
WILEY-VCH

Edited by Michael Wink

An Introduction to Molecular Biotechnology

Fundamentals, Methods and Applications

Third, Completely Revised Edition

An Introduction to Molecular Biotechnology

An Introduction to Molecular Biotechnology

Fundamentals, Methods and Applications

Edited by Michael Wink

Third, Completely Revised Edition

WILEY-VCH

Editor

Michael Wink Universität Heidelberg Institut für Pharmazie und Molekulare Biotechnologie (IPMB) Im Neuenheimer Feld 329 69120 Heidelberg Germany

Cover credits

Shutterstock #287352494 / paulista

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2021 WILEY-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34414-7 ePDF ISBN: 978-3-527-81286-8 ePub ISBN: 978-3-527-81288-2

Cover Design Formgeber, Mannheim, Germany Typesetting SPi Global, Chennai, India Printing and Binding

Printed on acid-free paper

 $10\quad 9\quad 8\quad 7\quad 6\quad 5\quad 4\quad 3\quad 2\quad 1$

Contents

Abbreviations xix

Part I Fundamentals of Cellular and Molecular Biology 1

1The Cell as the Basic Unit of Life3Michael WinkReferencesFurther Reading8

2 Structure and Function of Cellular Macromolecules 9 Michael Wink

- 2.1 Structure and Function of Sugars 9
- 2.2 Structure of Membrane Lipids 13
- 2.3 Structure and Function of Proteins *17*
- 2.4 Structure of Nucleotides and Nucleic Acids (DNA and RNA) 25 References 32 Further Reading 32

3 Structure and Functions of a Cell 33 Michael Wink

- 3.1 Structure of a Eukaryotic Cell 33
- 3.1.1 Structure and Function of the Cytoplasmic Membrane 33
- 3.1.1.1 Membrane Permeability 33
- 3.1.1.2 Transport Processes Across Biomembranes 34
- 3.1.1.3 Receptors and Signal Transduction at Biomembranes 37
- 3.1.2 Endomembrane System in a Eukaryotic Cell 40
- 3.1.3 Mitochondria and Chloroplasts 45
- 3.1.4 Cytoplasm 49
- 3.1.5 Cytoskeleton 51
- 3.1.6 Cell Walls 53
- 3.2 Structure of Bacteria 53
- 3.3 Structure of Viruses 55
- 3.4 Differentiation of Cells 56
- 3.5 Cell Death 60 References 61 Further Reading 61

4 Biosynthesis and Function of Macromolecules (DNA, RNA, and Proteins) 63 Michael Wink

- 4.1 Genomes, Chromosomes, and Replication 63
- 4.1.1 Genome Size 63

vi Contents

- 4.1.2 Composition and Function of Chromosomes 67
- 4.1.3 Mitosis and Meiosis 69
- 4.1.4 Replication 71
- 4.1.5 Mutations and Repair Mechanisms 72
- 4.2 Transcription: From Gene to Protein 77
- 4.3 Protein Biosynthesis (Translation) 81 Further Reading 85

5 Distributing Proteins in the Cell (Protein Sorting) 87

Michael Wink

- 5.1 Import and Export of Proteins via the Nuclear Pore 87
- 5.2 Import of Proteins in Mitochondria, Chloroplasts, and Peroxisomes 88
- 5.3 Protein Transport into the Endoplasmic Reticulum 89
- 5.4 Vesicle Transport from the ER via the Golgi Apparatus to the Cytoplasmic Membrane 92
 References 94
 Further Reading 94
- 6 Evolution and Diversity of Organisms 95
- Michael Wink
- 6.1 Prokaryotes 95
- 6.2 Eukaryotes 95
 - References *101* Further Reading *101*

Part II Standard Methods in Molecular Biotechnology 103

- 7 Isolation and Purification of Proteins 105
 - Thomas Wieland
- 7.1 Introduction 105
- 7.2 Producing a Protein Extract 106
- 7.3 Gel Electrophoretic Separation Methods 107
- 7.3.1 Principles of Electrophoresis 107
- 7.3.2 Native Gel Electrophoresis 107
- 7.3.3 Discontinuous Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 107
- 7.3.4 Two-Dimensional (2D) Gel Electrophoresis and Isoelectric Focusing (IEF) 108
- 7.3.5 Detecting Proteins in Gels 108
- 7.4 Methods of Protein Precipitation 109
- 7.5 Column Chromatography Methods 109
- 7.5.1 General Principles of Separation 109
- 7.5.1.1 Size Exclusion Chromatography (Gel Filtration) 109
- 7.5.1.2 Hydrophobic Interaction Chromatography 111
- 7.5.1.3 Ion Exchange Chromatography 111
- 7.5.1.4 Hydroxyapatite Chromatography 112
- 7.5.2 Group-Specific Separation Techniques 112
- 7.5.2.1 Chromatography on Protein A or Protein G 112
- 7.5.2.2 Chromatography on Cibacron Blue (Blue Gel) 112
- 7.5.2.3 Chromatography on Lectins 112
- 7.5.2.4 Chromatography on Heparin 113
- 7.5.3 Purification of Recombinant Fusion Proteins 113
- 7.5.3.1 Chromatography on Chelating Agents 113
- 7.5.3.2 Chromatography on Glutathione Matrices 114

- 7.6 Examples *114*
- 7.6.1 Example 1: Purification of Nucleoside Diphosphate Kinase from the Cytosol of Bovine Retina Rod Cells *114*
- 7.6.2 Example 2: Purification of Recombinant His₆-RGS16 After Expression in *E. coli* 114
 Further Reading 115
- 8 Mass Spectrometry and Applications in Proteomics and Microbial Identification 117 Andreas Schlosser and Wolf D. Lehmann
- 8.1 Principles of ESI and MALDI Mass Spectrometry *117*
- 8.2 Instrumental Setup 118
- 8.3 Intact Protein Analysis 119
- 8.3.1 Protein Digestion 119
- 8.3.2 Peptide Fragmentation *119*
- 8.3.3 Protein Identification with MS/MS Spectra 121
- 8.4 Protein and Proteome Quantification 121
- 8.4.1 Label-Free Quantification 121
- 8.4.2 Chemical Stable Isotope Labeling 121
- 8.4.3 Metabolic Stable Isotope Labeling 122
- 8.5 Protein–Protein Interaction Analysis *123*
- 8.6 Analysis of Posttranslational Modifications 124
- 8.7 Microbial Identification and Resistance Detection *125* References *126*
- 9 Isolation of DNA and RNA 129

Hans Weiher

- 9.1 Introduction 129
- 9.2 DNA Isolation 129
- 9.3 RNA Isolation 131
- 9.3.1 Enrichment of mRNA *131* Reference *131*

10 Chromatography and Electrophoresis of Nucleic Acids 133

- Hans Weiher
- 10.1 Introduction 133
- 10.2 Chromatographic Separation of Nucleic Acids 133
- 10.3 Electrophoresis 134
- 10.3.1 Agarose Gel Electrophoresis: Submarine Electrophoresis 134
- 10.3.2 Pulsed-Field Agarose Gel Electrophoresis 134
- 10.3.3 Polyacrylamide Gel Electrophoresis (PAGE) 135 Further Reading 135
- 11 Hybridization of Nucleic Acids 137

