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Preface

Ergodic theory is a mathematical subject that studies the statistical proper-
ties of deterministic dynamical systems. It is a combination of several branches
of pure mathematics, such as measure theory, functional analysis, topology,
and geometry, and it also has applications in a variety of fields in science and
engineering, as a branch of applied mathematics. In the past decades, the
ergodic theory of chaotic dynamical systems has found more and more appli-
cations in mathematics, physics, engineering, biology and various other fields.
For example, its theory and methods have played a major role in such emerging
interdisciplinary subjects as computational molecular dynamics, drug designs,
and third generation wireless communications in the past decade.
Many problems in science and engineering are often reduced to studying the

asymptotic behavior of discrete dynamical systems. We know that in neural net-
works, condensed matter physics, turbulence in flows, large scale laser arrays,
convection-diffusion equations, coupled mapping lattices in phase transition,
and molecular dynamics, the asymptotic property of the complicated dynami-
cal system often exhibits chaotic phenomena and is unpredictable. However, if
we study chaotic dynamical systems from the statistical point of view, we find
that chaos in the deterministic sense usually possesses some kind of regularity
in the probabilistic sense. In this textbook, which is written for the upper level
undergraduate students and graduate students, we study chaos from the statis-
tical point of view. From this viewpoint, we mainly investigate the evolution
process of density functions governed by the underlying deterministic dynam-
ical system. For this purpose, we employ the concept of density functions in
the study of the statistical properties of sequences of iterated measurable trans-
formations. These statistical properties often depend on the existence and the
properties of those probability measures which are absolutely continuous with
respect to the Lebesgue measure and which are invariant under the transforma-
tion with respect to time. The existence of absolutely continuous invariant finite
measures is equivalent to the existence of nontrivial fixed points of a class of
stochastic operators (or Markov operators), called Frobenius-Perron operators
by the great mathematician Stanislaw Ulam, who pioneered the exploration of
nonlinear science, in his famous book “A Collection of Mathematical Problems”
[120] in 1960.
In this book, we mainly study two kinds of problems. The first is the ex-

istence of nontrivial fixed points of Frobenius-Perron operators, and the other
concerns the computation of such fixed points. They can be viewed as the
functional analysis and the numerical analysis of Frobenius-Perron operators,
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respectively. For the first problem, many excellent books have been written,
such as “Probabilistic Properties of Deterministic Systems” and its extended
second edition “Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics”
by Lasota and Mackey [82], and “Law of Chaos: Invariant Measures and Dy-
namical Systems in One Dimension” by Boyarsky and Góra [14]. For the second
problem, this book might be among the first ones in the form of a textbook on
the computational ergodic theory of discrete dynamical systems. One feature
that distinguishes this book from the others is that our textbook combines strict
mathematical analysis and efficient computational methods as a unified whole.
This is the authors’ attempt to reduce the gap between pure mathematical
theory and practical physical, engineering, and biological applications.
The first famous papers on the existence of nontrivial fixed points of Frobe-

nius-Perron operators include the proof (see, e.g., Theorem 6.8.1 of [82]) of the
existence of a unique smooth invariant measure for a second order continuously
differentiable expanding transformation on a finite dimensional, compact, con-
nected, smooth Riemann manifold by Krzyzewski and Szlenk [80] in 1969, and
the pioneering work [83] on the existence of absolutely continuous invariant
measures of piecewise second order differentiable and stretching interval map-
pings by Lasota and Yorke in 1973. The latter also answered a question posed
by Ulam in his above mentioned book. In the same book, Ulam proposed a
piecewise constant approximation method which became the first approach to
the numerical analysis of Frobenius-Perron operators. A solution to Ulam’s
conjecture by Tien-Yien Li [86] in 1976 is a fundamental work in the new area
of computational ergodic theory.
Our book has nine chapters. As an introduction, Chapter 1 leads the reader

into a mathematical trip from order to chaos via the iteration of a one-parameter
family of quadratic polynomials with the changing values of the parameter, from
which the reader enters the new vision of “chaos from the statistical point of
view.” The fundamental mathematical knowledge used in the book – basic
measure theory and functional analysis– constitutes the content of Chapter 2.
In Chapter 3, we study the basic concepts and classic results in ergodic theory.
The main linear operator studied in this book – the Frobenius-Perron oper-
ator – is introduced in Chapter 4, which also presents some general results that
have not appeared in other books. Chapter 5 is exclusively devoted to the inves-
tigation of the existence problem of absolutely continuous invariant measures,
and we shall prove several existence results for various classes of one-dimensional
mappings and multi-dimensional transformations. The computational problem
is studied in Chapter 6, in which two numerical methods are given for the ap-
proximation of Frobenius-Perron operators. One is the classic Ulam’s piecewise
constant method, and the other is its improvement with higher order approxi-
mation accuracy; that is, the piecewise linear Markov method which was mainly
developed by the authors. In Chapter 7, we present Keller’s result on the stabil-
ity of Markov operators and its application to the convergence rate analysis of



