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Preface

Fabio A.C.C. Chalub and José Francisco Rodrigues

The year 2009 had two important scientific celebrations: “The International Year
of Astronomy” and the “Darwin Year”. In Astronomy, four hundred years had
passed since the first use of the telescope by Galileo Galilei and publication of
the first two planetary laws by Johannes Kepler in the book Astronomia nova,
published in Prague in 1609. In Biology, the bicentennial of Darwin’s birthday and
the sesquicentennial of the publication of his book The Origin of Species, published
in London in 1859, are two important ephemerides of what is now commonly known
as the theory of evolution [1]. However, 1809 was also the year of publication in
Paris of the book Philosophie zoologique, by Jean-Baptiste Lamarck [2], containing
an outline of the theory of evolution, although without the key concept of natural
selection that was proposed later by Charles Darwin and, independently, by Alfred
Russell Wallace.

Darwin’s classical book had the great merit of showing that the organization
and functionality of living beings comprise a natural process that Science can
explain, but which in no sense had a single mathematical model. Nothing vaguely
similar to an equation appears on any page. But Darwin respected mathematicians
and even once said “I have deeply regretted that I did not proceed far enough at
least to understand something of the great leading principles of mathematics; for
men thus endowed seem to have an extra sense” (quoted in [3]).

Also around one and a half centuries ago, Gregor Mendel, an Austrian monk
and scientist, was studying the reproduction of peas in Brno, a city that is now in
the Czech Republic. His work, in which statistics played a central role in predicting
how traits were inherited from one generation to the next, led to the formulation of
what later became known as Mendel’s Laws of Inheritance, which were published
in 1866 [4] but were rediscovered only at the beginning of the 20th century. What
Mendel devised was the “mechanism of heredity” that was lacking in Darwin’s the-
ory. Until then, it was assumed that offspring were a blending of their progenitors.
This would make evolution impossible, as variation would very quickly disappear
from any population. This was a fundamental objection to Darwin’s theory and, as
it was only lately recognized, Mendel’s laws formed not only the foundation of the
modern science of genetics but also found the missing link that made the theory
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2 F.A.C.C. Chalub and J.F. Rodrigues

of evolution a mature one, since it is a key ingredient for differential reproduction
and, therefore, selection and evolution.

The so-called “Modern Evolutionary Synthesis”, made possible only by the
active intervention of a generation of great biologists with fundamental training
in mathematics and physics, like Ronald A. Fisher, John Haldane, and Sewall
Wright, among others, succeeded in merging Darwinian evolution and Mendelian
genetics. In fact, the need to make the theory of evolution by natural selection
explicitly quantitative was advocated by British biometricians, with the develop-
ment of statistics as an area of mathematical enquiry, that led to creation of the
journal Biometrika, by Pearson, Weldon and Galton (cousin of Darwin) in 1901.
But that synthesis, in which the fundamental concepts of evolution, selection and
mutation were formulated in terms of a mathematical model, took place only in
the 1920s and 1930s. An important development in biological modelling with a
strong mathematical background that is also worth mentioning was the formula-
tion of a neutral theory of evolution, by Motoo Kimura [5] in the 1960s, in which
the vast majority of evolutionary change at the molecular level is caused by ran-
dom drift of selectively neutral mutants. A second important development was the
introduction of evolutionary game theory in Biology, by John Maynard Smith [6]
in the mid-1970s, in which the replicator and the replicator-mutator equations
play a fundamental role, in particular, giving origin to “Darwinian Dynamics” or
“Evolutionary Dynamics” as a mathematical description of the dynamical process
of variability, heritability and the struggle to survive and reproduce that underlies
natural selection [3, 7].

This briefly sketched story, is, in a certain sense, the starting point of this
book; however, this was not the starting point of the relationship between math-
ematics and biology nor does it cover the whole field of Mathematical Biology,
which includes many topics such as population dynamics, theoretical ecology, epi-
demiology, population genetics, theoretical immunology, neural networks, pattern
formation, and genomic or proteomic analysis. That story is in fact much older.
However, it is difficult to establish the beginning of this interaction. One of the
first references is from the 13th century, when Fibonacci’s rabbit problem was for-
mulated in 1202: “Suppose a newly-born pair of rabbits, one male, one female, are
put in a field. Suppose that our rabbits never die and that after the first month,
females always produce one new pair (one male, one female) every month from the
second month on. How many pairs of rabbits will there be after a certain num-
ber of months?” The assumptions are so unrealistic that this problem hardly can
be considered a problem in biomathematics; actually, it appears as an interesting
example of certain mathematical recursion [8]; however, the Fibonacci sequence
plays an increasing role in the description of nature.

Despite the fact that Darwin was influenced by Thomas Malthus’ “An Essay
on the Principle of Population”, first published in London in 1798, the model
of population growth following a geometric progression was already well known
by the mathematician Leonhard Euler. Already in the 18th century he discussed
several examples of dynamics of human population and he understood that they
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correspond to a model of exponential growth [9, 10]. Working with this model,
he was able to observe, fifty years before Malthus, that a single couple, living
only several hundreds of years ago, was able not only to generate all the human
population at the 18th century but also, continuing with the same growth, even
to attain so large a total population that the whole Earth could not be fed. He
also contributed a chapter to a second edition of a first treatise on demography
published in Berlin in 1761.

In an important memoir presented to the Academy of Science of Paris in
1760, Daniel Bernoulli made what is possibly the first use of modern mathemati-
cal techniques to solve a biologically relevant problem: the dynamics of smallpox.
Bernoulli was ahead of modern epidemiology and divided the population into two
categories: the susceptible and the immune (the survivors gain life-time immunity);
these groups were modelled using differential equations. In fact, in his model he
obtains and solves what we nowadays call a “logistic equation”, which is a par-
ticular case of Bernoulli’s differential equation, named after his uncle Jakob, who
discussed it in 1695. Looking at the stationary states of these equations, he was
able to project the loss in life-expectancy due to the disease. This had impact
in the insurance market, and was also a central question in the introduction of
inoculation in France [11].