Hans Weiher

- 11.1 Significance of Base Pairing 137
- 11.2 Experimental Hybridization: Kinetic and Thermodynamic Control 137
- 11.3 Analytical Techniques 138
- 11.3.1 Clone Detection, Southern Blotting, Northern Blotting, and Gene Diagnosis 138
- 11.3.2 Systematic Gene Diagnosis and Expression Screening Based on Gene Arrays 139
- 11.3.3 *In Situ* Hybridization *139* References *140* Further Reading *140*

viii Contents

- 12 Use of Enzymes in the Modification of Nucleic Acids 141 Ingrid Herr and Michael Wink 12.1 Restriction Enzymes (Restriction Endonucleases) 141 12.2 Ligases 142 12.3 Methyltransferases 142 12.4 DNA Polymerases 143 12.5 RNA Polymerases and Reverse Transcriptase 144 12.6 Nucleases 144 12.7 T4 Polynucleotide Kinase 144 12.8 Phosphatases 145 Further Reading 145 13 Polymerase Chain Reaction 147 Richard Jäger and Hans Weiher 13.1 Introduction 147 13.2 PCR Methods 147 13.2.1 Basic Principle 147 13.2.2 Primer Design and Hot Start PCR 148 13.2.3 Multiplex PCR 149 13.2.4RT-PCR 149 13.2.5 Qualitative Analysis of the PCR Products 149 13.3 PCR as a Quantitative Method 149 13.3.1 PCR Phases and PCR Efficiency 149 13.3.2 Quantitative Real-Time PCR 150 13.3.3 Digital PCR 151 13.4 Areas of Application 151 13.4.1 Genome Analysis 151 13.4.2 Cloning Techniques 152 13.4.3 Gene Expression Studies 152 Further Reading 152 14 DNA Sequencing 153 Richard Jäger and Hans Weiher 14.1Introduction 153 14.2 The Sanger Method 153 14.3 Pyrosequencing 154 14.4Second-Generation Sequencing: Illumina and Ion Torrent 155 14.4.1Overview 155 14.4.2The Illumina Sequencing System 155 14.4.3 The Ion Torrent Sequencing System 156 14.5Third-Generation Sequencing Techniques 156 14.5.1Overview 156 14.5.2 SMRT Sequencing 157 14.5.3 Nanopore Sequencing 157 14.6 The Impact of the DNA Sequencing Technology 158 References 158 Further Reading 158 Websites 158 15 Cloning Procedures 159 Thomas Wieland and Susanne Lutz 15.1Introduction 159 15.2 Construction of Recombinant Vectors 159
- 15.2.1Insert 159

- 15.2.2 Vector 161
- 15.2.3 Essential Components of Vectors 162
- 15.2.3.1 Bacterial Origin of Replication (ori) 162
- 15.2.3.2 Antibiotic Resistance 162
- 15.2.3.3 Polylinkers 162
- 15.2.4 Cloning Using Recombination Systems 162
- 15.2.5 Further Components of Vectors for Prokaryotic Expression Systems 163
- 15.2.5.1 Promoter 163
- 15.2.5.2 Ribosome-Binding Site 163
- 15.2.5.3 Termination Sequence 164
- 15.2.5.4 Fusion Sequence 164
- 15.2.6 Further Components of Eukaryotic Expression Vectors 164
- 15.2.6.1 Eukaryotic Expression Vectors: Yeast 164
- 15.2.6.2 Eukaryotic Expression Vectors for Mammal Cells 165
- 15.2.6.3 Viral Expression Systems for Mammalian Cells 167
- 15.2.7 Nonviral Introduction of Heterologous DNA to Host Organisms (Transformation, Transfection) 168
- 15.2.7.1 Transformation of Prokaryotes 168
- 15.2.7.2 Transformation of Yeast Cells 169
- 15.2.7.3 Transfection of Mammal Cells *169* Further Reading *170*

16 Expression of Recombinant Proteins 171

- Thomas Wieland
- 16.1 Introduction 171
- 16.2 Expression of Recombinant Proteins in Host Organisms 171
- 16.2.1 Expression in *E. coli* 172
- 16.2.2 Expression in Yeasts 175
- 16.2.3 Expression in Insect Cells 177
- 16.2.3.1 Expression Based on Recombinant Baculoviruses 177
- 16.2.3.2 Expression of Proteins in Stably Transfected Insect Cells 178
- 16.2.4 Expression of Proteins in Mammalian Cells 178
- 16.3 Expression in Cell-Free Systems 179
- 16.3.1 Expression of Proteins in Reticulocyte Lysates 180
- 16.3.2 Protein Expression Using *E. coli* Extracts *180* Further Reading *180*
- **17 Patch Clamp Method** 181

Robert Kraft

- 17.1 Ion Channels 181
- 17.2 Technical Requirements of the Patch Clamp Method 181
- 17.3 Patch Clamp Configurations 182
- 17.4 Applications of the Patch Clamp Method 183 Reference 185 Further Reading 185
- 18 Cell Cycle Analysis 187
- Stefan Wölfl
- 18.1 Introduction 187
- 18.2 Analyzing the Cell Cycle 187
- 18.3 Experimental Analysis of the Cell Cycle 189
- 18.3.1 Preparing Synchronized Cell Cultures of S. cerevisiae 189
- 18.3.1.1 Centrifugal Elutriation 190
- 18.3.1.2 Cell Cycle Arrest Using α -Factor 190
- 18.3.2 Identification of Cell Cycle Stages 191

- **x** Contents
 - 18.3.2.1 Budding Index 191
 - 18.3.2.2 Fluorescent Staining of the Nucleus 191
 - 18.3.2.3 Detection of Cell Cycle Phases Using Fluorescent Proteins as Reporters 194
 Acknowledgments 195
 Further Reading 196

19 Microscopic Techniques 197

- Stephan Diekmann
- 19.1 Introduction 197
- 19.2 Electron Microscopy 197
- 19.2.1 Cryo-electron Microscopy 199
- 19.2.2 Electron Tomography 199
- 19.3 Atomic or Scanning Force Microscopy 199
- 19.3.1 Force Spectroscopy 200
- 19.3.2 Advantages and Disadvantages 201
- 19.4 Light Microscopy 201
- 19.4.1 Deconvolution 202
- 19.4.2 Confocal Microscopy 202
- 19.4.3 Why Fluorescence? 203
- 19.4.4 Nanoscopy 203
- 19.5 Microscopy in the Living Cell 204
- 19.5.1 Analysis of Fluorescently Labeled Proteins In Vivo 205
- 19.5.2 Fluorescence Recovery After Photobleaching 206
- 19.5.3 Fluorescence Correlation Spectroscopy 206
- 19.5.4 Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy 207
- 19.5.5 Single-Molecule Fluorescence 207 Further Reading 207

20 Laser Applications 209

Rainer Fink

- 20.1 Laser Development: A Historical Perspective 209
- 20.2 Types of Lasers and Setups 210
- 20.3 Properties of Laser Radiation 210
- 20.4 Applications 211
- 20.4.1 Laser Scanning Microscopy 211
- 20.4.2 Optical Tweezers 212
- 20.4.3 Laser Microdissection and Laser Therapy 212
- 20.4.4 Manufacturing of Products in Medical Technology and Biotechnology Products 213 Further Reading 213

Part III Key Topics 215

21 Sequencing the Universe of Life 217

Stefan Wiemann

- 21.1 What to Sequence? 217
- 21.1.1 Whole-Genome Sequencing 217
- 21.1.2 Exome Sequencing 220
- 21.1.3 (Gene) Panel Sequencing 220
- 21.1.4 RNA Sequencing 221
- 21.1.4.1 Tag- vs. Full-Length Sequencing 221
- 21.1.4.2 Sequencing of RNA Species and Modifications 221
- 21.1.4.3 Sequencing of Single Cells 222

