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Chapter 1

Introduction to Poncelet Porisms

Figure 1.1: Jean Victor Poncelet

“One of the most important and also most beautiful theorems in clas-

somewhat elaborate in what was to become the predominant style in

other argument based on the addition theorem for elliptic functions. In

a synthetic derivation of the group law on an elliptic curve. Because

higher-dimensional analogues. . . Although this has not yet turned out
to be the case in the Poncelet-type problems. . . ”

1 

sical geometry is that of Poncelet (. . . ) His proof was synthetic and

of the appeal of the Poncelet theorem it seems reasonable to look for

projective geometry of last century. Slightly thereafter, Jacobi gave an-

fact, as will be seen below, the Poncelet theorem and addition theorem
are essentially equivalent, so that at least in principle Poncelet gave

ć ć

© Springer Basel AG 2011 

V. Dragovi  and M. Radnovi , Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic
Jacobians and Pencils of Quadrics, Frontiers in Mathematics, DOI 10.1007/978-3-0348-0015-0_1,



2 Chapter 1. Introduction to Poncelet Porisms

These introductory words from [GH1977], written by Griffiths and Harris
exactly 30 years ago, serve as a motto of the present book.

In a few years, we are going to reach a significant anniversary, the bicen-
tennial of Jean Victor Poncelet’s proof of one of the most beautiful and most
important theorems of projective geometry. As is well known, he proved it during
his captivity in Russia, in Saratov in 1813, after Napoleon’s wars against Russia.
The first proof was in a sense an analytic one. In 1822, Poncelet published an-
other, purely geometric, synthetic proof in his Traité des propriétés projectives des
figures [Pon1822]. Suppose that two ellipses are given in the plane, together with a
closed polygonal line inscribed in one of them and circumscribed about the other
one. Then, Poncelet’s theorem states that infinitely many such closed polygonal
lines exist – every point of the first ellipse is a vertex of such a polygon. Besides,
all these polygons have the same number of sides. Later, using the addition theo-
rem for elliptic functions, Jacobi gave another proof of the theorem in 1828 (see
[Jac1884a]). Essentially, Poncelet’s theorem is equivalent to the addition theorems
for elliptic curves and his proof represents a synthetic way of deriving the group
structure on an elliptic curve. Another proof of Poncelet’s theorem, in a modern,
algebro-geometrical manner, was done quite recently by Griffiths and Harris (see
[GH1977]). There, they also presented an interesting generalization of the Pon-
celet theorem to the three-dimensional case, considering polyhedral surfaces both
inscribed and circumscribed about two quadrics.

If we have in mind the geometric interpretation of the group structure on a
cubic (see Figure 1.2), then the question of finding an analogous construction of
the group structure in higher genera arises.

Figure 1.2: The group law on the cubic curve

Thus, thirty years ago, Griffiths and Harris announced a program of under-
standing higher-dimensional analogues of Poncelet-type problems and a synthetic
approach to higher genera addition theorems.

The main aim of the present book is to report on progress made in settling
and completing of this program. We will also present in a quite systematic way
the most important results and ideas around Poncelet’s theorem, both classical
and modern, together with their historical origins and natural generalizations.
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A natural question connected with Poncelet’s theorem is to find an analyt-
ical condition determining, for two given conics, if an n-polygon inscribed in one
and circumscribed about the second conic exists. In a short paper [Cay1854], Cay-
ley derived such a condition in 1853, using the theory of Abelian integrals. He
had dealt with Poncelet’s porism in a number of other papers [Cay1853,Cay1855,
Cay1857,Cay1858,Cay1861]. Inspired by [Cay1854], Lebesgue translated Cayley’s
proof to the language of geometry. Lebesgue’s proof of Cayley’s condition, de-
rived by methods of projective geometry and algebra, can be found in his book
Les coniques [Leb1942]. In modern settings, Griffiths and Harris derived Cayley’s
theorem by finding an analytical condition for points of finite order on an elliptic
curve [GH1978a].

It is worth emphasizing that Poncelet, in fact, proved a statement that is
much more general than the famous Poncelet theorem [Ber1987,Pon1822], then
deriving the latter as a corollary. Namely, he considered n+1 conics of a pencil in
the projective plane. If there exists an n-polygon with vertices lying on the first of
these conics and each side touching one of the other n conics, then infinitely many
such polygons exist. We shall refer to this statement as the Full Poncelet theorem
and call such polygons Poncelet polygons.