Preface iii

Ulam’s method under the L1-norm and Murray’s work for a more explicit upper
bound of the error estimate. We also explore the convergence rate under the
variation norm for the piecewise linear Markov method. Chapter 8 gives a sim-
ple mathematical description of the related concepts of entropy, in particular the
Boltzmann entropy and its relationship with the iteration of Frobenius-Perron
operators. Several modern applications of absolutely continuous invariant prob-
ability measures will be given in the last chapter.
This book can be used as a textbook for students of pure mathematics, ap-

plied mathematics, and computational mathematics as an introductory course
on the ergodic theory of dynamical systems for the purpose of entering the re-
lated frontier of interdisciplinary areas. It can also be adopted as a textbook
or a reference book for a specialized course for different areas of computational
science, such as computational physics, computational chemistry, and compu-
tational biology. For students or researchers in engineering subjects such as
electrical engineering, who want to study chaos and applied ergodic theory, this
book can be used as a tool book. A good background of advanced calculus is
sufficient to read and understand this book, except possibly for Section 2.4 on
the modern definition of variation and Section 5.4 on the proof of the existence
of multi-dimensional absolutely continuous invariant measures which may be
omitted at the first reading. Some of the exercises at the end of each chapter
complement the main text, so the reader should try to do as many as possi-
ble, or at least take a look and read appropriate references if possible. Each
main topic of ergodic theory contains matter for huge books, but the purpose of
this book is to introduce as many readers as possible with various backgrounds
into fascinating new fields having great potential of ever increasing applications.
Thus, our presentation is quite concise and elementary and as a result, some
important but more specialized topics and results must be omitted, which can
be found in other monographs.
Another feature of this textbook is that it contains much of our own joint

research in the past fifteen years. In this sense it is like a monograph. Our joint
research has been supported by the National Science Foundation of China, the
National Basic Research Program of China, the Academy of Mathematics and
Systems Science at the Chinese Academy of Sciences, the State Key Laboratory
of Scientific and Engineering Computing at the Chinese Academy of Sciences,
the Chinese Ministry of Education, the China Bridge Foundation at the Uni-
versity of Connecticut, and the Lucas Endowment for Faculty Excellence at the
University of Southern Mississippi, among the others, for which we express our
deep gratitude.
Jiu Ding would also like to thank his Ph.D. thesis advisor, University Dis-

tinguished Professor Tien-Yien Li of Michigan State University. It is Dr. Li’s
highly educative graduate course “Ergodic Theory on [0, 1]” for the academic
year 1988-1989, based on the lecture notes [87] delivered at Kyoto University
of Japan one year earlier, that introduced him into the new research field of
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computational ergodic theory and led him to write a related Ph.D. dissertation.
Aihui Zhou is very grateful to his Ph.D. thesis advisor, Academician Qun Lin,
of the Chinese Academy of Sciences, who with a great insight, encouraged him
to enter this wide and exciting research area.
The first edition of this book was published in Chinese by the Tsinghua

University Press in Beijing, China in January 2006 and reprinted in December
in the same year. We thank editors Xiaoyan Liu, Lixia Tong, and Haiyan Wang
and five former Ph.D. students of Aihui Zhou, Xiaoying Dai, Congming Jin,
Fang Liu, Lihua Shen, and Ying Yang for their diligent editorial work and tech-
nical assistance, which made the fast publication of the Chinese edition possible.
We thank Lixia Tong for her help during the preparation of this revised and
expanded English edition of the book.

Jiu Ding and Aihui Zhou
Beijing, March 2008
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Chapter 1

Introduction

JiuDing, Department of Mathematics, The University of Southern Mississippi in America.
Aihui Zhou, Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

Abstract Using the famous logistic model Sr(x) = rx(1−x) as an example, we give

a brief survey of discrete dynamical systems for the purpose of leading the reader on a

mathematical trip from order to chaos, and then we introduce basic ideas behind the

statistical study of chaos, which is the main topic of the book.

Keywords Logistic model, period-doubling bifurcation, Li-Yorke chaos, Frobenius-

Perron operator, absolutely continuous invariant measure.

