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Preface

Describing the intrinsic attraction of basic research in organic synthesis, Elias J.
Corey, Nobel Laureate in 1990, wrote in 1988: “The appeal of a problem in
synthesis and its attractiveness can be expected to reach a level out of all proportion
to practical considerations, whenever it presents a clear challenge to the creativity,
originality and imagination of the expert in synthesis” [1].

A few years earlier, Vladimir Prelog, Nobel Laureate in 1975, had expressed
a similar opinion in his typical laconic way: “Any problem of organic chemistry
is a scientific challenge if observed by scientific eyes” (According to notes made
by V. gunjié after a conversation at the Burgenstock Conference on Stereochem-
istry, 1972). Creativity and scientific challenge in synthetic organic chemistry, in
particular, because of its frequent broad application, are repeatedly recognized
by many others, organic and other chemists and even scientists from the other
disciplines.

During 25 years of teaching an undergraduate course on “Synthetic Methods in
Organic Chemistry” and a graduate (Ph.D.) course on “Stereoselective (previously
asymmetric) Synthesis and Catalysis in Organic Chemistry”, at the Faculty of
Natural Sciences and Mathematics, University of Zagreb, one of us (VS) encoun-
tered an interesting phenomenon. The undergraduate course, mostly based on
retrosynthetic analysis using the problem-solving approach introduced by Warren
[2, 3] and elaborated by others [4—7], differed in its pragmatic approach from the
graduate course, which was based on the discussion of exciting chemistry in
original papers and monographies [8—14]. There was a notably different response
of the students during these two courses. While the undergraduates participated
intensively in discussions of possible retrosynthetic paths and proposed new synth-
eses, the graduates, in spite of the inclusion of up-to-date, exciting examples of
non-catalytic, catalytic and biocatalytic stereoselective transformations, were less
inclined to interact. Obviously, the future “experts in synthesis” (Corey) greatly
preferred lectures in which target structures were well defined, and the complex
synthetic problem was clearly defined. This is the basic premise of the current
monograph.
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The concept of this book was born out of our joint experience in teaching and
research in academic institutions on the one hand, and our combined, more than 40
years participation in research projects in small and large pharmaceutical compa-
nies on the other. The volume collects together exciting achievements in synthetic
organic chemistry, as they appeared during the development of target molecules,
mostly chiral, enantiopure drugs. Fifteen target structures are selected to demon-
strate these synthetic achievements, some of them are established drugs, the others
are candidates for drugs under clinical research, one a natural product with broad
application and one a library of lead molecules. In the introduction, we describe the
various stages of research towards a new drug entity (NDE), as organized within the
innovative pharmaceutical industry. The search for hits, improvement of biological
properties from hits to leads and selection of clinical candidates are outlined,
followed by the various phases of clinical research.

The sequence of chapters is roughly based on the (potential) clinical indications,
but each chapter is complete in itself. The chapter abstracts are structured to enable
the interested reader to easily identify the synthetic achievements and biological
profile of the specific compound or structural class presented. These include
mechanistic and stereochemical aspects of enantioselective transformations, new
methodologies such as click chemistry, multi-component syntheses and green
chemistry criteria, as well as brief information on the biological targets, mechan-
isms of action and biological and therapeutic profiles of target structures. Presenta-
tion of synthetic chemistry in each chapter is guided by the concept inherent in
modern organic chemistry, that mechanistic organization ties together synthesis,
reactivity and stereoelectronic structures of the key reagents or intermediates [15].

In the chemical schemes in this book, all specific, defined compounds or
chemical entities are consecutively designated with Arabic numbers, while general
formulae are listed with Roman numbers.

We are very grateful to the support and assistance provided by the publisher,
Springer, particularly that from Dr. Hans-Detlef Klueber and Dr. Andrea Schlitzberger.
Finally, we hope you, the reader, will find much to interest and inform you as you
browse through the book, both initially and as a subsequent reference text.