- 21.1.4.4 In Situ Sequencing 222
- 21.1.5 (Whole-Genome) Bisulfite Sequencing of DNA 223
- 21.1.6 Sequencing to Characterize Chromatin Structure and Beyond 223
- 21.2 Sequencing Projects: Human 224
- 21.2.1 Initial Sequencing of the Human Genome 224
- 21.2.2 The 1000 Genomes Project: Assessing Natural Variation 224
- 21.2.3 Screening for Genetic Disease 225
- 21.2.4 Sequencing of Populations 226
- 21.2.5 TCGA and ICGC: Screening for Cancer Driver Mutations 226
- 21.3 Sequencing Other Species, Environments, ... 228
- 21.4 Sequencing in the Clinics: Personalizing Oncology 228
- 21.5 Sequencing in the Private Sector: Direct to Consumer Testing (DTC) 231
- 21.6 The Information Content of a Genome Sequence and Ethical Consequences 231 References 232
- 22 Cellular Systems Biology 239
 - Melanie Boerries, Hauke Busch, and Rainer König
- 22.1 Introduction 239
- 22.2 Analysis of Cellular Networks by Top-Down Approaches 240
- 22.2.1 Motivation 240
- 22.2.2 Definitions and Construction of the Networks 240
- 22.2.3 Gene Set Enrichment Tests 241
- 22.2.4 Inferring Gene Regulators Employing Gene Regulatory Models 242
- 22.2.5 Network Descriptors 243
- 22.2.5.1 Scale-Free Networks 243
- 22.2.5.2 Centrality 243
- 22.2.5.3 The Clustering Coefficient 244
- 22.2.6 Detecting Essential Enzymes with a Machine Learning Approach 244
- 22.2.7 Elementary Flux Modes 244
- 22.3 Overview over Bottom-Up Modeling of Biochemical Networks 247
- 22.3.1 Motivation 247
- 22.3.2 Choosing Model Complexity and Model Building 248
- 22.3.3 Model Simulation 251
- 22.3.4 Model Calibration 252
- 22.3.5 Model Verification and Analysis 254
- 22.3.6 Examples 254 Further Reading 258 References 259

23 Protein–Protein and Protein–DNA Interactions 261

- Peter Uetz and Ehmke Pohl
- 23.1 Protein–Protein Interactions 261
- 23.1.1 Classification and Specificity: Protein Domains 261
- 23.1.2 Protein Networks and Complexes 262
- 23.1.3 Structural Properties of Interacting Proteins 262
- 23.1.4 Which Forces Mediate Protein–Protein Interactions? 263
- 23.1.4.1 Thermodynamics 264
- 23.1.4.2 Energetics 264
- 23.1.5 Methods to Examine Protein–Protein Interactions 264
- 23.1.6 Theoretical Prediction of Protein–Protein Interactions 266
- 23.1.7 Regulation of Protein–Protein Interactions 266
- 23.1.8 Biotechnological and Medical Applications of Protein–Protein Interactions 268
- 23.2 Protein–DNA Interactions 269
- 23.2.1 Specific Protein–DNA Interaction 269

xii Contents

- 23.2.2 Thermodynamic Consideration 270
- 23.2.3 Methods to Study Protein–DNA Interactions 270
- 23.2.3.1 Structural Classification of Protein–DNA Complexes 270
- 23.2.4 Regulatory Networks and System Biology 270
- 23.2.5 Medical Importance of Protein–DNA Interactions 273
- 23.2.6 Biotechnological Applications 274 References 275 Further Reading 275

24 Bioinformatics 277

- Benedikt Brors
- 24.1 Introduction 277
- 24.2 Data Sources 277
- 24.2.1 Primary Databases: EMBL/GenBank/DDBJ, PIR, and Swiss-Prot 277
- 24.2.2 Genome Databases: Ensembl and GoldenPath 278
- 24.2.3 Motif Databases: BLOCKS, PROSITE, Pfam, ProDom, and SMART 278
- 24.2.4 Molecular Structure Databases: PDB and SCOP 278
- 24.2.5 Transcriptome Databases: SAGE, ArrayExpress, and GEO 279
- 24.2.6 Reference Databases: PubMed, OMIM, and GeneCards 279
- 24.2.7 Pathway Databases and Gene Ontology 279
- 24.3 Sequence Analysis 280
- 24.3.1 Kyte–Doolittle Plot, Helical Wheel Analysis, and Signal Sequence Analysis 280
- 24.3.2 Pairwise Alignment 281
- 24.3.2.1 Local/Global 281
- 24.3.2.2 Optimal/Heuristic 282
- 24.3.3 Alignment Statistics 282
- 24.3.4 Multiple Alignment 282
- 24.4 Evolutionary Bioinformatics 283
- 24.4.1 Statistical Models of Evolution 283
- 24.4.2 Relation to Score Matrices 284
- 24.4.3 Phylogenetic Analysis 285
- 24.5 Gene Prediction 285
- 24.5.1 Neural Networks or HMMs Based on Hexanucleotide Composition 286
- 24.5.2 Comparison with Expressed Sequence Tags or Other Genomes (Fugu, Mouse) 286
- 24.6 Bioinformatics in Transcriptome and Proteome Analysis 287
- 24.6.1 Preprocessing and Normalization 287
- 24.6.2 Feature Selection 288
- 24.6.3 Similarity Measures: Euclidean Distance, Correlation, Manhattan Distance, Mahalanobis Distance, and Entropy Measures 288
- 24.6.4 Unsupervised Learning Procedures: Clustering, Principal Component Analysis, Multidimensional Scaling, and Correspondence Analysis 289
- 24.6.5 Supervised Learning Procedures: Linear Discriminant Analysis, Decision Trees, Support Vector Machines, and ANNs 289
- 24.6.6 Analysis of Overrepresentation of Functional Categories 290
- 24.7 Analysis of Ultraparallel Sequencing Data 291
- 24.7.1 Mapping of Ultraparallel Sequencing Data 291
- 24.7.2 Genome (Re-)sequencing 292
- 24.7.3 Transcriptome Sequencing 292
- 24.7.4 ChIP-seq 293
- 24.7.5 Epigenetic Analysis 293
- 24.7.6 Single-Cell Analysis 294
- 24.7.7 Bioethics of Human Sequencing Data 294
- 24.8 Bioinformatic Software 294 Further Reading 295

- 25 Drug Research 297
 - Manfred Koegl, Ralf Tolle, Ulrich Deuschle, Claus Kremoser, and Michael Wink
- 25.1 Introduction 297
- 25.2 Active Compounds and Their Targets 297
- 25.2.1 Identification of Potential Targets in the Human Genome 298
- 25.2.2 Comparative Genome Analysis 298
- 25.2.3 Experimental Target Identification: In Vitro Methods 299
- 25.2.4 Experimental Identification of Targets: Model Organisms 300
- 25.2.5 Experimental Target Identification in Humans 300
- 25.2.6 Difference Between Target Candidates and Genuine Targets 301
- 25.2.7 Biologicals 301
- 25.2.8 DNA and RNA in New Therapeutic Approaches 302
- 25.2.9 Patent Protection for Targets 303
- 25.2.10 Compound Libraries as a Source of Drug Discovery 304
- 25.2.11 High-Throughput Screening 304
- 25.2.12 High-Quality Paramounts in Screening Assays 304
- 25.2.13 Virtual Ligand Screening 306
- 25.2.14 Activity of Drugs Described in Terms of Efficacy and Potency 307
- 25.2.15 Chemical Optimization of Lead Structures 307
- 25.3 Preclinical Pharmacology and Toxicology 308
- 25.4 Clinical Development 309
- 25.5 Clinical Testing 309
 - Further Reading 310
- 26 Drug Targeting and Prodrugs 311 Gert Fricker
- 26.1 Drug Targeting *311*
- 26.1.1 Passive Targeting by Exploiting Special Physiological Properties of the Target Tissue 311
- 26.1.2 Physical Targeting 312
- 26.1.3 Active Targeting 313
- 26.1.4 Cellular Carrier Systems 316
- 26.2 Prodrugs 316
- 26.2.1 Prodrugs to Improve Drug Solubility 316
- 26.2.2 Prodrugs to Increase Stability 317
- 26.3 Penetration of Drugs Through Biological Membranes 317
- 26.4 Prodrugs to Extend Duration of Effect 318
- 26.5 Prodrugs for the Targeted Release of a Drug 318
- 26.6 Prodrugs to Minimize Side Effects 320
 - References 320