In the modern statistical study of discrete deterministic dynamical systems
and its applications to physical sciences, there are two important and mutually
related problems. On the theoretical part, there is the problem of the existence
of absolutely continuous invariant measures that give the statistical properties
of the dynamics, such as the probability distribution of the orbits for almost
all initial points and the speed of the decay of correlations. On the practical
part, we encounter the problem of the computation of such invariant measures to
any prescribed precision in order to numerically explore the chaotic behavior in
many physical systems. In this textbook, we try to address these two problems.
For this purpose, we need to study a class of positive linear operators, called
Frobenius-Perron operators, that describe the density evolution governed by the
underlying dynamical system. Density functions, which are the fixed points of
Frobenius-Perron operators, define absolutely continuous invariant probability
measures associated with the deterministic dynamical system, which can be
numerically investigated via structure preserving computational methods that
approximate such fixed density functions.
Before we begin to study the statistical properties of discrete dynamical

systems, we first review the deterministic properties of one-dimensional map-
pings in this introductory chapter as a starting point. The well-known logistical
model, which has played an important role in the history of the evolution of
the concept of chaos in science and mathematics, will be studied in detail from
the deterministic point of view. Then, we are naturally led to the statistical
study of chaos by introducing the concept of Frobenius-Perron operators with
an intuitive approach, which motivates the main topic of this book.
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1.1 Discrete Deterministic Systems—from Order to
Chaos

In their broad sense, dynamical systems provide rules under which phenom-
ena (states) in the mathematical or physical world evolve with respect to time.
Differential equations are widely used to model continuous time dynamical sys-
tems in many areas of science, such as classical mechanics, quantum mechanics,
neural networks, mathematical biology, etc., as these equations describe math-
ematically the laws by which they are governed. Transformations on phase
spaces not only determine a discrete time dynamical system[23], but also form
the basis of investigating continuous time dynamical systems via such math-
ematical tools as the Poincare’ map. Even simple nonlinear transformations
may exhibit a quasi-stochastic or unpredictable behavior which is a key feature
of the chaotic dynamics. Poincaré deduced this kind of chaotic motion for the
three-body problem in celestial mechanics about fifty years before the advent
of electronic computers in the 1940s, and about eighty years before Tien-Yien
Li and James A. Yorke first coined the term “Chaos” in their seminar paper
“Period Three Implies Chaos” [88] in 1975.
The discrete time evolution of a dynamical system in the N -dimensional

Euclidean space RN is usually given by a first order difference equation which
is often written as a recurrence relation

xn+1 = S(xn), n = 0, 1, · · · ,
where S is a transformation from a subset Ω of RN into itself. For example,
consider a population of organisms for which there is a constant supply of food
and limited space, and no predators. In order to model the populations in
successive generations, let xn denote the population of the nth generation, and
adjust the numbers so that the capacity of the environment is equal to 1, which
means that 0 � xn � 1 for all n. One popular formula for the dynamics of the
population is the so-called logistic model , after the differential equation studied
by the Belgian mathematician Pierre F. Verhulst about 160 years ago [98]:

xn+1 = rxn(1 − xn), n = 0, 1, · · · ,
where r ∈ (0, 4] is a parameter. In the following, we study the deterministic
properties of this logistical model to some extent when the parameter r varies
from 0 to 4 and see how the dynamics will change from the regular behavior to
the chaotic behavior as r increases toward 4.
First, we introduce some standard terms in discrete dynamical systems . Let

X be a set and S : X → X be a transformation. A point x ∈ X is called a fixed
point of S if S(x) = x and an eventually fixed point of S if there is a positive in-
teger k such that Sk(x) is a fixed point of S, where Sk(x) = S(S(· · · (S(x)) · · · ))
(i.e., Sk is the composition of S with itself k − 1 times) is the kth iterate of x.
A point x0 ∈ X is called a periodic point of S with period n � 1 or a period-n
point of S if Sn(x0) = x0 and if in addition, x0, S(x0), S2(x0), · · · , Sn−1(x0)
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are distinct. A fixed point is a periodic point with period 1. An eventually
periodic point is a point whose kth iterate is a periodic point for some k > 0.
The orbit of an initial point x0 is the sequence

x0, S(x0), S2(x0), · · · , Sn(x0), · · ·

of the iterates of x0 under S. If x0 is a period-n point, then the orbit

x0, S(x0), · · · , Sn−1(x0), · · ·

of x0 is a periodic orbit which can be represented by {x0, S(x0), · · · , Sn−1(x0)}
called an n-cycle of S.
From the mean value theorem of calculus, a fixed point x of a differentiable

mapping S of an interval is attracting or repelling if |S′(x)| < 1 or |S′(x)| >
1, respectively. Similarly, a period-n point x0 of S is attracting or repelling
when |(Sn)′(x0)| < 1 or |(Sn)′(x0)| > 1 respectively, and the corresponding n-
cycle is attracting or repelling. Such information only gives the local dynamical
properties of a fixed point or a periodic orbit, not the global ones which need
more subtle arguments and more thorough analysis to obtain in general.
Now, we begin to study the iteration of the logistic model. Let