Population dynamics is one of the most important fields of biomathematics;
almost all books on the subject start with a chapter on that topic. We still call
“Leslie matrices” the one introduced in the study of structured populations, de-
spite the fact that they have no special attributes from the mathematical point
of view [12]. The same thing happens with the (sometimes called) Verhust equa-
tion [13], which is just the logistic differential equation already considered and
solved by the Bernoullis and is one of the simplest examples of a dynamical system.
Perhaps the same cannot be said about the Lotka-Volterra equations, introduced
almost simultaneously in 1925 and 1926, respectively, by the American statistician
A.J. Lotka and the Italian mathematician Vito Volterra, that describe the inter-
action between different species and gave rise to a turning-point in mathematical
biology in the 20th century, [14]. Other interesting facts with historical references
to the interactions between mathematics and biology can be found in [15].

The first mathematical result of interest in evolution and genetics appeared
only decades after Darwin. In the first decade of the 20th century, independently,
the British mathematician G.H. Hardy [16] and the German doctor W. Wein-
berg [17] explained why recessive genotypes do not disappear. More precisely, they
gave sufficient conditions to make gene frequencies static from one generation to
the next. In their ideal model, an equilibrium is attained in a single generation. The
knowledge of equilibrium is the baseline against which we can measure change, and
evolution is ultimately a theory of (gene frequency) change. Their conditions were
no-mutation, no-selection, no-migration, random mating, infinite population. The
violation of any of these conditions could, on its own, be responsible for evolution.

Later on, R. Fisher [18] went further and quantified the change, pronouncing
what is currently known as “the fundamental theorem of evolution”: the rate of
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change of the mean fitness of a population is equal to the fitness variance at each
point in time. This will be discussed in detail in the chapters of this book written
by W. Ewens, P. Schuster, and R. Burger. These first three papers will provide
the reader with a broad and deep view of models in population genetics.

The book continues with a chapter by P. Jagers studying models for extinc-
tion. The starting point will be the Galton-Watson process, initially introduced in
the study of extinction of family names. This shows (if someone is not yet con-
vinced) the unifying nature of mathematical knowledge. P. Taylor presents the
relations between group theory and homogeneous populations. This provides a
consistent framework for generalisation to an entire population of results obtained
by studying only one or a few (focal) individuals. Taylor finishes his chapter with
a model of altruistic behaviour. This is the starting point of the following chapter,
by J. Pacheco, where evolutionary game theory is intensively used to model collec-
tive action (in particular, cooperation). Solutions of social dilemmas are probably
one of the most important problems we have to face in our daily life.

Yet, there are many different ways to study the evolution of cooperation; two
important ones are kin selection and group selection. These models are reviewed
and used in V. Jansen’s chapter to provide a full understanding of the social
behaviour of mice living in haystacks. When different individuals in the same pop-
ulation find different solutions to the same dilemma, we are possibly facing one of
the most important problems in evolution: the concept of speciation. So important
that the title of Darwin’s masterpiece refers directly to it. This is the subject of
the chapter by S. Mirrahimi, B. Perthame, E. Bouin and P. Millien and also of
S. Méléard’s chapter. Models for evolutionary branching, a more general concept,
are studied from many different points of view: differential equations, integro-
differential equations, stochastic modelling, individual-based models, asymptotic
limits. . . all approaches unified by the concept of “adaptive evolution”.

“Adaptive evolution” is also the topic of the last two chapters, respectively,
by H. Metz and by M. Gyllenberg, H. Metz and R. Service. These chapters are
primarily devoted to meso-evolution, where the focus is the change of traits of indi-
viduals in a population. A natural sequel to Metz’s chapter, where some elements
of an adaptive evolution theory are developed, this final chapter investigates how
optimisation approaches fit that point of view.

The book ends with a large and extensive but not exhaustive, bibliography,
a merging of all citations that appear in the book. At a first glance, this allows
us a rather reasonable overview of the biomathematical literature in the last 150
years. We intend this book to be also a good starting point for anyone interested
in working in biomathematics, especially in evolution.

We wish to thank the Calouste Gulbenkian Foundation and the Fundação
para a Ciência e Tecnologia (Portugal) for their sponsorship of this work. Their
financial support allowed the Portuguese Centro Internacional de Matemática, in
collaboration with the European Society for Mathematical and Theoretical Biol-
ogy, the Centro de Matemática e Aplicações da Universidade Nova de Lisboa and
the Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa,
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where the conference took place in November 2009, to reunite the scientific and
logistic conditions that made this book possible.

Finally we conclude this introduction by adopting Metz’s closing sentence and
inviting you, interested reader, to join this hard and challenging task of bringing
Biology and Mathematics closer and to contribute to the fruitful development of
biomathematics!
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What Changes Has Mathematics Made
to the Darwinian Theory?

Warren J. Ewens

Abstract. Mathematics has played a key role in validating the Darwinian the-
ory of evolution by natural selection. Perhaps most importantly it shows that
the variation needed for evolution by natural selection is conserved under the
Mendelian evolutionary system. It then quantifies the rate at which favorable
new genetic types are incorporated into a population by natural selection.
Analyses at the whole genome level (the current active area of genetical re-
search) are possible only by the use of mathematics, particularly the use of
matrix theory. Finally, it is only by a mathematical analysis, using stochas-
tic process theory, that the effects of random changes in gene frequencies,
unavoidable because of the finite size of any population, can be assessed.

Mathematics Subject Classification (2000). Primary 92D25; Secondary 60J70.

Keywords. Selection, variation, evolution, Mendelism, genetics, correlation.

1. Introduction

This chapter has three aims. The first is to give a brief introduction to the history
of the Darwinian theory preceding the re-discovery of Mendelian genetics in 1900,
with an emphasis on the problems that the theory encountered. It will be shown
that these problems are resolved by mathematical methods based on the recog-
nition of the Mendelian hereditary system. This leads to the second aim, which
is to give a brief review of the fundamentals of genetics and a description of the
Darwinian theory in Mendelian terms. The third aim, by far the most important
one, is to give examples of cases where a mathematical approach was central to a
formulation the Darwinian theory in genetical terms, resolves problems with that
theory which were recognized from the earliest times, as well as fleshes out the
theory in a way that would not be possible without mathematics. These aims also
form the background to further mathematical analysis of the evolutionary process
and current research activities to be found in other chapters of this book.