27 Molecular Diagnostics in Medicine 323

Stefan Wölfl and Reinhard Gessner

- 27.1 Introduction 323
- 27.2 Uses of Molecular Diagnostics 323
- 27.2.1 Introduction 323
- 27.2.2 Monogenic and Polygenic Diseases 323
- 27.2.3 Individual Variability in the Genome: Forensics 325
- 27.2.4 Individual Variability in the Genome: HLA Typing 325
- 27.2.5 Individual Variability in the Genome: Pharmacogenomics 325
- 27.2.6 Individual Variability in the Genome: Susceptibility to Infectious Diseases 326
- 27.2.7 Viral Diagnosis 326
- 27.2.8 Microbial Diagnosis and Resistance Diagnosis 327
- 27.3 Which Molecular Variations Should be Detected 327
- 27.3.1 Point Mutations 327

xiv Contents

- 27.3.2 Insertions and Deletions 328
- 27.3.3 Nucleotide Repeats 328
- 27.3.4 Deletion or Duplication of Genes 328
- 27.3.5 Recombination Between Chromosomes 329
- 27.3.6 Epigenetic Changes 329
- 27.4 Molecular Diagnostic Methods 330
- 27.4.1 DNA/RNA Purification 331
- 27.4.2 Detection of Target Sequence and Known Sequence Variations 331
- 27.4.2.1 Nucleic Acid Tests 331
- 27.4.2.2 Quantitative PCR 332
- 27.4.2.3 Multiplexing of Nucleic Acid Detection: Nucleic Acid Microarrays 333
- 27.4.2.4 Production and Manufacture of Microarrays 334
- 27.4.2.5 Applications of Fragment Length Analysis 335
- 27.4.2.6 Minisequencing 336
- 27.4.2.7 Determination of Unknown Mutations 336
- 27.5 Outlook 337 Further Reading 338 Historic Article: "News & Views" 338 Reviews 338 Web Link 338 Textbooks 338

28 Recombinant Antibodies and Phage Display 339

Gustavo Marçal Schmidt Garcia Moreira and Stefan Dübel

- 28.1 Introduction 339
- 28.2 Generation of Specific Recombinant Antibodies 340
- 28.2.1 Generation of Antibody Gene Libraries 341
- 28.2.2 Selection Systems for Recombinant Antibodies 342
- 28.2.2.1 Transgenic Mice with Human IgG Genes 342
- 28.2.2.2 In Vitro Selection Systems 342
- 28.3 Production and Purification of Recombinant Antibodies 348
- 28.4 Features and Applications of Recombinant Antibodies 349
- 28.4.1 Advantages of Recombinant Antibodies 349
- 28.4.2 Formats and Applications of Recombinant Antibodies 350
- 28.4.2.1 Camelid Antibodies and V_H Domains 351
- 28.4.2.2 scFv and dsFv 351
- 28.4.2.3 scFv–Fc Fusions, Fc Engineering, and the Addition of Constant Domains 352
- 28.4.2.4 IgG, Fusion Proteins, and Derivatives for Therapy 352
- 28.4.2.5 Bispecific Antibodies 354
- 28.4.2.6 Chimeric Antigen Receptors (CARs) 355
- 28.4.3 The Future of Therapeutic Antibodies 355
- 28.4.4 Research and In Vitro Diagnostics 356
- 28.4.5 Intracellular and Cell-Penetrating Antibodies 356
- 28.5 Outlook 357
 - Further Reading 357 Textbooks 357 References 358
- 29 Genetically Modified Mice and Their Impact in Medical Research 361
 - Rolf Sprengel and Mazahir T. Hasan
- 29.1 Overview 361
- 29.2Transgenic Mice362
- 29.2.1 Retroviral Infection 362
- 29.2.2 Pronuclear Injection 363

- 29.3 Homologous Recombination: Knockout (Knock-In) Mice 364
- 29.4 Endonuclease-Based Knockout Mice 366
- 29.5 Endonuclease-Based Knock-In Mice 367
- 29.6 Conditionally Regulated Gene Expression 367
- 29.7 Gene Transfer to Subpopulations of Cells 368
- 29.7.1 Electroporation of Mouse Embryos (Plasmid DNA) 368
- 29.7.2 Virus-Mediated Gene Transfer (Lentivirus, rAAVs) 369
- 29.7.3 Virus-Mediated Gene Deletion (Cre/lox) 370
- 29.7.4 Virus-Mediated Gene Knockdown (shRNA, Antagomirs) 370
- 29.8 Impact of Genetically Modified Mice in Biomedicine 370
- 29.8.1 Alzheimer's Disease 370
- 29.8.2 Amyotrophic Lateral Sclerosis (ALS) 370
- 29.8.3 Psychological and Cognitive Disorders 371
- 29.8.4 Autism Spectrum Disorder (ASD) 371
- 29.8.5 Chemogenetics, Optogenetics, and Magnetogenetics 372
- 29.9 Outlook 372 Reference 373
 - Further Reading 373

30 Plant Biotechnology 375

Helke Hillebrand and Rüdiger Hell

- 30.1 Introduction 375
- 30.1.1 Green Genetic Engineering: A New Method Toward Traditional Goals 375
- 30.1.2 Challenges in Plant Biotechnology 376
- 30.2 Gene Expression Control and Genome Editing 376
- 30.2.1 Gene Expression Control 377
- 30.2.2 Genome Editing 377
- 30.3 Production of Transgenic Plants 378
- 30.3.1 Transformation Systems 379
- 30.3.1.1 Agrobacterium as a Natural Transformation System 379
- 30.3.1.2 Biolistic Method: Gene Gun 381
- 30.3.1.3 Plastid Transformation 382
- 30.3.1.4 Viral Systems 382
- 30.4 Selection of Transformed Plant Cells 383
- 30.4.1 Requirements for an Optimal Selection Marker System 383
- 30.4.2 Negative Selection Marker Systems 384
- 30.4.3 Positive Selection Marker Systems 385
- 30.4.4 Selection Systems, Genetic Engineering Safety, and Marker-Free Plants 385
- 30.5 Regeneration of Transgenic Plants 387
- 30.5.1 Regeneration Procedures 387
- 30.5.2 Composition of Regeneration Media 387
- 30.6 Plant Analysis: Identification and Characterization of Genetically Engineered Plants 388
- 30.6.1 DNA and RNA Verification 388
- 30.6.2 Protein Analysis 389
- 30.6.3 Genetic and Molecular Maps 389
- 30.6.4 Stability of Transgenic Plants 390
 - Further Reading 390
- **31 Biocatalysis in the Chemical Industry** *393*
 - Michael Breuer and Bernhard Hauer
- 31.1 Introduction 393
- 31.2 Bioconversion/Enzymatic Procedures 395
- 31.3 Development of an Enzyme for Industrial Biocatalysis 397
- 31.3.1 Identification of Novel Biocatalysts 397

