding, i.e. that the imbedding be isometric. The results are :

Janet (1926.) If $\mathrm{X}^{\mathrm{n}}$ is $\mathrm{O}^{\omega}$, it oan be looally imbodded with preservation of the metrio in $\mathrm{E}^{\mathrm{n}(\mathrm{n}+1) / 2}$.

Nash-Kuiper (195F - Annals of Mathomatice) : If $\mathrm{X}^{\mathrm{n}}$ is $\mathrm{C}^{1}$ and dompaot, and if it oan be differontiably imbedded in $\mathbb{E}^{N}(N \geqslant \mathrm{n}+1)$, then it has a $C^{1}$ isometrio imbedding in $\mathbb{E}^{N}$. This result is offioiont regarding dimension, but is true only for $C^{1}$; the case of the torus in $E^{3}$ shows it to be false for C?

Nash (1956 - Annals of Mathematios). If $\mathrm{X}^{\mathrm{n}}$ is $\mathrm{C}^{(h)}(3 \leqslant h \leqslant \infty)$ and is oompaot, it has an isometrio $C^{(h)}$ imbedding in an Earciidean space of dimension $(n / 2) \cdot(3 n+11)$. When $X^{n}$ is non-compact, the dimension required is $3 n^{3} / 2+7 n^{2}+11 n / 2$. The cases of $C^{2}$ and $0^{\omega}$ are open.
4. RIGID IMBEDDING. If an isometric imbedding is unique to within motion in the ouolidean spaoe, it is said to be "rigid". Sufficient

```
conditions for rigid imbedding will be given later in this series
of lectures
```

5. NOTATIONS FOR IMBEDDED MANIFCLDS Let $X^{n}$ be imbodded in $E^{n+N}$ Local coordinates in $\mathbb{E}^{\mathrm{n}}{ }^{+N}$ : $\mathrm{y}^{a}(a, \beta, \gamma=1 \ldots \mathrm{n}+\mathrm{N})$

Losal coordinates in $X^{n} . x^{i}(i, j, k=1 \ldots n)$
Alsc : $\rho, \sigma, \tau=n+1 \ldots n+N$.
The imbedding is given locally by the functions :

$$
y^{a}=p^{a}\left(x^{i}\right) .
$$

Then

$$
\begin{equation*}
d y^{a}=\left(\rho_{e^{a}} / \partial x^{i}\right) d x^{i} \tag{1}
\end{equation*}
$$

These are a base for the tangent vectors to $X^{n}$, and so any tangent vector is a linear combination of the $d x^{i}$.

It will be convenient to choose an orthonormal base for the tangent vectors, $e_{i}^{a}$, such that

$$
\sum_{a} e_{i}^{a} o_{j}^{a}=\delta_{i j}
$$

In this notation a represents the Euclidean component of the vootor, and $i$ enumerates the vector. Then

$$
\begin{equation*}
\mathrm{d} \mathrm{y}^{a}=\phi^{\dot{I}} e_{i}^{a}, \tag{2}
\end{equation*}
$$

where

$$
\phi^{i}=\Sigma_{a} d y^{a} e_{i}^{a}=\Sigma_{a}\left(\partial e^{a} / \partial x^{i}\right) d x^{j} e_{i}^{a} .
$$

Thus $\phi^{i}$ is a linear differential form
In particular

$$
\begin{equation*}
d s^{2}=\Sigma_{a} d y^{c} d y^{a}=\Sigma \phi^{i} \phi^{i} \tag{3}
\end{equation*}
$$

We also introduce an orthonormal frame of normal vectors $\rho_{\sigma}^{a}$ sush that

$$
\Sigma_{a} \bullet_{i}^{a} \bullet_{\sigma}^{a}=0, \quad \Sigma_{a} \bullet_{\sigma}^{a} \bullet_{\rho}^{a}=\delta_{\sigma \rho} .
$$

It follows at once that :
(4)

$$
\left\{\begin{array}{l}
d e_{i}=\omega_{1}^{j} \bullet_{j}+\omega_{i}^{\sigma} \bullet_{\sigma} \\
d ө_{\sigma}=\omega_{\sigma}^{j} \cdot \bullet_{j}+\omega_{\sigma}^{\rho} \bullet_{\rho},
\end{array}\right.
$$

where we have suppressed the upper index $a$; and $\omega_{i}^{j}, \omega_{\sigma}^{j}$, and $\omega_{\sigma}^{\rho}$ are linear differential forme.

From the orthogonality of the chosen frames, we have seen that $\omega_{i}^{j}=-\omega_{j}^{i} ; \quad \omega_{i}^{\sigma}=-\omega_{\sigma}^{i} ; \quad \omega_{\rho}^{\sigma}=-\omega_{\sigma}^{\rho}$.
6. EQUATIONS OF STRUCTURE. These are the basic equations of own geometry: From (2) we derive

$$
\begin{aligned}
0=d d y^{a} & =d \phi^{i} e_{i}+d e_{i} \Lambda \phi^{i} \\
& =d \phi^{j} o_{j}=\omega_{i}^{j} \Lambda \phi^{i} \theta_{j}=\omega_{i}^{\sigma} \Lambda \phi^{i} \theta_{\sigma} \\
& =\left(d \phi^{j}=\omega_{i}^{j} \Lambda \phi^{i}\right) o_{j}=\left(\omega_{i}^{\sigma} \Lambda \phi^{i}\right) \theta_{\sigma}
\end{aligned}
$$

Nonce
(5):

$$
\mathrm{d} \phi^{j} \neq \omega_{i}^{j} \boldsymbol{\Lambda} \phi^{\mathrm{i}^{\prime}}=0
$$

$$
\omega_{i}^{\sigma} \wedge \phi^{i}=0 .
$$

By differentiating (4) and substituting back for do $i_{i}$ and $d e_{\sigma}$ from (4), we further derive :

$$
\left\{\begin{array}{l}
\mathrm{d} \omega_{i}^{k}+\omega_{j}^{\mathrm{k}} \Lambda \omega_{1}^{j}+\omega_{\sigma}^{\mathrm{k}} \Lambda \omega_{i}^{\sigma}=0  \tag{6}\\
\mathrm{~d} \omega_{i}^{\sigma}+\omega_{\mathrm{j}}^{\sigma} \Lambda \omega_{i}^{j}+\omega_{\rho}^{\sigma} \cdot \Lambda \omega_{i}^{\rho}=0 \\
\mathrm{~d} \omega_{\rho}^{\sigma}+\omega_{j}^{\sigma} \Lambda \omega_{\rho}^{j}+\omega_{\tau}^{\sigma} \Lambda \omega_{\rho}^{\tau}=0
\end{array}\right.
$$