A nice historical overview of the Poncelet theorem, together with modern
proofs and remarks is given in [BKOR1987]. Various classical theorems of Pon-
celet type with short modern proofs are reviewed in [BB1996], while the algebro-
geometrical approach to families of Poncelet polygons via modular curves is given
in [BM1993,Jak1993].

Figure 1.3: Elliptical billiard table

The Poncelet theorem has an important mechanical interpretation. An El-
liptical billiard [KT1991,Koz2003] is a dynamical system where a material point
of the unit mass is moving under inertia, or in other words, with a constant ve-
locity inside an ellipse and obeying the reflection law at the boundary, i.e., having
congruent impact and reflection angles with the tangent line to the ellipse at any
bouncing point. It is also assumed that the reflection is absolutely elastic. It is
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well known that any segment of a given elliptical billiard trajectory is tangent to
the same conic, confocal with the boundary [CCS1993]. If a trajectory becomes
closed after n reflections, then the Poncelet theorem implies that any trajectory
of the billiard system, which shares the same caustic curve, is also periodic with
the period n.

The Full Poncelet theorem also has a mechanical meaning. The configuration
dual to a pencil of conics in the plane is a family of confocal second-order curves
[Arn1978]. Let us consider the following, a little bit unusual billiard. Suppose
n confocal conics are given. A particle is bouncing on each of these n conics
respectively. Any segment of such a trajectory is tangent to the same conic confocal
with the given n curves. If the motion becomes closed after n reflections, then,
by the Full Poncelet theorem, any such trajectory with the same caustic is also
closed.

The statement dual to the Full Poncelet theorem can be generalized to the
d-dimensional space [CCS1993] (see also [Pre1999,Pre]). Suppose vertices of the
polygon x1x2 . . . xn are respectively placed on confocal quadric hypersurfaces Q1,
Q2, . . . , Qn in the d-dimensional Euclidean space, with consecutive sides obeying
the reflection law at the corresponding hypersurface. Then all sides are tangent to
some quadrics Q1, . . . , Qd−1 confocal with {Qi}; for the hypersurfaces {Qi,Qj},
an infinite family of polygons with the same properties exist.

But, more than one century before these quite recent results, in 1870, Dar-
boux proved the generalization of Poncelet’s theorem for a billiard within an el-
lipsoid in the three-dimensional space [Dar1870]. It seems that his work on this
topic is completely forgotten nowadays.

Darboux was occupied by Poncelet’s theorem for almost 50 years, and many
of his results and ideas, in one way or another, are going to be incorporated
throughout the book.

Let us mention that in the same year, 1870, appeared another very important
work: [Wey1870] of Weyr. It can be treated as the historic origin of the modern
Griffits–Harris Space Poncelet Theorem. A few years later, Hurwitz used Weyr’s
results to get a new proof of the standard Poncelet theorem (see [Hur1879]).

It is natural to search for a Cayley-type condition related to generaliza-
tions of the Poncelet theorem. Such conditions for the billiard system inside
an ellipsoid in the Eucledean space of arbitrary finite dimension were derived
in [DR1998a,DR1998b]. In recent papers [DR2004,DR2005,DR2006b,DR2006a],
algebro-geometric conditions for existence of periodical billiard trajectories within
k quadrics in d-dimensional Euclidean space were derived. The second important
goal of these papers, actually for the present book as well, was to offer a thorough
historical overview of the subject with a special attention on the detailed analysis
of ideas and contributions of Darboux and Lebesgue. While Lebesgue’s work on
this subject has been, although rarely, mentioned by experts, on the other hand,
it seems to us that relevant Darboux’s ideas are practically unknown in contempo-
rary mathematics. We give natural higher-dimensional generalizations of the ideas
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and results of Darboux and materials presented by Lebesgue, providing the proofs
also in the low-dimensional cases if they were omitted in the original works. Be-
sides other results, interesting new properties of pencils of quadrics are established
– see Theorems 5.30 and 5.33. The latter gives a nontrivial generalization of the
Basic Lemma from Lebesgue’s book.