- xvi Contents
 - 31.3.2 Improvement of Biocatalysts 399
 - 31.3.3 Production of Biocatalysts 399
 - 31.3.4 Outlook 399
 - 31.3.5 Case Study 1: Screening for New Nitrilases 400
 - 31.3.6 Case Study 2: Use of Known Enzymes for New Reactions: Lipases for the Production of Optically Active Amines and Alcohols 400
 - 31.3.7 Case Study 3: Enzyme Optimization with Rational and Evolutive Methods 401
 - 31.4 Fermentative Procedures 402
 - 31.4.1 Improvement of Fermentation Processes 402
 - 31.4.2 Classical Strain Optimization 403
 - 31.4.3 Metabolic Engineering 404
 - 31.4.4 Case Study 4: Fermentative Production of *n*-Butanol 405
 - 31.4.5 Case Study 5: Production of Glutamic Acid with C. glutamicum 406
 - 31.4.5.1 Molecular Mechanism of Glutamate Overproduction 406
 - 31.4.6 Case Study 6: Production of Lysine with C. glutamicum 407
 - 31.4.6.1 Molecular Mechanism of Lysine Biosynthesis 407
 - 31.4.6.2 Deregulation of the Key Enzyme Aspartate Kinase 408
 - 31.4.7 Genomic Research and Functional Genomics 409
 - 31.4.8 Case Study 7: Fermentative Penicillin Production 409
 - 31.4.9 Case Study 8: Vitamin B₂ Production 409
 - 31.4.9.1 Riboflavin Biosynthesis 410
 - 31.4.9.2 Classical Strain Development 410 References 410

Part IV Biotechnology in Industry 411

- **32** Industrial Application: Biotech Industry, Markets, and Opportunities *413* Julia Schüler
- 32.1 Historical Overview and Definitions of Concepts 413
- 32.2 Areas of Industrial Application of Molecular Biotechnology 414
- 32.2.1 Red Biotechnology 414
- 32.2.1.1 Biopharmaceutical Drug Development 414
- 32.2.1.2 Gene and Cell Therapy 416
- 32.2.1.3 Tissue Engineering/Regenerative Medicine 419
- 32.2.1.4 Pharmacogenomics and Personalized Medicine 421
- 32.2.1.5 Molecular Diagnostic Agents 421
- 32.2.1.6 Systems Biology 422
- 32.2.1.7 Synthetic Biology 422
- 32.2.2 Green Biotechnology 422
- 32.2.2.1 Transgenic Plants 422
- 32.2.2.2 Genomic Approaches in Green Biotechnology 423
- 32.2.2.3 Novel Food and Functional Food 423
- 32.2.2.4 Livestock Breeding 423
- 32.2.3 White Biotechnology 424
- 32.3 Status Quo of the Biotech Industry Worldwide 424
- 32.3.1 Global Overview 424
- 32.3.2 United States 424
- 32.3.3 Europe 424
- **33** Patents in the Molecular Biotechnology Industry: Legal and Ethical Issues 425 David Resnik
- 33.1 Patent Law 425
- 33.1.1 What is a Patent? 425

- 33.1.2 How Does One Obtain a Patent? 426
- 33.1.3 What is the Proper Subject Matter for a Patent? 426
- 33.1.4 Types of Patents in Pharmaceutical and Molecular Biotechnology 427
- 33.1.5 Patent Infringement 427
- 33.1.6 International Patent Law 428
- 33.2 Ethical and Policy Issues in Biotechnology Patents 428
- 33.2.1 No Patents on Nature 428
- 33.2.2 Threats to Human Dignity 429
- 33.2.3 Problems with Access to Technology 430
- 33.2.4 Benefit Sharing 432
- 33.3 Conclusions 433 Acknowledgments 433

34 Drug Approval in the European Union and United States 435

- Gary Walsh
- 34.1 Introduction 435
- 34.2 Regulation Within the European Union 435
- 34.2.1 The EU Regulatory Framework 435
- 34.2.2 The EMA and National Competent Authorities 436
- 34.2.3 New Drug Approval Routes 437
- 34.2.3.1 The Centralized Procedure 437
- 34.2.3.2 Decentralized Procedure and Mutual Recognition 438
- 34.3 Regulation in the United States 438
- 34.3.1 CDER and CBER 439
- 34.3.2 The Approvals Procedure 439
- 34.4 The Advent and Regulation of Biosimilars 440
- 34.5 International Regulatory Harmonization 441 References 442
- 35 Emergence of a Biotechnology Industry 445

Claus Kremoser Reference 451

Further Reading 451

36 The 101 of Founding a Biotech Company 453

Claus Kremoser and Michael Wink

- 36.1 First Steps Toward Your Own Company 453
- 36.2 Employees: Recruitment, Remuneration, and Participation 456

37 Marketing 459

- Claus Kremoser and Michael Wink
- 37.1 Introduction 459
- 37.2 What Types of Deals Are Possible? 460
- 37.3 What Milestone or License Fees Are Effectively Paid in a Biotech/Pharma Cooperation? 460
- 37.4 PR and IR in Biotech Companies 461 Further Reading 462

Websites 462

Glossary 463

Index 491

Abbreviations

1 Å	=0.1 nm	ATP	adenosine triphosphate
aa-tRNA	aminoacyl-tRNA	att	attachment site
AAV	adeno-associated virus	BAC	bacterial artificial chromosome
ABC	ATP-binding cassette	bcl2	B-cell leukemia lymphoma 2
Acetyl CoA	acetyl coenzyme A		(protein protecting against
AcNPV	Autographa californica nuclear		apoptosis)
	polyhedrosis virus	BfArM	German Bundesinstitut für
ACRS	amplification-created restriction		Arzneimittel und
ACR3	sites		Medizinprodukte
ACTH	adrenocorticotropic hormone	β-Gal	β-galactosidase
ADA	adrenocorticotropic normone adenosine deaminase	BHK-21	baby hamster kidney cells
		BLA	biologics licence application
ADEPT	antibody-directed enzyme	BLAST	Basic Local Alignment Search
	prodrug therapy	DLASI	0
ADME-T	absorption, distribution,		Tool
	metabolism, excretion, and	BMP	bone morphogenetic proteins
	toxicity	bp	base pairs
ADP	adenosine diphosphate	BrdU	bromodeoxyuridine
ADRs	adverse drug reactions	CA	correspondence analysis
AEC	aminoethylcysteine	CAD	coronary artery disease
AFLP	amplified fragment length	CaM-Kinase	Ca ²⁺ /calmodulin-dependent
	polymorphism		protein kinase
AFM	atomic force microscope	cAMP	cyclic AMP
AIDS	acquired immunodeficiency	cap	AAV gene mediating
	syndrome		encapsulation
ALS	amyotrophic lateral sclerosis	CARS	coherent anti-Raman scattering
AMP	adenosine monophosphate	CAT	Committee for Advanced
AMPA	α-amino-3-hydroxyl-		Therapies
	5-methyl-4-isoxazol-propionate	CBER	Center for Biologics Evaluation
Amp ^r	ampicillin resistance gene		and Research
AMV	avian myeloblastosis virus	CC	chromatin remodeling complex
ANN	artificial neural network	CCD	charge-coupled device
AO	acridine orange	CDER	Center for Drug Evaluation and
AOX1	alcohol oxidase 1		Research
APC	anaphase-promoting complex	CDK	cyclin-dependent kinase
ApoB100	apolipoprotein B100	cDNA	copy DNA
ApoE	apolipoprotein E	CDR	complementarity-determining
APP	amyloid precursor protein		region
ARMS	amplification refractory	CDRH	Center for Devices and
	mutation system	2	Radiological Health
ARS	autonomously replicating	CEO	chief executive officer
	sequence	CFP	cyan fluorescent protein
			-, Protein