Sr(x) = rx(1 − x), ∀ x ∈ [0, 1],

where the parameter r ∈ (0, 4] so that Sr maps [0, 1] into itself. It is obvious that
Sr has one fixed point 0 when 0 < r � 1 and two fixed points 0 and pr ≡ 1−1/r
when r > 1. Since S′r(0) = r and S

′
r(pr) = 2 − r, one can see that the fixed

point 0 is attracting for r � 1 and repelling for r > 1, and the fixed point pr is
attracting for 1 < r � 3 and repelling for r > 3. In the remaining part of this
section, we study the global properties of the fixed points and possible periodic
points in more detail.
As will be shown below, the dynamics of Sr changes as the parameter r

passes through each of the values 1, 2, 3, 1 +
√
6, · · · , called the bifurcation

points of the one-parameter family {Sr} of the quadratic mappings, that is,
the number and nature of the fixed points and/or the periodic points change
when r passes through each of them. Hence, our discussion below will be split
into four cases, from easy to more complicated ones. They are respectively
0 < r � 1, 1 < r � 2, 2 < r � 3, and 3 < r � 4. In the analysis, we often use
the simple fact that the limit x∗ of a convergent sequence {xn} of the iterates
of a continuous mapping S must be a fixed point of S if x∗ is in the domain
of S.

Case 1. 0 < r � 1 (see Figure 1.1).
Since 0 < Sr(x) = rx(1 − x) < x for 0 < x < 1, the iteration sequence

{Snr (x)} is positive and monotonically decreasing, and so it converges to the
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Figure 1.1 Sr at r = 0.5

unique fixed point 0 of Sr as n approaches infinity. It follows that the basin of
attraction of 0, which is the set of all the initial points whose orbit converges
to the fixed point 0 by definition, is the closed interval [0, 1]. So there are no
periodic points except for the unique fixed point 0.

Case 2. 1 < r � 2 (see Figure 1.2).

Figure 1.2 Sr at r = 1.5

Now, Sr has two fixed points, 0 and pr = 1 − 1/r. We know that the
fixed point 0 is repelling and the fixed point pr is attracting. Let 0 < x < pr.
Then, 1/r < 1 − x, so x < rx(1 − x) = Sr(x). By induction we see that
x < Sr(x) < · · · < Snr (x) < · · · . On the other hand, since Sr is strictly
increasing on [0, pr],

Sr(x) < Sr(pr) = pr,

which implies that Snr (x) < pr for all n. Thus, the sequence {Snr (x)} is strictly
increasing, bounded above by pr, and hence it converges to the fixed point pr.
Similarly, if pr < x � 1/2, then {Snr (x)} is a monotonically decreasing sequence
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bounded below by pr, so it also converges to pr. Finally, if 1/2 < x < 1,
then 0 < Sr(x) � 1/2, so by the above argument, {Snr (x)} converges to pr.
Therefore, when 1 < r � 2, the basin of attraction of the fixed point pr is the
open interval (0, 1), the basin of attraction of the fixed point 0 is the 2-point
set {0, 1}, and there are no other periodic points besides the two fixed points.

Case 3. 2 < r � 3. (see Figure 1.3).

Figure 1.3 Sr at r = 2.5

When r > 2, the fixed point pr > 1/2. Assume that r < 3 and let qr be
the unique number in (0, 1/2), which is symmetric to pr about 1/2, such that
Sr(qr) = Sr(pr) = pr. Then, using the geometry of the graph of Sr and the fact
that qr � Sr(r/4), one can show that (see Exercise 1.1):
(i) if x ∈ (0, qr), then x has an iterate > qr;
(ii) if qr < x � pr, then pr � Sr(x) � r/4;
(iii) if pr < x � r/4, then qr � Sr(x) < pr;
(iv) if r/4 < x < 1, then 0 < Sr(x) < pr.
From (i)-(iv) it follows that if 0 < x < 1, then x has an iterate in the interval

(qr, pr]. Moreover, (ii) and (iii) imply that the iterates of x oscillate between
the intervals (qr, pr] and [pr, r/4]. Thus,
(v) if x is in (qr , pr], then so is the sequence {S2nr (x)};
(vi) if x is in [pr, r/4], then so is the sequence {S2nr (x)}.
Since 0 and pr are the fixed points of Sr, a simple calculation shows that