:F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy,
Mathematics and Biosciences in Interaction, DOI 10.1007/978-3-0348-0122-5_2, 
© Springer Basel AG 2011
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2. Pre-Mendelian evolutionary theory

Various evolutionary principles and theories were advanced before Darwin’s time,
but here we consider only his theory of evolution by the action of natural selection,
the only evolutionary principle to have survived critical examination. Darwin’s
theory was put forward in his monumental book [1], now generally called On the
Origin of Species. The great paradox concerning his theory was that when the
book appeared, in 1859, the nature of the hereditary mechanism was unknown, so
that Darwin advanced the theory without any knowledge of this essential core ele-
ment to any evolutionary theory. Worse than this, the prevailing theory of heredity
when his book was published, and indeed for more than forty years afterward, was
that any particular character in a child, for example the child’s blood pressure,
is in some sense more or less the average of the blood pressures of the two par-
ents of that child. It is clear under this theory, the so-called “blending” theory of
inheritance, that under random mating in the population the variance in blood
pressure between individuals would halve in every generation, so that in a com-
paratively short number of generations all individuals in the population of interest
would have essentially the same blood pressure. There would then be no variation
for natural selection to act on. Of course we do not observe such uniformity in
the present human population, so further argument is needed. Since variation in
blood pressure to the degree that is actually observed would only arise from fur-
ther factors of strong effect which cause the blood pressure of a child to deviate
from the average of the blood pressures of the child’s parents, the principle that
selectively favored parents produce offspring who closely resemble them and thus
are themselves selectively favored cannot be sustained. Darwin recognized that
the blending theory of inheritance was a major problem for his theory, indeed the
major problem, and because of this he unfortunately altered subsequent editions
of his book in such a way as to substantially alter his theory.

This problem was not resolved until the rediscovery of the Mendelian hered-
itary mechanism [2] in 1900. A mathematical analysis based on this mechanism
leads to the so-called Hardy-Weinberg law [3, 4] described later, and this law shows
that there is no intrinsic tendency under Mendelian inheritance for variation (in
this case genetic variation) to be lost: once established it stays unchanged (unless
forces like selection act, a matter discussed further below). It is the quantal nature
of the gene, passed on as a discrete entity from parent to offspring, that resolves
Darwin’s problem, so that there is no blending involved. It is a pity that Mendel’s
1866 paper, although evidently sent to Darwin, was not recognized by him or by
anyone else for the revolutionary document that it indeed was.

3. The basics of Mendelism

Genetics is an extremely complex subject, and any attempt to describe it briefly
must involve severe simplification, sometimes to the extent of introducing minor
distortions from reality. It is sufficient for our immediate purposes to say that genes
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lie on chromosomes, which are thread-like objects in the cells of any organism.
Interest lies mainly in diploid organisms, such as humans, who obtain genetic
material from two parents, and we consider here only this case. In the case of
humans, leaving aside the sex chromosomes (which are XX for females, XY for
males), each individual carries 22 pairs of chromosomes, one member of each pair
coming from that individual’s mother and the other from the father. (In other
diploid species numbers different from 22 arise.) We may regard the genes as being
like beads on the chromosome “threads”. These genes lie at particular positions,
or loci, so that at any locus any individual has two genes, one on each of the two
chromosomes.

We consider for the moment some specific locus. Genes at this locus are of one
or other allelic type. For example, at the well-known ABO blood group locus, there
are three possible allelic types, or alleles, A, B and O, and since any individual
carries two genes at this locus, one maternally and one paternally derived, each
individual must be either AA, AB, AO, BB, BO or OO. We say that these are the
six possible genotypes at this locus.

It is important to distinguish between the genotype and the phenotype of any
individual. In the case of the ABO system, both A and B are dominant to O, which
implies that the outward appearances of AA and AO individuals are the same, as
are the outward appearances of BB and BO individuals. Thus there are only four
possible phenotypes at this locus, called A (for AA and AO genotypes), B (for BB
and BO genotypes), AB (for AB genotypes) and O (for OO genotypes).

The ABO notation is specific to the ABO gene locus, and to consider the gen-
eral case it is necessary to introduce a more flexible notation. If there are k possible
alleles at some locus A, they are generically denoted here by A1, A2, . . . , Ak. These
k alleles define k(k + 1)/2 possible genotypes, A1A1, A1A2, . . . , A1Ak, A2A2, . . . ,
Ak−1Ak, AkAk. The theory outlined below uses this generic notation.

With this background in place we turn now to evolutionary questions. The
genotype frequencies in any daughter generation depend on the mating scheme
adopted by the parental generation. We assume initially that random mating ap-
plies. Suppose also for the moment that there is no selection, so that the fitness of
any individual is independent of his genotype. We also assume no mutation or any
other disturbing force. Suppose then that in the parental generation the frequency
of the genotype is Pii and of the genotype AiAj (for i �= j) is 2Pij . (It is convenient
to describe Pij as the frequency of the ordered genotype AiAj .) The frequency pi

of the allele Ai is, clearly,

pi =
k∑

j=1

Pij . (3.1)

The Hardy-Weinberg law follows immediately from this. It states that in the
daughter generation at the time of its conception the frequency of the genotype
AiAi is p2

i and that of the genotype AiAj (i �= j) is 2pipj . (If mating is not at
random, these values no longer apply. The non-random-mating case is considered
below.) Elementary calculations show that the frequency of Ai is pi, the same value
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as that applying in the parental generation, and also that the daughter generation
genotype frequencies and thus the frequency of the every allele remains unchanged
in all future generations. This observation validates the “preservation of variation”
comment made in Section 2. Of course, mutation and selection change allelic fre-
quencies from one generation to the next, and random changes will also arise by
random sampling, since all populations are finite. Nevertheless all these changes
are generally small, and the central importance of the preservation of variation
concept remains unaltered.