xx Abbreviations

CFTR	cystic fibrosis transmembrane	Dox	doxycycline
	regulator	ds diabodies	disulfide-stabilized diabodies
CGAP	Cancer Genome Anatomy	dsDNA	double-stranded DNA
	Project	dsFv-fragment	disulfide-stabilized Fv fragment
CGH	comparative genome	dsRNA	double-stranded RNA
	hybridization	DtxR	diphtheria toxin repressor
CHMP	Committee for Medicinal	Ebola-Z	envelope protein of the
	Products for Human Use		Ebola-Zaire virus, which has a
СНО	Chinese hamster ovary		high affinity to lung epithelial
CIP	calf intestinal phosphatase		cells
CML	chronic myeloid leukemia	EC_{50}	effective concentration, the dose
CMN	Corynebacterium–		or concentration that produces a
	Mycobacterium–Nocardia		50% effect in the test population
	group		within a specified time
CaMV	cauliflower mosaic virus	ECD	electron capture dissociation
CMV	cytomegalovirus	EDTA	ethylenediaminetetraacetic acid
CNS	central nervous system	ee	enantiomeric excess
COMP	Committee for Orphan	EF2	elongation
	Medicinal Products		factor 2
COS-1	simian cell line, CV-1,	EF-Tu	elongation factor Tu
	transformed by origin-defective	EGF	epidermal growth factor
	mutant of SV40	EGFP	enhanced green fluorescent
cpDNA	chloroplast DNA		protein
ĊPMV	cowpea mosaic virus	EGTA	ethylene glycol
cPPT-sequence	central polypurine		bis(2-aminoethyl)tetraacetic
-	tract – regulatory element in		acid
	lentiviral vectors that facilitates	EIAV	equine infectious anemia virus
	double strand synthesis and the	ELISA	enzyme-linked immunosorbent
	nuclear import of the		assay
	pre-integration complex	EM	electron microscope
CSF	colony-stimulating factor	EMA	European Medicines Agency
CSO	contract service organization	EMBL	European Molecular Biology
СТАВ	cetyltrimethylammonium		Laboratory
	bromide	EMCV	encephalomyocarditis virus
CVM	Center for Veterinary Medicine	EMSA	electrophoretic mobility shift
CVMP	Committee for Medicinal		assay
	Products for Veterinary Use	EMEA	European Agency for the
2D	two-dimensional		Evaluation of Medicinal
Da	Dalton		Products
DAG	diacylglycerol	ENU	N-ethyl-N-nitrosourea
DAPI	4,6-diamidino-2-phenylindole	env	retroviral gene coding for viral
dATP	deoxyadenosine triphosphate		envelope proteins
DBD	DNA-binding domain	EPO	European Patent Office
DAC	divide-and-conquer strategy	EPR effect	enhanced permeability and
DD	differential display		retention effect
DDBJ	DNA Data Bank of Japan	EPC	European Patent Convention
ddNTP	dideoxynucleotide triphosphate	ER	endoplasmic reticulum
DEAE	diethylaminoethyl	ESI	electrospray ionization
dHPLC	denaturing HPLC	EST	expressed sequence tags
DIC	differential interference contrast	ES cells	embryonic stem cells
DIP	Database of Interacting Proteins	EtBr	ethidium bromide
DNA	deoxyribonucleic acid	Fab-fragment	antigen-binding fragment
DNAse	deoxyribonuclease	FACS	fluorescence-activated cell
dNTP	deoxynucleoside triphosphate	11100	sorter
M1111	acoxynaciconae inpriosphate		

			I
FAD	flavin adenine dinucleotide	GTC	guanidinium isothiocyanate
FBA	flux balance analysis	GTP	guanosine triphosphate
FCS	fluorescence correlation	GUS	glucuronidase
	spectroscopy	GMO	genetically modified organism
FDA	Food and Drug Administration	HA	hemagglutinin
FFL	feed-forward loop	НСМ	hypertrophic cardiomyopathy
FGF	fibroblast growth factor	HCV	hepatitis C virus
FISH	fluorescence <i>in situ</i>	HEK	human embryonic kidney
	hybridization	HeLa cells	human cancer cell line (isolated
FIV	feline immunodeficiency virus		from donor Helene Larsen)
FKBP	FK506-binding protein	HER 2	human epidermal growth factor
FLIM	fluorescence lifetime imaging		2
	microscopy	HGH	human growth hormone
FLIPR	fluorescent imaging plate reader	HIC	hydrophobic interaction
FMN	flavin mononucleotide		chromatography
FPLC	fast performance liquid	His ₆	hexahistidine tag
1120	chromatography	HIV	human immunodeficiency virus,
FRAP	fluorescence recovery after		a retrovirus
110111	photobleaching	HIV 1	human immunodeficiency
FRET	fluorescence resonance energy		virus 1
INDI	transfer	HLA	human leukocyte antigen
FT-ICR	Fourier transformation	hnRNA	heterogeneous nuclear RNA
	cyclotron resonance, method in	HPLC	high-performance liquid
	mass spectroscopy	TH LC	chromatography
FtsZ	prokaryotic cell division protein	НРТ	hygromycin phosphotransferase
Fur	ferric uptake regulator	HPV	human papillomavirus
Fv-fragment	variable fragment	HSP	high-scoring segment pairs
FWHM	full width at half maximum	HSP	heat shock protein
GABA		HSV-1	
	gamma-aminobutyric acid	HTS	herpes simplex virus
Gag	retroviral gene coding for		high-throughput analysis
Cal	structural proteins	HUGO HV	Human Genome Organization
Gal GAP	galactose		herpesvirus
GAP GAPDH	GTPase-activating protein	IAS	international accounting
GAPDH	glyceraldehyde-3-phosphate		standard
Cl	dehydrogenase	ICDH	isocitric dehydrogenase
Gb	gigabases	ICH	International Council for
GCC	German cDNA consortium		Harmonization of Technical
GCG	Genetics Computer Group		Requirements for Registration of
GCP	good clinical practice		Pharmaceuticals for Human Use
ΔG_d	free enthalpy	ICL	isocitric lyase
GDH	glutamate dehydrogenase	ICP-MS	inductively coupled plasma
GDP	guanosine diphosphate		mass spectrometry
GEF	guanine exchange factor	ICR-MS	ion cyclotron resonance mass
GEO	gene expression omnibus		spectrometer
GFP	green fluorescent protein	IDA	iminodiacetic acid
GM-CSF	granulocyte/macrophage	IEF	isoelectric focusing
	colony-stimulating factor	Ig	immunoglobulin
GO	Gene Ontology	IHF	integration host factor
GOI	gene of interest	IMAC	immobilized metal affinity
GPCR	G-protein-coupled receptor		chromatography
GPI anchor	glycosylphosphatidylinositol	IND-Status	investigational new drug status
	anchor	IP_3	inositol-1,4,5-triphosphate
GRAS	generally regarded as safe	IPO	initial public offering
GST	glutathione-S-transferase	IPTG	isopropyl-β-D-thiogalactoside