S2r (x)− x = rx(x − pr)
[
−r2x2 +

(
r2 + r

)
x− r − 1

]
. (1.1)

The expression inside the brackets has no real roots when 2 < r < 3. Therefore,
if 2 < r < 3, then the only fixed points of S2r are 0 and pr. Since S

2
r (x) − x

has no roots in (qr, pr), it has the same sign as S2r (1/2)− 1/2 which is positive.
Consequently x < S2r (x) for all x ∈ (qr, pr), and by (v) the sequence {S2nr (x)}
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is monotonically increasing, lies in (qr, pr], and converges to the only positive
fixed point pr of S2r . Using the continuity of Sr, we find that

S2n+1r (x) = Sr(S2nr (x))→ Sr(pr) = pr

as n increases without bound. Therefore, Snr (x) → pr whenever x ∈ (qr, pr].
Since every x in (0, 1) has an iterate in (qr, pr], we conclude that Snr (x) → pr
as n increases without bound, for all x ∈ (0, 1). In other words, the basin of
attraction of pr is (0, 1), so the basin of attraction of 0 is {0, 1}. A consequence
of this result is that there are no periodic points for Sr other than the fixed
points. The same conclusion can be proven for r = 3 with a more careful
analysis.

Case 4. 3 < r � 4 (see Figure 1.4).

Figure 1.4 Sr at r = 3.2

We have learned that the dynamics of Sr is regular when 0 < r � 3, and in
particular the only periodic points are fixed points. When 3 < r � 4, both 0 and
pr = 1− 1/r are repelling fixed points. Do the iterates of other points in (0, 1)
converge, or oscillate, or have no pattern at all? Are there periodic points other
than 0 and pr? The analysis of the dynamics of Sr becomes more and more
complicated as r increases from 3 to 4. We only study the case 3 < r < 1 +

√
6

in detail and list the main results that follow.
For our purpose, we need to study the dynamics of S2r . When r = 3, the

graph of S2r is tangent to the diagonal y = x at the point (pr, pr). From (1.1),
the other two fixed points of S2r besides 0 and pr are the real roots of the
quadratic equation

−r2x2 + (r2 + r)x − r − 1 = 0,
which are

sr =
1
2
+
1
2r

− 1
2r

√
(r − 3)(r + 1) and tr =

1
2
+
1
2r
+
1
2r

√
(r − 3)(r + 1).
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Since 0 and pr are the only fixed points of Sr for r > 1, it is obvious that {sr, tr}
is a 2-cycle for r > 3. After a simple computation, we find that

(S2r )
′(sr) = S′r(sr)S

′
r(tr) = (r − 2rsr)(r − 2rtr) = −r2 + 2r + 4.

Since | − r2 + 2r + 4| < 1 if and only if 3 < r < 1 +
√
6, the 2-cycle {sr, tr}

is attracting if 3 < r < 1 +
√
6. It can further be shown that the basin of

attraction of the 2-cycle {sr, tr} consists of all x ∈ (0, 1) except for the fixed
point pr and the points whose iterates are eventually pr.
When r > 1+

√
6, the 2-cycle {sr, tr} becomes repelling. As we may expect,

an attracting 4-cycle is born. Actually, there exists a sequence {rn} of the so-
called period-doubling bifurcation values for the parameter r, with r0 = 3 and
r1 = 1 +

√
6, such that

• if r0 < r � r1, then Sr has two repelling fixed points and one attracting
2-cycle;

• if r1 < r � r2, then Sr has two repelling fixed points, one repelling 2-cycle,
and one attracting 22-cycle;

• if r2 < r � r3, then Sr has two repelling fixed points, one repelling 2-cycle,
one repelling 22-cycle, and one attracting 23-cycle;

In general, for n = 1, 2, · · · ,

• if rn−1 < r � rn, then Sr has two repelling fixed points, one repelling
2k-cycle for k = 1, 2, · · · , n− 1, and one attracting 2n-cycle.