The Hardy-Weinberg law does not apply under non-random mating, for ex-
ample under assortative mating (the tendency of like to mate with like). Nev-
ertheless, one important mathematically-derived conclusion applies whatever the
form of mating, namely that, again assuming no selection, mutation, or any other
disturbing force, allelic frequencies remain unchanged from one generation to the
next. This is not true of genotype frequencies, which often change from one genera-
tion to the next under non-random mating. While this observation does have some
important consequences, the essential feature of the preservation of allelic frequen-
cies, and in this sense of genetic variation, remains. Mendelism is an intrinsically
variation-preserving hereditary mechanism.

We now consider the evolutionary process further, introducing complications
such as selection and mutation. Suppose first that the fitness of any individual
depends only on the genes that he carries at some locus A, at which only two
alleles can occur, A1 and A2. (By fitness here we mean viability fitness, that is the
capacity to survive from conception to reproduction. Fitnesses involving mating
success and fertility lead to complicated algebra that we do not go into here.)
Denote the fitnesses of the three genotypes A1A1, A1A2 and A2A2 by w11, w12

and w22 respectively. We assume random mating, so that the frequencies of these
three genotypes at the time of conception of any generation are p2, 2p(1− p) and
(1 − p)2 respectively, where the frequency of A1 is p at this time. The so-called
mean fitness w of the population at this time, calculated in the standard statistical
fashion for a mean, is given by

w = p2w11 + 2p(1− p)w12 + (1− p)2w22. (3.2)

If p′ is the frequency of A1 at the time of conception of the next generation,
elementary calculations show that

p′ = p+
p(1− p)

w
{w11p+ w12(1− 2p)− w22(1− p)} . (3.3)

This equation can be used to describe the fundamental micro-evolutionary process,
which is the replacement of a “less fit” allele in a population by a “more fit” allele.
It can also be used to explain the often observed “standing genetic variation”, as
is shown later.

Equation (3.3) shows that only the relative (rather than the absolute) values
of the wij are necessary to describe this micro-evolutionary process, and thus we
are free to choose one of the three fitnesses to take the value 1. In the case where
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w11 > w12 > w22,, so that A1 is the “more fit” allele, it is convenient to write
w11 = 1 + s, w12 = 1 + sh, w22 = 1, where s > sh > 0. We generally think of the
case where s is small, perhaps of order 1%. In this case equation (3.3) shows that,
to a close approximation,

p′ − p = sp(1− p){p+ h(1− 2p)}. (3.4)

If unit time corresponds to one generation, this in turn can be approximated by

dp
dt

= sp(1− p){p+ h(1− 2p}. (3.5)

This equation is easily solved, and the solution provides the trajectory of the
increase in the frequency of A1 over time. It is perhaps more useful to calculate
the time t(p1, p2) required for this frequency to increase from some value p1 to
some larger value p2. Clearly

t(p1, p2) =
∫ p2

p1

[sp(1− p){p+ h(1− 2p}]−1dp. (3.6)

Many conclusions can be found from these simple formulae, especially the slow rate
of change in the frequency of A1 when this frequency is either large or small. A
collection of results arising from (3.6) and from similar but more complex equations
was found by Haldane in the 1920’s, and summarized in [5]. These equations bear
some similarity to corresponding equations in physics, in that they allow one to
predict the future evolution of a system, given the appropriate parameter values
and the current state of that system.

An empirical confirmation of equation (3.5) arises in describing the evolution
of the melanic form of the peppered moth Biston betularia during the 19th century
in England. Originally the pale form of this moth was prevalent, but with the
rise of industrial pollution and the consequent darkening of the bark of the trees
on which these moths settled, the melanic form became selectively favored since
it became increasingly difficult for predators to observe the dark form on these
trees. Empirical estimates of the selective values s and h were made and it was
found that the trajectory of the frequency of the melanic form closely followed
that predicted by equation (3.5).

In the case where the heterozygote is the most fit genotype, so that w11 <
w12 > w22, there is a point of stable equilibrium where the frequency p∗ of A1 is

p∗ =
w12 − w22

2w12 − w11 − w22
. (3.7)

This is the case of “heterozygote selective advantage”, observed often in reality, and
thus this fitness configuration is sufficient to explain the observation of standing
genetic variation. (When w11 > w12 < w22 there is an equilibrium frequency again
at the same value p∗, but this equilibrium is unstable and thus of little interest.)
Thus the Mendelian system can explain not only evolution (in the sense of changes
in allelic frequencies) but also the existence of standing genetic variation.
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So far we have not considered the possibility of mutation. Genes mutate
(usually at a very low rate, of order 10−5 or 10−6), so that for some purposes
mutation can be ignored. On the other hand mutation eventually is the source
of all genetic variation, so that despite these low rates a complete analysis of the
evolutionary process must allow for mutational events. Here we assume that an
A1 gene mutates to an A2 gene with probability u, while an A2 gene mutates to
an A1 gene with probability v. In the case where there is no selection there is a
stable equilibrium of allelic frequencies where the frequency of A1 is v/(u+v). The
case where selection and mutation both arise is of course also of interest. In the
case of heterozygote selective advantage there is a stable equilibrium close to that
value given in equation (3.7), assuming that selective differences are substantially
higher than the mutation rates. The case where w11 > w12 > w22 is perhaps of
more interest. Here there is a stable equilibrium frequency of A1 just less than 1.
This situation is relevant when A2 is a disease allele that is maintained at a low
frequency in a population because of recurrent mutation from A1 to A2, and is
much studied in disease genetics applications.