IRs	inverted repeats	MAGE-ML	microarray gene expression
IR	investor relations		markup language
IRES	internal ribosome entry site	MALDI	matrix-assisted laser
ISAAA	International Service for the		desorption/ionization
	Acquisition of Agri-biotech	6-MAM	6-monoacetylmorphine
	Applications	MAP	microtubule-associated protein
ISH	<i>in situ</i> hybridization	MAP	mitosis-activating protein
ISSR	inter-simple sequence repeats	Mb	megabases
ITC	isothermal titration calorimetry	MBP	maltose-binding protein
ITR	inverse terminal	MCS	multiple cloning site
	repeats – regulatory elements in	M-CSF	macrophage colony-stimulating
	adenoviruses and AAV		factor
i.v.	intravenous	MDR	multidrug resistance protein
k _a	second-order velocity constant	MDS	multidimensional scaling
· a	in bimolecular association	MGC	Mammalian Gene Collection
Kan ^r	kanamycin resistance gene	MHC	major histocompatibility
K _{av}	specific distribution coefficient		complex
Kb	kilobases	MIAME	minimum information about a
k _d	first-order velocity constant in		microarray experiment
i a	unimolecular dissociation	miRNA	microRNA
$K_d = k_d / k_a$	velocity constant in	MIT	Massachusetts Institute of
a nama	dissociation/ K_a in association		Technology
KDa	kilodalton	MoMLV	Moloney murine leukemia virus
KDEL	amino acid sequence for	Mowse	molecular weight search
REE	proteins remaining in the ER	MPF	M-phase promotion factor
KDR receptor	kinase insert domain-containing	MPSS	Massively Parallel Signature
RDR receptor	receptor		Sequencing
KEGG	Kyoto Encyclopedia of Genes	Mreb/Mbl	proteins of prokaryotic
REGG	and Genomes		cytoskeleton
Lac	lactose	mRNA	messenger RNA
LASER	light amplification by stimulated	MRSA	methicillin-resistant
LAGLI	emission of radiation		Staphylococcus aureus
LB	left border	MS	mass spectrometry
LB	Luria-Bertani medium	MSG	monosodium glutamate
LCR	ligation chain reaction	MS-PCR	mutationally separated PCR
LDL	low-density lipoprotein	MTA	material transfer agreement
LIMS	laboratory information	mtDNA	mitochondrial DNA
LINIS	management systems	MULVR	Moloney murine leukemia virus
LINE		MW	molecular weight
LINE	long interspersed elements laser scanning cytometer	μF	μFarad
LJQ	linear trap quadrupole	nAChR	nicotinic acetylcholine receptor
-		NAD	nicotinamide adenine
LTQ-FT-ICR	linear trap quadrupole–Fourier		dinucleotide
	transformation ion cyclotron resonance	NAPPA	nucleic acid programmable
נידי ז		NGDI	protein array
LTR	long terminal repeats;	NCBI	National Center for
	regulatory elements in		Biotechnology Information
	retroviruses	NDA	new drug application
LUMIER	LUMInescence-based	NDP	nucleoside diphosphate
MAC	Mammalian intERactome	NDPK	nucleoside diphosphates kinase
MAC	mammalian artificial	NFjB	nuclear factor jB
	chromosome	NIH	National Institutes of Health
mAChR	muscarinic acetylcholine	NK cell	natural killer cell
	receptor	NMDA receptor	<i>N</i> -methyl-D-aspartate receptor

xxii Abbreviations

NMR	nuclear magnetic resonance	RAPD	random amplification of
NPTII	neomycin phosphotransferase II		polymorphic DNA
NSAID	nonsteroidal anti-inflammatory	RAP-PCR	RNA arbitrarily primed PCR
	drug	RB	right border
NTA	nitrilotriacetic acid	RBD	RNA-binding domain
NTP	nucleoside triphosphate	Rb gene	retinoblastoma gene
OD	optical density	RBS	ribosome-binding site
ODE	ordinary differential equation	RDA	representative difference
ODHC	2-oxoglutarate dehydrogenase	KD/Y	analysis
OMIM	Online Mendelian Inheritance	RdRp	RNA-dependent RNA
	in Man	κακρ	polymerase
ORF	open reading frame	rep	AAV gene mediating replication
ori	origin of replication	RES	reticuloendothelial system
OXA complex	membrane translocator in	RFLP	restriction fragment length
_	mitochondria		polymorphism
PAC	P1-derived artificial	R_f -value	retention factor
	chromosome	RGS	regulator of G-protein signaling
PAGE	polyacrylamide gel	RISC	RNA-induced silencing complex
	electrophoresis	RNA	ribonucleic acid
PAZ domain	PIWI/Årgonaute/Zwille domain		
PCA	principal component analysis	RNAi	RNA interference
PCR	polymerase chain reaction	RNP	ribonucleoprotein
PDB	protein data bank	rpm	revolutions per minute
PEG	polyethylene glycol	RRE	regulatory element in a lentiviral
PFAM	protein families database of		vector, enhancing the nuclear
	alignments and HMMs		export of viral RNA
PFG	pulsed-field gel electrophoresis	rRNA	ribosomal RNA
PI	propidium iodide	RSV	respiratory syncytial virus
PIR	protein information resource	RSV	promoter of the Rous sarcoma
piRNA	piwi-interacting RNA		virus
PKA	protein kinase A	RT	reverse transcriptase
РКС	protein kinase C	rtTA	tetracycline-sensitive regulatory
PK data	pharmacokinetic data		unit
PLoS	Public Library of Science	SAGE	serial analysis of gene expression
PMSF	phenylmethylsulfonyl fluoride	SALM	spectrally assigned localization
PNA	peptide nucleic acid		microscopy
PNGaseF	peptide <i>N</i> -glycosidase F	SAM	S-adenosylmethionine
PNGaser PNK	T4 polynucleotide kinase	sc diabodies	single-chain diabodies
	1 1	scFab	single-chain Fab fragment
pol	retroviral gene coding for	scFv/sFv fragment	single-chain Fv fragment
	reverse transcriptase and	SCID	severe combined
Л	integrase	0012	immunodeficiency
P _{PH}	polyhedrin promoter	SCOP	structural classification of
PR	public relations	5001	proteins
psi	retroviral packaging signal	SDS	sodium dodecyl sulfate
PTGS	posttranscriptional gene	SDS-PAGE	sodium dodecyl sulfate
DTI	silencing	SDS-PAGE	•
PTI	pancreatic trypsin inhibitor		polyacrylamide gel
Q-FT-ICR	q-Fourier transform ion	CELEV	electrophoresis
0 505	cyclotron resonance	SELEX	systematic evolution of ligands
Q-TOF	quadrupole time-of-flight	CEN (by exponential enrichment
RACE	rapid amplification of cDNA	SEM	scanning electron microscope
_	ends	Sf cells	Spodoptera frugiperda cells
Ran	protein involved in nuclear	SFM	scanning force microscope
	import	SFV	Semliki Forest virus