In our presentation of the development connected with the Griffiths–Harris
program, we follow the recent paper [DR2008]. We present a geometric construc-
tion generalizing a summation procedure on the elliptic curve for the case of hy-
perelliptic Jacobians. These ideas are continuations of those of Reid, Donagi and
Knörrer, see [Rei1972], [Knö1980], [Don1980]. Further development, realization,
simplification and visualization of their constructions is obtained by using the
ideas of billiard dynamics on pencils of quadrics developed in [DR2004].

The projective geometry nucleus of that billiard dynamics is the Double
Reflection Theorem, see Theorem 5.27 below. There are four lines belonging to
a certain linear space and forming the Double reflection configuration: these four
lines reflect to each other according to the billiard law at some confocal quadrics.

In higher genera, we construct the corresponding, more general, billiard con-
figuration, again by using the Double Reflection Theorem. This configuration,
which we call s-brush, is in one of the equivalent formulations, a certain billiard
trajectory of length s ≤ g and the sum of s elements in the brush is, roughly
speaking, the final segment of that billiard trajectory.

The milestones of this presentation are [Knö1980] and [DR2004] and the key
observation, from [DR2008], giving a link between them is that the correspondence
g �→ g′ in Lemma 4.1 and Corollary 4.2 from [Knö1980] is the billiard map at the
quadric Qλ.

Thus, after observing and understanding the billiard nature behind the con-
structions of [Rei1972], [Knö1980], [Don1980], we become able to use the billiard
tools to construct and study hyperelliptic Jacobians, and particularly their real
part. It may be realized as a set T of lines in Rd simultaneously tangent to given
d− 1 quadrics Q1, . . . , Qd−1 of some confocal family. It is well known that such
a set T is invariant under the billiard dynamics determined by quadrics from the
confocal family. By using the Double Reflection Theorem and some other billiard
constructions we construct a group structure on T , a billiard algebra. The usage
of billiard dynamics in algebro-geometric considerations appears to be, as usual
in such a situation, of a two-way benefit. We derive a fundamental property of T :
any two lines in T can be obtained from each other by at most d−1 billiard reflec-
tions at some quadrics from the confocal family. The last fact opens a possibility
to introduce new hierarchies of notions: of s-skew lines in T , s = −1, 0, . . . , d− 2
and of s-weak Poncelet trajectories of length n. The last are natural quasi-periodic
generalizations of Poncelet polygons. By using billiard algebra, we obtain complete
analytical descriptions of them. These results are further generalizations of our re-
cent description of Cayley’s type of Poncelet polygons in arbitrary dimension, see
[DR2006b]. Let us emphasize that the method used in [DR2008], based on billiard
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algebra, differs from the methods exposed in [DR2006b], see also [DR2010]. Both
of the methods will be presented in the sequel.

The interrelations between billiard dynamics, subspaces of intersections of
quadrics and hyperelliptic Jacobians developed in [DR2008], enable us to obtain
higher-dimensional generalizations of several classical results. To demonstrate the
power of the methods, generalizations of Weyr’s Poncelet theorem (see [Wey1870])
and also the Griffiths–Harris Space Poncelet theorem (see [GH1977]) in arbitrary
dimension are derived and presented here. We also give an arbitrary-dimensional
generalization of the Darboux theorem [Dar1914].

Let us mention at the end of a brief outline of main results which are go-
ing to be presented here, that the line we are going to establish and follow, is to
demonstrate the deep intimate relationship between on one hand general hyper-
elliptic Jacobians and integrable billiard systems generated by pencils of quadrics
on the other hand. This can be seen as a very simple and specialized level of gen-
eral ideology of integrable systems which culminated with the so-called Novikov’s
conjecture, solved by Shiota in 1985.

Let us recall that Novikov’s conjecture demonstrates the deepest relationship
between the theory of integrable dynamical systems and theory of algebraic curves.
It solved a century old, general and important Riemann–Schottky problem of
description of period matrices of Jacobians among Riemannian matrices through
the solutions of the Kadomtsev–Petviashvili integrable hierarchy.

There is another, very important connection of our subject with some of the
most prominent parts of contemporary mathematics.

The Euler–Chasles correspondences, or symmetric (2-2)-correspondences
play one of the main roles in our exposition. They were used by Jacobi, then
by Trudi [Tru1853,Tru1863] and finally, Darboux extended their use in the theory
of Poncelet porisms essentially.