The above calculations assume only two possible alleles at the locus of inter-
est, and also assume random mating. It is possible to generalize these calculations
to allow any number of alleles at the locus and any form of mating, although the
analysis becomes more complex. Suppose then that the (viability) fitness of any
individual depends only on his genotype at some gene locus A, at which alleles
A1, A2, . . . , Ak can arise, and denote the fitness of an individual of genotype AiAj

by wij . Consider some parental population at its time of conception, with its geno-
type frequencies at this time being given as above equation (3.1). These genotype
frequencies are not necessarily assumed to be in Hardy-Weinberg form, so that it is
not necessarily assumed that Pii = p2

i and that Pij = pipj, since random mating in
the preceding generation is not necessarily assumed. The mean population fitness
w of the population in this generation at the time of its conception is

w =
∑

i

∑

j

Pijwij . (3.8)

Straightforward calculations show that the frequency p′i of Ai at the time of re-
production of the individuals in the parental generation is

p′i =
1
w

∑

j

Pijwij . (3.9)

Under any form of mating (for example random mating, selfing, partial selfing,
assortative mating), p′i is also the frequency of Ai in the daughter generation at its
time of conception. In other words, equation (3.9) can be taken as providing the
frequency of Ai in the daughter generation at the time of conception, and this is the
interpretation that is normally placed on this equation. It is one component of the
full evolutionary description of the changes over one generation of the frequencies
of the various genotypes at this locus.
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It is not possible to calculate the daughter generation genotype frequencies
without knowledge of the mating scheme. This in turn implies that gene frequencies
beyond the daughter generation cannot be calculated from genotype frequencies in
the parental generation without knowledge of the mating scheme, and thus we are
unable to track gene frequency evolution over more than one generation without
this knowledge. On the other hand, if random mating can be assumed over all
successive generations, this tracking can be carried out.

It was noted above that, in the case where two alleles only are possible at the
locus, there will be a point of stable equilibrium with both alleles present at positive
frequency if the heterozygote has a higher fitness than does either homozygote.
The condition for such an equilibrium when there are k possible alleles at the
locus, even assuming random mating, is far more complex. We define an internal
equilibrium to arise if all alleles have a positive frequency at that equilibrium.
Then the necessary and sufficient condition that there exist an admissible stable
equilibrium is that the matrix W , whose typical element is wij , has exactly one
positive eigenvalue and at least one negative eigenvalue, as shown by Kingman [6].
In this case the population evolves from any initial set of allelic frequencies at
which all alleles have positive frequency to this equilibrium.

A simple example of this case arises when all heterozygotes AiAj , (i �= j)
have fitness 1 and all homozygotes AiAi, (i = 1, 2, . . . , k) have fitness 1− s, where
1 > s > 0. In this case it is easily shown that the eigenvalues of the matrix W
are k− s (with multiplicity 1) and −s (with multiplicity k− 1). These eigenvalues
satisfy the condition of the previous paragraph, and (as expected from symmetry
arguments) the population evolves to a stable equilibrium where all alleles have
frequency k−1.

If there is no admissible stable equilibrium the evolutionary behavior is much
more complicated. One useful result of Kingman [6] is that if W has j positive
eigenvalues, at most k−j+1 alleles can exist at an admissible stable equilibrium. If
all allelic frequencies are initially positive, the frequencies of the remaining alleles
will approach zero over time under the action of natural selection. Clearly these
conclusions can be reached only by a mathematical analysis.

4. Evolutionary principles deriving from a mathematical approach

4.1. The problem

There is a serious problem in evolutionary theory arising from the fact that the
fitness of any individual depends on all the genes in his genome, whereas each
parent passes on only half of his genes to a child. (Complications due to the sex
chromosome are ignored here.) The Darwinian theory is based on the idea that a
more “fit” individual leaves, on average, more offspring than a less fit individual,
and that the offspring of the more fit individuals in a population inherit this
increased fitness from their parents, leading to an increased population frequency
of the more fit types. But if a parent only passes on half of his/her genes to an
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offspring the offspring only partially resembles the parent, and there has to be
some modification to the Darwinian theory.

This problem has to be resolved by mathematical methods, and the initial
step in making this modification is to introduce the concept of the “fitness” of
any allele. This has to be a theoretical, or mathematical, construct, since an allele
does not have, in reality, a fitness. Despite this fact, this construct is of the utmost
importance, and leads to significant insights into the properties of the evolution-
ary process under Mendelian inheritance. We now introduce this allelic “fitness”
concept in the case of a general number k of alleles at the gene locus of interest.

The concept of “allelic fitnesses” of the alleles Ai, (i = 1, 2, . . . , k) derives
from the concept their average effects. These are defined, respectively for these
alleles, as the values of β1, β2, . . . , βk which minimize the quantity

∑

i

∑

j

Pij(wij − βi − βj)2. (4.1)

This minimization procedure is in effect an attempt to fit the various genotype
fitnesses by the sum of two values, each of the two values corresponding to the two
alleles in the corresponding genotype. The motivation for this is that, as discussed
above, a parent passes on one of the two genes that he has at any gene locus to
an offspring, and the minimization procedure leads to a “fitness” βi + βj for an
individual of genotype AiAj . The values of β1, β2, . . . , βk found from this weighted
least-squares procedure are the solutions of the equations

piβi +
∑

j

Pijβj =
∑

j

Pijwij , (i = 1, 2, . . . , k). (4.2)

Equation (3.9) shows that this equation can be written equivalently as

piβi +
∑

j

Pijβj = wp′i, (i = 1, 2, . . . , k). (4.3)

In general the solution (for β1, β2, . . . , βk) of these equations cannot be written
down explicitly. Summation over all alleles in (4.3) leads to the equation

2
∑

i

piβi = w. (4.4)

This equation confirms that we may regard the “fitness” of the genotype AiAi as
being 2βi and the “fitness contribution” of the allele Ai as being βi. It also shows
that the population mean fitness can be calculated as a weighted sum these allelic
“fitness contributions”, the weights being the frequencies of the respective alleles.