Zagreb, Croatia Vitomir §unji(’:
February 2011 Michael J. Parnham
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Chapter 1
Organic Synthesis in Drug Discovery
and Development

Abstract The discovery and development of a new drug entity (NDE) to become a
marketable drug is a complex, costly and time-consuming process. It is subject
to increasingly stringent regulations and high attrition, which squeeze the time avai-
lable both for the development and sale of the final product within the remaining
window of patent coverage.

Organic synthesis of NDE:s is challenged by the creation of novel, biologically
active, safe and suitably targeted molecules and the improvement of lead com-
pounds, as well as by the need to scale up compound quantities for safety and
clinical studies. Even though natural and biologically derived drug molecules are
en vogue, small synthetic molecules are preferable for oral drug administration and
organic synthesis is required to modify natural compounds.

Biologically orientated synthesis can generate compounds with multiple activ-
ities. The industrial use of genomics research to identify potential target proteins
and of high throughput screening to test compounds, including synthesized libraries
of DNA sequence-programmed small molecules, all increase the chance of identi-
fying totally new NDEs.

Chirality of NDEs is crucial because of the three-dimensional nature of
biological target molecules and 68% of the top 200 marketed drugs are optically
pure. Consequently, the stereoselective approach to drug molecules will remain
important for many years to come.

1.1 Introduction

The complexity of the process leading to the marketing of a new drug entity (NDE)
and its introduction to therapy is well recognized. As a matter of fact, complexity
has become synonymous with high risk and frequent failure, or attrition, in search-
ing for an NDE. Currently, innovative pharmaceutical companies that are focused
on the development of NDEs are facing huge financial and organizational problems.
This is related to the decreasing likelihood of being able to introduce successfully a
“blockbuster”, or “$1 billion drug” to the world market. This situation is, in part, the
consequence of the ever more stringent requirements of regulatory authorities in
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developed countries, primarily of the Food and Drug Administration (FDA) in the
USA, concerning the required documentation for all phases of preclinical and
clinical investigations of an NDE. In addition, the diseases for which new therapies
are still needed are now generally complex chronic diseases, which are difficult to
categorize and require long-term, safe drug treatment.

These factors also enhance the risk of investment in long-term NDE-orientated
research and development (R&D) due to the prolonged period between the first
patent application and the appearance of the drug on the market. Consequently, the
number of new first-in-class drugs that have reached the market in the last decade
has been steadily declining. As a result of new technological developments, interest
and investment in biological (protein-based) drugs is increasing, partially because
of their relative specificity and the expected higher price, which companies can set
following their introduction to the market (see also Sect. 1.2). However, this
approach too has its limitation as biologicals cannot usually be given orally and
the pressure of reimbursement agencies is likely to reduce pricing in the future.

An NDE is expected to meet an unmet medical need or to improve therapy where
existing drugs have proved ineffective due to lack of efficacy, development of
resistance or tolerance, to unexpected toxic side-effects, or have shown incompati-
bility with other drugs. New pathological states or diseases are also being continu-
ously revealed and require effective therapy.

In spite of all these incentives to the development and marketing of new drugs,
the success rate is decreasing. Rapid progress in the sophistication of the technical
and analytical methods used to monitor all NDE development steps has resulted in
clearly safer drugs. But, at the same time, this has further contributed to the delay in
the introduction of drugs to the world market. The span between the first patent
claiming biological activity of the new chemical entity and its introduction to the
market has been prolonged from less than 68 years in 1970-1990 to over 15 years
today. Two economic drawbacks for innovative pharmaceutical companies have
been the inevitable consequences: much higher investment is needed for the whole
R&D process, and the periods available for exploration of the original drug under
patent protection and for recovering this investment with drug sales are now much
shorter.

In the next three sections, we briefly present some characteristics of the R&D
process in the pharmaceutical industry and the specific approaches that are being
taken to confront the scientific and organizational problems.

1.2 Synthetic Organic Chemistry in Pharmaceutical R&D

The discovery of a drug has always depended on creative thinking, good science
and serendipity. Due to the ever more stringent criteria that need to be satisfied for
the introduction of an NDE to the market, drug discovery has always had a high
attrition rate. A key goal is therefore to reduce this attrition rate by transforming
drug discovery into a high-throughput, rational process. This is possible at some
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specific early stages during drug discovery, particularly with biological assays that
identify numerous hit compounds and when the data accumulated support progress
towards synthesis of a limited number of lead compounds.