It is well-known that lim
n→∞ rn = r∞ = 3.561547 · · · . This number r∞ is

called the Feigenbaum number for the quadratic family {Sr}. Moreover, the
sequence {cn} of the ratios

cn =
rn − rn−1
rn+1 − rn

converges to a number c∞ = 4.669202 · · · , which is called the universal constant
since for many other families of one-humped mappings, the bifurcations occur in
such a regular fashion that the ratios of the distances between successive pairs
of the bifurcation points approach the very same constant c∞! This universal
constant c∞ is also referred to as the Feigenbaum constant because the physicist
Michael Feigenbaum first found it and its universal property in 1978.
So far the dynamics of the quadratic family {Sr} is still regular for 0 < r <

r∞ since every point x ∈ (0, 1) is periodic, eventually periodic, or attracted
to a fixed point or a periodic orbit. So, the eventual behavior of the orbits
is predictable. When r � r∞, there could exhibit a complicated irregular or
chaotic behavior for the dynamics of Sr. For example, if 3.829 � r � 3.840,
then Sr has period-3 points. The celebrated Li-Yorke theorem [88] says that if a
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continuous mapping S from an interval I into itself has a period-3 point, then it
has a period-k point for any natural number k, and there is an uncountable set
Λ ⊂ I, containing no periodic points, which satisfies the following conditions:
(i) For every pair of distinct numbers x, y ∈ Λ,

lim sup
n→∞

|Sn(x) − Sn(y)| > 0 and lim inf
n→∞ |Sn(x)− Sn(y)| = 0.

(ii) For every x ∈ Λ and each periodic point p ∈ I,

lim sup
n→∞

|Sn(x)− Sn(p)| > 0.

Thus, from the Li-Yorke theorem, the eventual behavior of the iterates of Sr
with 3.829 � r � 3.840 is unpredictable.
The case r = 4 is worth a special attention. It is well-known [7] that S4 is

topologically conjugate to the tent function

T (x) =

⎧⎪⎪⎨
⎪⎪⎩
2x, if x ∈

[
0,
1
2

]
,

2(1− x), if x ∈
[
1
2
, 1
]
.

(1.2)

That is, there is a homeomorphism h : [0, 1] → [0, 1] such that S4 ◦ h = h ◦ T .
Since T has a 3-cycle {2/7, 4/7, 6/7}, there is a period-3 orbit for S4. By the Li-
Yorke theorem, S4 is chaotic. As a matter of fact, if we randomly pick an initial
point x0 ∈ [0, 1], then the limit set of the sequence {xn} with xn = Sn4 (x0) is
the whole interval [0, 1], that is, for each x ∈ [0, 1], there is a subsequence {xnk

}
of {xn} such that lim

k→∞
xnk
= x.

Chaotic dynamical systems are now very popular in science and engineering.
Besides the original definition of Li-Yorke chaos in [88], there have been various
definitions for “chaos” in the literature, and the most often used one is given
by Devaney in [27]. Although there is no universal definition for chaos, the
essential feature of chaos is sensitive dependence on initial conditions so that the
eventual behavior of the dynamics is unpredictable. The theory and methods
of chaotic dynamical systems have been of fundamental importance not only in
mathematical sciences [22, 23, 27], but also in physical, engineering, biological,
and even economic sciences [7, 18, 94, 98].
We have examined a family of discrete dynamical systems from the deter-

ministic point of view and have observed the passage from order to chaos as the
parameter value of the mappings changes. In the next section, we study chaos
from another point of view, that is, from the probabilistic viewpoint.

1.2 Statistical Study of Chaos

Although a chaotic dynamical system exhibits unpredictability concerning
the asymptotic behavior of the orbit starting from a generic point, it often
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behaves regularly as far as the statistical properties are concerned. In other
words, a chaotic dynamical system in the deterministic sense may not be chaotic
in the probabilistic sense.
In physical measurements, we often consider a probabilistic distribution of

a physical quantity. Let S : X → X be a dynamical system on a phase space X
of finite measure μ(X) < ∞, and let A be a subset of X . Instead of observing
the deterministic properties of individual orbits, let us consider the probabilistic
properties by observing the frequencies of the first n terms of the orbit {Sn(x)}
of an initial point x that enter A for all natural numbers n. To calculate the
frequency, let χA be the characteristic function of A, that is,

χA(x) =
{
1, if x ∈ A,
0, if x /∈ A. (1.3)

Then, the frequency for a given n is exactly n−1
n−1∑
i=0

χA(Si(x)). The time aver-

age or the time mean, which is the asymptotic frequency of all the terms of an
orbit starting at x ∈ X that enter A, is given by the limit

lim
n→∞

1
n

n−1∑
i=0

χA(Si(x))

if it exists, which measures how frequently the orbit stays in A. The classi-
cal ergodic theory deals with the existence of the time average, their metric
properties, and their close relationships with other mathematical concepts and
quantities, which originated from Boltzmann’s ergodic hypothesis in statistical
mechanics. In our context, this hypothesis concerns the following question:
given a measure preserving transformation S : X → X , i.e., μ(S−1(A)) = μ(A)
for all measurable subsets A of X , and an integrable function f : X → R, find
the conditions under which the limit

lim
n→∞

1
n

n−1∑
k=0

f(Sk(x)) (1.4)

exists and is constant for x ∈ X almost everywhere (a.e.).
In 1931, George D. Birkhoff proved that for any S and f the limit (1.4)

exists for x ∈ X almost everywhere, and furthermore, if S is ergodic, that is,
S−1(A) = A implies that A = ∅ or X a.e., then the time average coincides with
the space average or the space mean