The sum of squares removed by fitting the values of β1, β2, . . . , βk in (4.1)
is the so-called (single locus) additive genetic variance in fitness, denoted by σ2

A.
It is of the utmost importance, and is that component of the total variance σ2 =∑

i

∑
j Pij(wij − w)2 in fitness that is explained by genes within genotypes, and

is thus often called in the modern literature the “genic” variance. (In view of the
fact that an additivity assumption is made in the least-squares procedure, with
the “fitness” of the genotype AiAj being thought of as βi + βj , it might best be



What Changes Has Mathematics Made to the Darwinian Theory? 15

called the “additive genic” or “additive allelic” variance.) If values wi and wj exist
such that, for all (i, j), the fitness wij can be computed as wi + wj , then βi = wi

and σ2
A is equal to the total variance in fitness. If no such values exist there exists

“dominance”, or non-additivity, among the fitness values, and this leads to the
concept of a non-additive or dominance variance σ2

D, defined simply as σ2 − σ2
A.

If the change p′i − pi in the frequency of Ai given in (3.3) is denoted δpi,
least-squares theory shows that

σ2
A = 2w

∑

i

(δpi)βi. (4.5)

Since in general explicit formulae for the various β values are not available it is
not possible in general to write down an explicit formula for σ2

A. Fortunately this
does not matter for many of the conclusions drawn below. The “genic” nature of
σ2

A can be seen from the following observation. In the case where only two alleles
are possible at the locus, when the frequency of A1 is at the stable equilibrium
point given in (3.7) it is found that β1 = β2, so that the two alleles A1 and A2 are
equally “fit”. Further, at this equilibrium, σ2

A = 0. More generally, for an arbitrary
number of possible alleles at the locus, evolution in the sense of allelic frequency
changes occurs if and only if the additive genetic variance defined implicitly in
equation (4.5) is positive. The fact that a parent passes on a gene, and not his
entire genotype, to a child, and that at an equilibrium point all alleles are equally
“fit”, is the key to this observation.

This provides a central mathematically-derived insight into the evolutionary
process. The basic Darwinian principle is that variation is necessary for evolution
by natural selection: if there is no variation, no-one is more fit than anyone else
and evolution by natural selection cannot occur. Thus variation is necessary for
Darwinian evolution. However it is not sufficient: what is needed for evolution
is additive genetic variation. This is a fundamental evolutionary principle. In the
following sub-sections we show how the mathematical concepts of average effects
and the additive genetic variance further enrich the theory of evolution.

4.2. The correlation between relatives

The analysis of biological data by mathematical and statistical methods began
in earnest towards the end of the nineteenth century, and many important sta-
tistical concepts, for example correlation and regression, were developed to assist
in this analysis. One matter that was extensively studied was the correlation be-
tween relatives for various metrical characters, for example height. It is clear to
everyone that children to some extent resemble their parents in many such char-
acters, and it became one of the main activities of a group of scientists, soon to
become known as biometricians, to quantify and study this resemblance through
the statistical concept of correlation. It was found that for almost all characters
considered by the biometricians the sib/sib correlation was somewhat above the
parent/offspring correlation. This raises the obvious question: “Can this and other
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correlation patterns, for example uncle/nephew, be explained by Mendelian genet-
ics?” This question can only be addressed by mathematical methods.

This question was taken up by Pearson and various co-workers soon after
the rediscovery of Mendelism: see for example [7]. Pearson and Lee made the
assumption, common at the time, that complete dominance was the rule at all loci
controlling the characters measured (so that the effect on height of carrying two
copies of the dominant allele is the same as that when carrying only one copy of the
dominant allele). Their calculations led to theoretical correlation values which did
not agree with the observed values, and this arose because, unknown to Pearson
and Lee, dominance is not a universal phenomenon.

In the treatment above the variances σ2
A and σ2 concern the additive and the

total variance in fitness. By replacing the fitness values wij by the corresponding
values for any character, we can calculate the additive and the total variance
for that character. In this section these variances are assumed to have this more
general interpretation.

The first comprehensive treatment of this correlation between relatives prob-
lem was that of Fisher [8], who realized that the universal assumption of dominance
was not appropriate for many characteristics. (This is a good place to introduce
Fisher, whose work in this and other areas is often discussed below. Fisher was the
leading theoretical population geneticist of the 20th century, whose work trans-
formed the subject and who introduced many of its key concepts, including that
of the additive genetic variance referred to above.)

Fisher showed, in the simple case where the character in question is de-
termined by the genes at a single locus, mating is at random and there is no
environmental component to variation, that the following formulae hold:

correlation (parent/offspring) =
1
2

{
σ2

A

σ2

}
, (4.6)

correlation (sib/sib) =
1
2

{
σ2

A

σ2

}
+

1
4

{
σ2

D

σ2

}
, (4.7)

correlation (uncle/nephew) =
1
4

{
σ2

A

σ2

}
, (4.8)

correlation (double first cousins) =
1
4

{
σ2

A

σ2

}
+

1
16

{
σ2

D

σ2

}
, (4.9)

together with various similar formulae. A comparison of equations (4.6) and (4.7)
shows that these two mathematically-derived formulae agree with the empirical
correlations observed by the biometricians described above.

There is an elegant simple way, devised by Malécot [9], to arrive at these and
other correlations. We consider two individuals, X and Y, and define xf as the
gene that X received from his father and xm as the gene that he received from
his mother, with, for individual Y, yf and ym being defined similarly. We use the
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symbol “≡” to denote “identical by descent”, and define

Pff = Prob(xf ≡ yf), Pfm = Prob(xf ≡ ym),

Pmf = Prob(xm ≡ yf), Pmm = Prob(xm ≡ ym).
(4.10)

Malécot showed that when the two parents of any individual are unrelated,

correlation(X,Y ) =
1
2

(Pff + Pfm + Pmf + Pmm)
σ2

A

σ2
+ (PffPmm + PfmPmf)

σ2
D

σ2
.

(4.11)

This elegant formula provides a simple method for deriving correlations for any
two related individuals, and we now use it to re-derive (4.6) and (4.7).