One of the central objects in mathematical physics in the last 25 years is the
R-matrix, or the solution R(t, h) of the quantum Yang–Baxter equation

R12(t1 − t2, h)R13(t1, h)R
′23(t2, h) = R23(t2, h)R13(t1, h)R12(t1 − t2, h),

as a paradigm of modern understanding of the addition relation. Here t is a so-
called spectral parameter and h is the Planck constant . If the h dependence satisfies
the quasi-classical property R = I + hr +O(h2), the classical r-matrix r satisfies
the classical Yang–Baxter equation. Classification of the solutions of the classical
Yang–Baxter equation was done by Belavin and Drinfeld in 1982 [BD1982]. The
problem of classification of the quantum R-matrices is still open. However, some
important results of classification have been obtained in the basic 4 × 4 case by
Krichever in [Kri1981], and following his ideas in [Dra1992a,Dra1993].

Krichever in [Kri1981] applied the idea of “finite-gap” integration to the
theory of the Yang equation:

R12L13L
′23 = L

′23L13R12.
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The principal objects that are considered are 2n × 2n matrices L, understood
as 2 × 2 matrices whose elements are n × n matrices; L = Liα

jβ is considered as
a linear operator in the tensor product Cn ⊗ C2. The theorem from [Kri1981]
uniquely characterizes them by the following spectral data:

1. the vacuum vectors, i.e., vectors of the form X⊗U , which L maps to vectors
of the same form Y ⊗ V , where X,Y ∈ Cn and U, V ∈ C2;

2. the vacuum curve Γ : P (u, v) = detL = 0, where Li
j = V βLiα

jβUα, (V β) =
(1,−v), Xn = Yn = U2 = V2 = 1; U1 = u, V1 = v;

3. the divisors of the vector-valued functions X(u, v), Y (u, v), U(u, v), V (u, v),
which are meromorphic on the curve Γ.

It appeared that vacuum curves in 4 × 4 case are exactly Euler–Chasles
correspondences. The Yang–Baxter equation itself provides the condition of com-
mutation of the two Euler–Chasles correspondences. The classification follows by
application of the Euler theorem in the general case, and by studying possible
degenerations.

This is practically the same picture we meet in the study of the Poncelet
theorem. The hope is that our study of higher-dimensional analogues of the Pon-
celet theorem could provide us the intuition that will help us in classification of
higher-dimensional solutions of the Yang–Baxter equation.

Thus, we include the story about Krichever’s algebro-geometric approach
to 4 × 4 solutions of the Quantum Yang–Baxter equation in the last chapter.
We explained there the relationship between the Poncelet theorem for a triangle
and the Darboux theorem from one side and Krichever’s commuting relation of
vacuum curves from another side (see Theorem 10.12). We underline connection of
classification results for 4× 4 R-matrices to the classification of pencils of conics,
see Theorem 10.12 and Proposition 10.13. Pencils of conics and their classification
played a crucial role in previous chapters. Finally, we point out a sort of billiard
construction within the Algebraic Bethe Ansatz associated to four-dimensional
R-matrices, see Lemma 10.14 and Theorem 10.15.

The Poncelet theorem is usually called the Poncelet porism. Let us give some
explanation of the meaning of the word porism. It has roots in ancient Greek
mathematics, and it is usually translated in two ways. The first one is lemma
or corollary. The second one goes deeper into the philosophy of ancient Greek
mathematics. Scientists of that time used to divide mathematical statements into
two categories:

• Theorems – where something has to be proven, and
• Problems – where something needs to be constructed.

Nevertheless, they recognized the third, intermediate, class as well, called Porisms,
directed to finding what is proposed. The most famous collection of porisms of
ancient times was the book The Porisms of Euclid. Unfortunately, this work is
lost, and the trace which survived leads through The Collection of Pappus of
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Alexandria. Even then, there was much discussion about the definition of the
notion of porism as well as about Euclid’s porisms. These discussions continue
today. In the XVII century, important contributions were made by Albert Girard
and Pierre Fermat. In the XVIII century, we can mention Robert Simson and John
Playfair. Here is Simson’s definition of a porism.

“Porisma est propositio in qua proponitur demonstrate rem aliquam vel
plures Batas ease, cui vel quibus, ut et cuilibet ex rebus innumeris non
quidem datis, sed quae ad ea quae data sunt eandem habent relationem,
convenire ostendendum est affectionem quandam communem in proposi-
tione descriptam. Porisma etiam in forma problematis enuntiari potest,
si nimirum ex quibus data demonstranda aunt, invenienda proponan-
tur.”