μ(A)
μ(X)

=
1

μ(X)

∫
X

χAdμ

for x ∈ X a.e. More specifically, the celebrated Birkhoff pointwise ergodic
theorem [123] can be stated as follows (c.f. Theorem 3.3.1 in Chapter 3):
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Theorem 1.2.1 (Birkhoff’s pointwise ergodic theorem) Let μ be a prob-
ability measure on X which is invariant under S : X → X. Then, for any
integrable function f defined on X and almost all x ∈ X, the time average

lim
n→∞

1
n

n−1∑
i=0

f(Si(x))

exists and is denoted as f̃(x). Moreover,

f̃(S(x)) = f̃(x), ∀ x ∈ X μ− a.e.

If in addition S is ergodic, then f̃ is the constant function
∫
X

fdμ.

Now, another question arises naturally: given a transformation S : X →
X , what measure μ on X is invariant under S? If we do not impose more
requirements for μ, the answer may be trivial or of no physical importance. For
example, for the logistic model S(x) = 4x(1−x), since 0 is a fixed point of S, it
is easy to see that the Dirac measure δ0 concentrated at 0 is invariant, where
δ0(A) = 1 if 0 ∈ A and δ0(A) = 0 if 0 /∈ A. In general, any fixed point a of
S gives rise to an invariant measure δa, the Dirac measure concentrated at a.
Note that the Dirac measure δa with a ∈ [0, 1] is not absolutely continuous with
respect to the Lebesgue measure of the unit interval. In other words, it cannot
be represented as the integral of an integrable function on [0, 1].
The existence of an invariant measure for a continuous transformation on

a compact metric space has been established by the following theorem [123],
which will be proved in Section 3.4.

Theorem 1.2.2 (Krylov-Bogolioubov) Let X be a compact metric space
and let S : X → X be a continuous transformation. Then, there is an invariant
probability measure μ under S.

In many applications, we are more interested in the existence and compu-
tation of invariant probability measures which are absolutely continuous with
respect to a given measure. In other words, we want to find invariant measures
that can be expressed as integrals of density functions with respect to the given
measure. In this textbook, we intend to study this problem. Here the concept
of Frobenius-Perron operators, which gives the corresponding way the density
functions change under the deterministic dynamical system, plays an important
role. Considering the iteration of the Frobenius-Perron operator leads us to the
following observation: chaos in the deterministic sense may not be so in the
probabilistic sense.
Let (X,Σ, μ) be a σ-finite measure space, let S : X → X be a nonsingular

transformation, i.e., μ(A) = 0 implies μ(S−1(A)) = 0 for all A ∈ Σ, and let
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P : L1(X)→ L1(X) be the Frobenius-Perron operator associated with S which
is defined implicitly by the relation∫

A

Pfdμ =
∫
S−1(A)

fdμ, ∀ A ∈ Σ, (1.5)

where L1(X) is the space of all integrable functions defined on X with respect
to the measure μ (see Chapters 2 and 4 for their precise definitions). In Chapter
4, it will be proved that any fixed point f of P , which is also a density function,
gives an absolutely continuous S-invariant probability measure μf on X defined

by μf (A) =
∫
A

fdμ, ∀ A ∈ Σ.
The existence problem of fixed density functions of Frobenius-Perron opera-

tors is one of the main topics in modern ergodic theory. On the other hand, in
physical sciences, one often needs to compute one or higher dimensional abso-
lutely continuous invariant finite measures [7]. For example, in neural networks,
condensed matter physics, turbulence in fluid flow, arrays of Josephson junc-
tions, large-scale laser arrays, reaction-diffusion systems, etc., “coupled map
lattices” often appear as models for phase transition, in which the evolution
and convergence of density functions under the action of the Frobenius-Perron
operator are examined. Understanding the statistical properties of these sys-
tems will become possible if we are able to calculate such global statistical
quantities as invariant measures, entropy, Lyarpulov exponents, and moments.
Thus, in many applied areas of physical sciences, not only the existence but
also the computation of fixed density functions of Frobenius-Perron operators
is essential for the investigation of the complicated dynamics.
However, the following two main difficulties make solving the above problems