Consider first the parent-offspring correlation, with X being the parent and
Y the offspring. Since the mother and father are assumed to be unrelated, Pmm =
Pfm = 0. Also Pff = Pmf = 1

2 , and insertion of these values into (4.11) yields
(4.6). If X and Y are full sibs, Pff = Pmm = 1

2 , Pfm = Pmf = 0, and insertion of
these values in (4.11) gives (4.7). Equations (4.8) and (4.9) can be found equally
easily. Many other interesting conclusions can be drawn from equation (4.11). One
of these is that ancestral line correlations do not contain the term involving σ2

D.
Thus for example the great-grandfather/great-grandson correlation is (1/8)σ2

A/σ
2,

and more generally each ancestral line correlation decreases by a factor of 1
2 with

each additional generation separating the two individuals of interest.
In the parent-offspring correlation (4.6), the factor 1

2 arises because the off-
spring receives only half his genes from the parent, and the factor σ2

A/σ
2 arises

because the parent can only pass on an “allelic value” contribution for the char-
acter in question.

Of course essentially all measured characteristics such as height and weight
are controlled by the genes at many loci, not just one locus. Also, in respect of
various measurements in man (for example height) mating is not at random: tall
people tend to marry tall people, and so on. Further, variation caused by the
environment has to be considered. The theory has been generalized to cover these
cases, but is too complex to give here. Nevertheless, observed correlations among
humans for many characters followed the general pattern provided by equations
(4.6)–(4.9), and thus the mathematical development provides further evidence for
the importance of the Mendelian hereditary scheme.

The relevance of these calculations extends beyond evolutionary considera-
tions. In plant and animal breeding programs the ratio σ2

A/σ
2 is called the heri-

tability of a trait. It has been shown above that the additive genetic variance σ2
A

has an evolutionary significance arising from the passage of genes from parent to
offspring. The value of the heritability for any trait indicates, to a plant or animal
breeder, the extent to which his breeding program can be expected to improve the
trait of interest.
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4.3. The Fundamental Theorem of Natural Selection

Ever since it was first put forward by in Fisher [10], the “Fundamental Theo-
rem of Natural Selection” (henceforth referred to as the FTNS) has provoked as
much controversy, and caused as much misunderstanding, as perhaps any other
result in evolutionary population genetics. There are two aspects to the contro-
versy surrounding the FTNS. The first is essentially mathematical: what does the
theorem actually state? The second is biological: what is its biological relevance?
Here we focus on the first question; for an extensive discussion of the second ques-
tion see [11]. Before doing this, it is useful to make two background comments.
First, Fisher saw himself as casting the main principles of Darwinian evolution in
Mendelian and mathematical terms, and the FTNS, stated by him as holding the
supreme position in the biological sciences, was a key component of this effort.
Second, Fisher had an essentially “gene’s-eye” view of evolution, and as shown be-
low the FTNS has a gene’s-eye flavor to it. This viewpoint bears on the questions
of the correct level at which to describe evolution and of the appropriate unit of
selection, matters which are addressed extensively in the biological literature, but
which also require a mathematical treatment for their full consideration.

Fisher’s various presentations of the FTNS were not consistent with each
other, and the following distillation of these presentations, that “The rate of in-
crease in mean fitness of any population at any time is equal to its additive genetic
variance in fitness at that time”, is generally accepted as the statement of the the-
orem. However, even this distilled version can be interpreted in several ways. The
two main interpretations, the “classical” and the “modern”, are described below.
The classical interpretation is perhaps the more interesting biologically, and thus
is of main interest to biologists. The modern interpretation is mathematically far
deeper and is thus primarily of interest to mathematicians.

We consider first the classical interpretation. In the early years of population
genetics theory various simplifying assumptions were, of necessity, made. One of
these was that the individuals in a population mate at random. A second assump-
tion often made was that, in studying the evolution of allelic frequencies at any
locus through the effects of mutation and selection, all other loci in the genome
can be ignored and the locus of interest treated in isolation. A third assumption,
often made in connection with the second, is that the fitness of any individual
depends only on the allelic types of the two genes that he carries at a single gene
locus and is independent of the allelic types of the genes carried in the remainder
of the genome. Some of the theory given above, and also the classical interpre-
tation of the FTNS, reflect these simplifying (and unrealistic) assumptions. They
lead to the following (classical) interpretation of the FTNS. If an arbitrary num-
ber of different allelic types is allowed at some single gene locus, if the fitness of
any individual depends only on his genotype defined by these alleles, and if these
genotype fitnesses are fixed constants, then assuming mating is random, the popu-
lation mean fitness will increase from one generation to the next, or at least remain
constant. The most straightforward proof of this classical version of the theorem,
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under these assumptions, was given by Kingman [12]. Kingman further showed
that when w = 1,∆w ≈ σ2

A, where ∆w is the change in the mean fitness between
parental and offspring generations and σ2

A is the parental generation additive ge-
netic variance in fitness. The level of approximation involved in this statement can
be seen from the fact that if single-locus genotype fitnesses differ from each other
by a small term of order δ and if w = 1, the value of ∆w differs from σ2

A by an
extremely small term (of order δ3).

It is easy to find examples for which mean fitness decreases between parental
and offspring generations if random mating is not the case. Thus the random
mating requirement is essential for the classical version of the theorem. It is also
a standard result of population genetics theory that population mean fitness can
decrease from one generation to the next, even under random mating, if (as is the
case in practice) the fitness of any individual depends on the allelic types of the
genes that he carries at more than one gene locus. Thus the assumption that fitness
depends on the genes at one gene locus is also essential for the classical version
of the theorem. The classical interpretation of the FTNS is attractive in that it
appears to quantify in Mendelian terms the two prime themes of the Darwinian
theory, namely that variation is needed for evolution by natural selection and
that evolution by natural selection is a process of steady improvement in the
population. Also, cases where mean fitness decreases from one generation to the
next are either comparatively rare, and when these decreases arise they are often
small. When fitness differentials are small, the population mean fitness “usually”
increases under random mating when fitness depends on the genes at many loci,
and when w = 1 the change in mean fitness is “usually” approximately equal to
σ2

A, thus generalizing Kingman’s result given above [13, 14].