Playfair, continuing the work of Simson, tried to understand the probable
origin of porisms, to find out what led the ancient geometers to the discovery of
them. He remarked that the careful investigation of all possible particular cases
of a proposition would show that:

(1) under certain conditions a problem becomes impossible;
(2) under certain other conditions, indeterminate or capable of an infinite number

of solutions.

For more details see [1911, E.B.].
This is exactly the situation we recognize in the Poncelet theorem. For two

given conics, there are two possibilities. Either, a polygon inscribed in one of
them and circumscribed about the other has an infinite number of sides, or the
number of sides is finite. If it is finite, then the number of sides does not depend
on an initial point. We want to stress here that the idea of porism of Poncelet
type, in a very special case, existed almost 70 years before Poncelet. This case of
Poncelet’s theorem is the one with two circles, inscribed and circumscribed about
the same triangle. We come to such a situation starting from an arbitrary triangle,
and considering its inscribed and circumscribed circle. Denote by r and R their
radii respectively, and by d the distance between the centers of the circles. The
formula connecting these three values, sometimes referred as “Euler’s formula” is
well known:

d2 = R2 − 2rR.

However, this relation was discovered by English mathematician Chapple in 1746,
and he caught sight of the poristic nature of the problem: if there are two circles
satisfying the last Chapple formula, then there are infinitely many triangles in-
scribed in one and circumscribed about the other circle. Probably, this is the first
known appearance of porisms of Poncelet type.

The Euler school was also interested in that subject. Nicolas Fuss, one of
Euler’s personal secretaries, and after Euler’s death the secretary of St. Petersburg



Chapter 1. Introduction to Poncelet Porisms 9

Academy of Sciences, published several works on study of bicentric polygons. In
1797 he published the formula for bicentric quadrilaterals:

(R2 − d2)2 = 2r2(R2 + d2).

But, although it was 50 years after Chapple, Fuss did not understand the poristic
nature of the problem.

It was Jacobi in 1828 who understood the relationship between Poncelet
porism in general and study of bicentric polygons of Fuss, Steiner and others.

Some parts of the material presented here were used by the authors for grad-
uate courses they taught: V. D. in 2002/2003 in the International School of Ad-
vanced Studies in Trieste [Dra2003], and M. R. in 2006 in the Weizmann Institute
of Science in Rehovot. Both authors read mini-courses on the subject, M. R. in the
Weizmann Institute of Sciences in 2005 and V. D. at the University of Lisbon in
2007. Also, both authors gave several lectures on seminars and conferences in Italy,
France, Germany, Serbia, Spain, Portugal, Montenegro, Israel, Czechia, Poland,
Hungary, Great Britain, Austria, Russia, Brazil, USA, Canada, and Bulgaria. One
of our observations was that there was a visible division between the communi-
ties of Algebraic and Projective Geometry, although some 50 years ago these fields
were quite a unified subject. Having this experience in mind, we decided to include
introductions to both subjects in order to make the book self-contained as much
as possible and usable for both communities and for the mathematical community
at large.
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Chapter 2

Billiards – First Examples

2.1 Introduction to billiards

Let us start from the following well-known problem.
Suppose that a railway is passing near two neighbouring villages, and that

a new railway station, common for both of them, is about to be built. Where
to place the station, in order to minimize the length of the road connecting the
villages with it? (See Figure 2.1.)

Figure 2.1.

In other words, on a given line (i.e., the railway), we need to find a point

Denote the given points (villages) by A andB, and by r the line (railway). Let
B′ be the point symmetric toB with respect to r. The intersection point S of r with
AB′ has the requested properties. Indeed, notice that AS+SB = AS+SB′ = AB′,
while for any other point S′ ∈ r, AS′+S′B = AS′+S′B′ > AB′. (See Figure 2.2.)

line r, i.e., the segment BS is the billiard reflection of AS on the line r. In other
words, the minimal trajectory from A to B that meets the line r is exactly the
billiard trajectory, with the reflection point on r.

Exercise 2.1. Let M be a point inside a convex angle α. Find the points K,L on
the sides of α such that the triangle KLM has the minimal perimeter. Prove that

such that the sum of its distances from two fixed points is smallest possible.