a challenge. First, the underlying space L1(X) is not reflexive in general, and
second, the Frobenius-Perron operator P is usually not compact on L1(X).
Thus, we can only apply some special techniques and the structure analysis to
prove the existence and to develop convergent computational algorithms.
We use the following probabilistic argument to motivate the definition (1.5)

of Frobenius-Perron operators, before we formally define this operator in Chap-
ter 4. Consider again the dynamical system S(x) = 4x(1 − x). Instead of
studying the eventual behavior of individual orbits, we investigate the asymp-
totic distribution of the iterates on [0, 1] under S. In other words, we examine
the flow of density functions of these iterates’ distributions if the density func-
tion of the initial distribution is known. Here, we give an intuitive description
of this approach. Pick a large positive integer n and apply S to each of the n
initial states

x01, x
0
2, · · · , x0n,

and then we have n new states

x11 = S(x
0
1), x

1
2 = S(x

0
2), · · · , x1n = S(x0n).
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The initial states can be represented by a function f0 in the sense that the
integral of f0 over any interval I (not too small) is roughly the fraction of the
number of the states in the interval, that is,

∫
I

f0(x)dx 
 1
n

n∑
i=1

χI(x0i ).

f0 is called the density function of the initial states. Similarly, the density
function f1 for the states x11, x

1
2, · · · , x1n satisfies∫

I

f1(x)dx 
 1
n

n∑
i=1

χI(x1i ).

Our purpose is to find a relation between f1 and f0.
For the given I ⊂ [0, 1],

x1i ∈ I if and only if x0i ∈ S−1(I).

Thus, from the equality χI(S(x)) = χS−1(I)(x), we have

∫
I

f1(x)dx 
 1
n

n∑
i=1

χS−1(I)(x0i ),

which implies that ∫
I

f1(x)dx =
∫
S−1(I)

f0(x)dx.

If we write f1 as Pf0, then the above relationship between f1 and f0 is∫
I

Pf0(x)dx =
∫
S−1(I)

f0(x)dx.

The operator P that maps the density function f of the initial states to the
density function Pf of the next states is actually the Frobenius-Perron operator
corresponding to the transformation S, as defined by (1.5).
Let I = [0, x]. Then, differentiating both sides of the equality∫ x

0

Pf(t)dt =
∫
S−1([0,x])

f(t)dt

with respect to x gives

Pf(x) =
d
dx

∫
S−1([0,x])

f(t)dt.
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Since

S−1([0, x]) =
[
0,
1
2
− 1
2

√
1− x

]
∪
[
1
2
+
1
2

√
1− x, 1

]
,

after carrying out the indicated differentiation, we obtain

Pf(x) =
1

4
√
1− x

[
f

(
1
2
− 1
2
√
1− x

)
+ f

(
1
2
+
1
2
√
1− x

)]
.

which is an explicit formula for the Frobenius-Perron operator corresponding
to the quadratic mapping S. This formula tells us how S transforms a given
density function f into a new density function Pf . In particular, if the initial
density function f(x) ≡ 1, that is, if the initial distribution of the states is
uniform, then the distribution of the new states under S is given by the density
function

Pf(x) =
1

2
√
1− x

.

If we keep iterating, we can see that the density function sequence {Pnf(x)}
will approach the density function

f∗(x) =
1

π
√
x(1 − x)

as n→ ∞, which satisfies Pf∗ = f∗. This fixed density function for the logistic
model S(x) = 4x(1− x) was found by Ulam and von Neumann [121] in 1947.
It turns out that the probability measure μ∗ defined by

μ∗(A) =
∫
A

f∗(x)dx, ∀ measurable A ⊂ [0, 1],

which is absolutely continuous with respect to the Lebesgue measure on [0, 1],
is invariant under the quadratic polynomial S. Thus, the chaotic dynamical
system in the deterministic sense is stable in the probabilistic sense, that is, the
probability distribution of the states of the iterates of S will approach eventually
the stationary probability distribution given by f∗.
In this book, we shall mainly study Frobenius-Perron operators and the

related concept of absolutely continuous invariant finite measures. There are
two main issues that we would like to discuss: the existence of fixed density
functions of Frobenius-Perron operators and their numerical computation. The
main mathematical foundation for achieving our goals is integration theory and
functional analysis, and a useful analytic tool is the concept of variation. So,
in the next chapter we introduce the basis of measure theory and functional
analysis as preliminaries for the subsequent chapters on the theoretical and
numerical analysis of Frobenius-Perron operators.