To provide background information for the role of synthetic chemistry, some
aspects of the R&D process in innovative pharmaceutical companies deserve
comment. The complexity of the usual multidisciplinary research process in devel-
oping an NDE is presented schematically in Fig. 1.1.

The organizational and value chain in pharmaceutical R&D requires that a wide
range of activities are interconnected, some of them loosely, the others strongly
integrated. Individuals prepared to champion this progression are crucial, and they
are recruited from among the scientists and physicians involved.

The importance of synthetic chemistry in the research shuttle arises from the
need to access promptly the progressively increasing amounts of active substance
or active pharmaceutical ingredient (API) that are required. This becomes most
essential when approaching crucial activities such as safety studies (toxicology in
animal species), and the development of suitable dosage forms and testing in human
beings (clinical phases I-III). Lack of well-planned, timely delivery of reproducibly
standardized API can result in long delays in the progression of the new product to
the market, mainly by failing to arrive on time at the milestones of nomination for
selection of a clinical candidate (CC) or a candidate drug (CD) [1]. The require-
ments for active substance at various points along the R&D shuttle process are
presented in Fig. 1.2.
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Fig. 1.1 R&D “shuttle” for delivering an NDE
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Fig. 1.2 Requirements for active compound along the R&D process
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This scheme outlines the exponential requirements for the active substance over
a period of approximately 10 years. The critical period for the research chemists on
the project, however, lies between the selection of the lead and the clinical candi-
date. In this period, scale-up to kg production is undertaken for the process that was
previously used for mg preparation. Besides the usual modification of the separate
synthetic steps, often the complete synthetic scheme needs substantial modification
to enhance efficiency, expressed as the average yield of the process, and to reach a
reproducibly high level of purity of the final product. At this stage, initial consider-
ation of the requirements for the future multi-kg production process is made. This
includes planning the technological, ecological and economic aspects of the future
process. The subsequent large-scale synthesis of API for clinical trials, these days,
is usually contracted out to a specialized manufacturing company, for whom the
research chemist will provide technical details.

Lead generation and, to a greater extent, lead optimization are the processes that
make the most creative demands on the synthetic organic chemist. Lead generation
is the process by which a series of compounds is identified that has the potential
to be developed into a drug. Creativity is not only demanded in synthesizing
a compound with the desired biological activity. The molecule must also have
suitable physical properties for the route of administration planned, exert little or no
toxicity and on administration, must be taken up efficiently into the body and
distributed at adequate concentration to the desired site of action (pharmacokinetic
properties).

The shuttle model in Fig. 1.2 is particularly challenged by the high attrition of
the potential drug entities in the course of R&D process. Attrition of potential NDEs
(termination of research projects due to their failure to satisfy the criteria set up for
the different phases of the shuttle process) has various causes. Among them are
toxicity in non-human tests (35%), lack of clinical efficacy (18%), unacceptable
clinical safety (15%), together with unsatisfactory pharmacokinetic (PK) and bio-
availability properties (9%). These data indicate that proof of concept (PoC) and
clinical studies in humans are the stages at which most potential drugs fail to satisfy
the criteria. Although synthetic chemistry is not directly involved in these activities,
it is the basis for the unsuitable biological properties of the chemical entity. The
only way to overcome the deficiencies is to design and synthesize new lead
molecules.

Together with the identification of biological targets and lead optimization, the
chemical synthesis of novel compounds forms one of the key steps in drug discovery
(Fig. 1.1). According to Gillespie [2], the attributes of a high-quality lead com-
pound are:

— Its synthetic tractability

— The patentability of the series around the lead

— Availability of chemistry space for optimization

— Acceptable solubility, permeability and protein binding

— Lack of inhibition of cytochrome P450 (CYP; family of enzymes responsible for
oxidative drug metabolism)