xxiv Abbreviations

SH1	Src homology domain	TIM	translocase of inner membrane
0111	1 = kinase domain	T_m	melting temperature of dsDNA
SH2	Src homology domain 2	TNF	tumor necrosis factor
SH3	Src homology domain 3	TOF	time of flight
SHG	second harmonic generation	TOM	translocase of outer membrane
SIM	single input	t-PA	tissue plasminogen activator
SIN	self-inactivating lentiviral	TRE	tetracycline-responsive element
	vectors, due to a 3' LTR	TRIPs	Trade-Related Aspects of
	mutation	11110	Intellectual Property Rights
SINE	scattered or short interspersed	tRNA	transfer RNA
	elements	Trp	tryptophan
siRNA	small interfering RNA	t-SNARE	protein in target membrane to
SIV	simian immunodeficiency virus		which v-SNARE binds
SNARE proteins	SNAP receptor proteins	TSS	transformation and storage
SNP	single nucleotide polymorphism	100	solution
snRNA	small nuclear RNA	tTA	tetracycline-controlled
snRNP	small nuclear ribonucleoprotein		transactivator
SOP	stock option program	TY	transposon from yeast
SP function	sum-of-pairs function	UPOV	Union for the Protection of New
SPA	scintillation proximity assay	0101	Varieties of Plants
SPDM	spectral precision distance	US-GAAP	US generally accepted
01 2101	microscopy	co dilli	accounting principle
SPF	S-phase promotion factor	UV	ultraviolet
SRP	signal recognition particle	V_0	empty volume
SSB	single-strand binding proteins	VC	venture capital
SSCP	single-strand conformation	V_e	elution volume
0001	polymorphism	VEGF	vascular endothelial growth
ssDNA	single-stranded DNA	v EGI	factor
SSH	suppression subtractive	VIP	vasoactive peptide
0011	hybridization	VNTR	variable number tandem repeats
SssI methylase	methylase from Spiroplasma	v-SNARE	protein in vesicular membrane,
ssRNA	single-stranded RNA	V OI VI IILE	binding to t-SNARE
STED	stimulated emission depletion	VSV-G	envelope protein of vesicular
STEM	scanning transmission electron	vov d	stomatitis virus, great affinity to
01200	microscope		a wide range of cells
stRNA	small temporal RNA	V_t	total volume
STS	sequence-tagged site	wNAPPA	modified nucleic acid
SV40	Simian virus type 40		programmable protein array
TBP	TATA-binding protein	WPRE	woodchuck hepatitis virus
T_c	cytotoxic T cells		posttranscriptional regulatory
Tc	tetracycline		element
T-DNA	transfer DNA	X-Gal	5-bromo-4-chloro-3-indolyl-
TEM	transmission electron		β-D-galactopyranoside
	microscope	YAC	yeast artificial chromosome
TEV	tobacco etch virus	ҮЕр	yeast episomal plasmid
T_{H}	T helper cell	YFP	yellow fluorescence protein
THG	third harmonic generation	YIp	yeast-integrating plasmid
TIGR	The Institute for Genome	YRp	yeast-replicating plasmid
	Research	Yth	yeast two-hybrid
			· · · ·

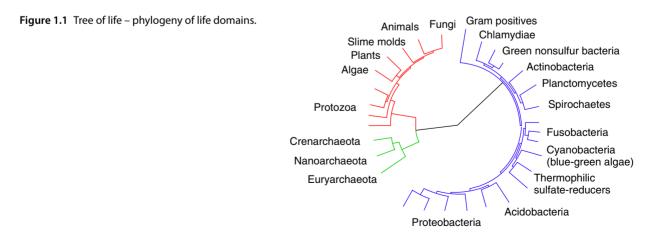
Part I

Fundamentals of Cellular and Molecular Biology

The Cell as the Basic Unit of Life

Michael Wink

Heidelberg University, Institute of Pharmacy and Molecular Biotechnology (IPMB), Im Neuenheimer Feld 329, 69120 Heidelberg, Germany


The base unit of life is the **cell**. Cells constitute the base element of all **prokaryotic cells** (cells without a cell nucleus, e.g. **Bacteria** and **Archaea**) and **eukaryotic cells** (or **Eukarya**) (cells possessing a nucleus, e.g. protozoa, fungi, plants, and animals). Cells are small, membrane-bound units with a diameter of $1-20 \,\mu\text{m}$ and are filled with concentrated aqueous solutions. Cells are not created *de novo*, but possess the ability to copy themselves, meaning that they emerge from the division of a previous cell. This means that all cells, since the beginning of life (around 4 billion years ago), are connected with each other in a continuous lineage. In 1885, the famous cell biologist Rudolf Virchow conceived the law of *omnis cellula e cellula* (all cells arise from cells), which is still valid today.

The structure and composition of all cells are very similar due to their shared evolution and phylogeny (Figure 1.1). We see an astonishing constancy in fundamental structures and mechanisms. Owing to this, it is possible to limit the discussion of the general characteristics of a cell to a few basic types (Figure 1.2): • Plant cells

• Animal cells

Nucleotide sequences from 16S rRNA, amino acid sequences of cytoskeleton proteins, and characteristics of the cell structure were used to reconstruct this phylogenetic tree. Prokaryotes are divided into **Bacteria** and **Archaea**. Archaea form a sister group with eukaryotes; they share important characteristics (Tables 1.1 and 1.2). Many monophyletic groups can be recognized within the eukaryotes (diplomonads/trichomonads, Euglenozoa, Alveolata, Stramenopilata [heterokonts], red algae and green algae/plants, fungi and animals; see Tables 6.3–6.5 for details).

A highly resolved tree of life is based on completely sequenced genomes (Ciccarelli 2006). The image was generated using Interactive Tree Of Life (iTOL) (Letunic 2007), an online phylogenetic tree viewer and Tree of Life resource. Eukaryotes are colored red, archaea green, and bacteria blue.

• Bacterial cells

An Introduction to Molecular Biotechnology: Fundamentals, Methods and Applications, Third Edition. Edited by Michael Wink. © 2021 Wiley-VCH GmbH. Published 2021 by Wiley-VCH GmbH.

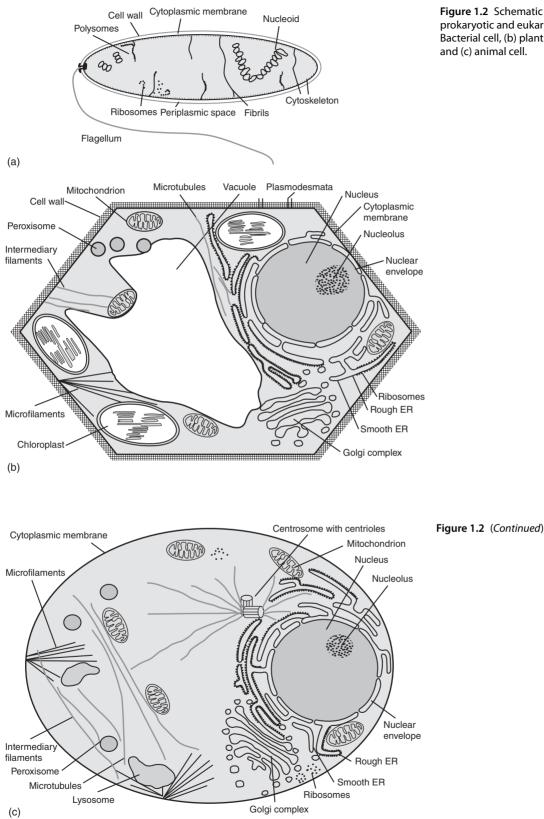


Figure 1.2 Schematic structure of prokaryotic and eukaryotic cells. (a) Bacterial cell, (b) plant mesophyll cell, and (c) animal cell.