We now turn to the modern interpretation of the FTNS. The assumptions
made in, and the conclusion of, the classical version of the FTNS contradict various
claims that Fisher made about the theorem. First, the fact that ∆w is not exactly
equal to σ2

A contradicts Fisher’s claim that the FTNS is an exact result and not
an approximation. Second, the fact that the population mean fitness can decrease
under non-random mating contradicts his claim that the FTNS is true under any
form of mating. Finally, the fact that even under random mating the population
mean fitness can decrease when the fitness of any individual depends on the genes
that he carries at more than one locus contradicts the claim by Fisher that the
FTNS holds when fitness depends on the allelic types of the genes carried by any
individual at all loci in the genome. There are thus severe difficulties in reconciling
the classical version of the FTNS with Fisher’s explicitly stated views. The modern
interpretation of the theorem resolves all these difficulties since it is an exact result,
holds under non-random mating, and applies when the fitness of any individual
depends on the allelic types of all the genes in his genome.

The modern interpretation of the FTNS was first proposed by Price [15]. Price
claimed that Fisher was not interested in the total change of mean fitness (∆w
above), but rather only in that part of the total change due to natural selection,
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or (more or less equivalently) due to changes in allelic frequencies. Here we refer
to this as the “partial change” in mean fitness. To define this change we consider
first the simple case where fitness values depend on the genotype of an individual
at one gene locus only. Random mating is not assumed.

Suppose then that the fitness of any individual depends entirely on his geno-
type at a single locus at which may occur alleles A1, A2, . . . , Ak. As above we de-
note the frequency of the genotype AiAj at the time of conception of the parental
generation by Pii (when i = j) and 2Pij (when i �= j). These frequencies are not
necessarily in Hardy-Weinberg form, since random mating is not assumed. The
frequency pi of the allele Ai at this time is

∑
j Pij . The fitness of an individual

of individuals of the genotype AiAj is wij , and the mean population fitness is∑
i

∑
j Pijwij . As noted above, Fisher’s main evolutionary focus was on the genes

in any individual at the locus of interest, not the genotypes, since it is a gene and
not the genotype that is passed on from parent to child at that locus. He therefore
thought of the mean population fitness as being given not by the above expression
but by an expression involving the average effects of the various alleles as defined
implicitly in (4.2), namely as

∑

i

∑

j

Pij(βi + βj). (4.12)

This change of viewpoint is however a purely conceptual, since the two expressions∑
i

∑
j Pijwij and

∑
i

∑
j Pij(βi + βj) can be shown to be numerically identical.

Despite this identity, the new conceptualization (4.12) is central to Fisher’s view of
the between-generation partial change in mean fitness. This was conceived as the
between-generation change in the expression in (4.12) brought about by changes
in the genotype frequencies Pij , with the changes in the average effects βi and
βj (which do in fact occur) being ignored. This generation-to-generation partial
change in mean fitness, denoted by ∆P(w), (the suffix “P” denoting “partial”) is,
clearly,

∆P(w) =
∑

i

∑

j

(P ′
ij − Pij)(βi + βj) =

∑

i

∑

j

(δPij)(βi + βj), (4.13)

where P ′
ij is the daughter generation frequency of the genotype AiAj , defined as

for the parental generation value at its time of conception, and δPij is the between
generation change in the ordered frequency of this genotype. The extreme right-
hand term in (4.13) is easily shown to be 2

∑
i(δpi)βi, and equation (4.5) then

shows that the partial change in mean fitness is exactly σ2
A/w, whether or not

random mating occurs. This result, involving no approximations, is the modern
interpretation of the single-locus FTNS.

The parallel whole-genome statement of the theorem, applying when the
fitness of any individual depends in an arbitrary way on all the genes in the genome,
can be found as follows. Assume that the various (gigantically large number of)
possible whole-genome genotypes are listed in some agreed order as genotypes
1, 2, . . . , s, . . . , S. The “time of conception” frequency of the typical genotype s in
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the parental generation is denoted by gs and the fitness of this genotype by ws.
Thus the parental generation population mean fitness, denoted (for the whole-
genome as for the one-locus case) by

∑
s gsws.

As in the one locus case, the average effects of the various alleles at the
various loci in the genome are defined by a least-squares procedure. These average
effects of all the alleles in the genome are determined by minimizing the sum of
squares

∑

g

gs

{
ws −
∑

cAi β
A
i

}2

. (4.14)

In the expression (4.14), βA
i is the average effect of Ai at the typical gene locus

A, the outer sum is taken over all whole-genome genotypes and the inner sum is
taken, for each whole-genome genotype, over all alleles at all loci in the genome
contained within that genotype, with cAi = 1, 2 or 0 depending on whether Ai

arises once, twice or not at all within the genotype gs, at the locus A.
It is not necessary to give explicit formulae for the various β values defined

by this least-squares procedure: indeed they can only be expressed implicitly as
the (unique) solution of a gigantic set of simultaneous equations. As in the one-
locus case, the Fisher’s “gene’s-eye” view of the fitness of the typical whole-genome
genotype s is not its actual fitness, but instead is the linear combination

∑
caiβai,

defined as above. In parallel with the one-locus case analysis, the mean fitness of
the population is now thought of as being

∑

g

gs

{∑
cAi β

A
i

}
, (4.15)

which (as in the corresponding one-locus case) is numerically identical to that
given by the standard definition of mean fitness, here

∑
s gsws given above.

Again in parallel with the one-locus case, the partial change ∆Pw in mean
fitness is defined as the change in the expression (23) derived solely from the
changes ∆gs in the various whole-genome genotype frequencies and ignoring the
changes in the β values, namely

∑

g

∆gs

{∑
cAi β

A
i

}
. (4.16)

The resulting expression can be shown to be equal to σ2
A/w, where σ2

A now denotes
the whole-genome additive genetic variance, defined in a manner extending that
for the one-locus case. This simple and exact result is the modern interpretation
of the whole-genome FTNS [16, 17]. It is true whatever the mating scheme. It is
inconceivable that this “gene’s-eye” view of evolution could have been obtained
by anything other than a mathematical treatment. Further, the mathematical
treatment provides an insight into evolutionary principles not obtainable in any
other way.