11 

It is easy to see that segments AS and BS form the same angles with the

ć ć
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Figure 2.2.

segments MK,KL and KL,LM satisfy the billiard reflection law on the sides of
the angle.

2.2 Triangular billiards

Now, we are going to investigate the billiards within a triangle in the Euclidean
plane. A trajectory of such a billiard is a polygonal line, finite or infinite, with
vertices on the sides of the triangle, such that consecutive edges of the trajectory
satisfy the billiard law: i.e., they form the same angle with the side of the triangle
on which their common vertex lies. The reflection is not defined only at the vertices
of the triangle – thus we omit from our consideration trajectories falling at a vertex
of a triangle.

Let us try to find out if closed trajectories of a billiard within a triangle exist.
Denote by A,B,C the vertices of the triangle. It is clear, from Section 2.1, that
the edges of the triangle with minimal perimeter, whose vertices are inner points
of the sides �ABC, will represent a billiard trajectory.

Theorem 2.2. Let �ABC be an acute angled triangle. If �KLM is the triangle
with minimal perimeter inscribed in �ABC, then its vertices are the feet of the
altitudes of �ABC. Moreover, inside �ABC, KLM is a unique closed billiard
trajectory with 3 bounces.

Proof. Let M be a fixed point on the edge AB. We want to find points K ∈ BC,
L ∈ AC such that the triangle KLM has the minimal perimeter. Denote by
M ′,M ′′ points symmetric to M with respect to the sides BC,AC. It is easy to see
that K,L are intersection points of M ′M ′′ with BC,AC respectively (see Figure
2.3).

The perimeter of �KLM is equal to the segment M ′M ′′. Notice that
M ′M ′′ is a side of the isosceles triangle CM ′M ′′, with CM ′ ∼= CM ′′ ∼= CM
and ∠M ′CM ′′ = 2∠BCA. It follows that M ′M ′′ will be the shortest for CM
being an altitude of the triangle ABC, i.e., M being its foot. Similarly, we prove
K,L are also feet of the corresponding altitudes (see Figure 2.4). �
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Figure 2.3.

Figure 2.4.

After having this periodic trajectory inside an acute triangle, it is easy to see
that there is an infinity of other closed billiard trajectories (see Figure 2.5).

Figure 2.5.

There are also closed billiard trajectories inside a right triangle. One of them,
the polygonal line KLMNMLK, is shown on Figure 2.6.

For obtuse triangles in general, the existence of periodic trajectories is not
proved. There are only examples for some special cases.
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Figure 2.6.

2.3 Billiards within an ellipse

In this section, we are going to discuss in an elementary way the most important
aspects of billiards within an ellipse in the plane.

A billiard trajectory within an ellipse is a polygonal line with the vertices
lying on the ellipse and with consecutive edges satisfying the billiard law , i.e.,
forming the same angles with the tangent line to the ellipse at the joint vertex of
the edges (see Figure 2.7).

Figure 2.7.

Proposition 2.3 (Focal property of the ellipse). Let E be an ellipse with foci F1, F2

and A ∈ E an arbitrary point. Then segments AF1, AF2 satisfy the billiard law on
E. (See Figure 2.8.)

Proof. It is enough to prove that for any point C on the tangent, the sum CF1 +
CF2 is greater than AF1 + AF2. Let B be the intersection of the segment CF1

with the ellipse. Then AF1 +AF2 = BF1 +BF2 < BF1 +BC+CF2 = CF1 +CF2.
(See Figure 2.9.) �

As an immediate consequence of this proposition, we have: if one segment of
a billiard trajectory within ellipse E contains a focus of E , then all segments of the
trajectory contain one or the other focus, alternately.

Now, we are going to prove the following important property of the billiard
within an ellipse.
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Figure 2.8: Focal property of the ellipse

Figure 2.9.

Proposition 2.4. Let two lines satisfy the billiard law on the ellipse E. If one of
the lines is tangent to the ellipse E ′ that is confocal with E, then the other one is
also tangent to E ′. (See Figure 2.10.)

Figure 2.10.

Proof. Let A,B,C be points on E such that segments AB and BC satisfy the
reflection law at B. Suppose that AB is tangent to E ′. Denote by F1, F2 the foci
of the two ellipses and by T1, T2 points on the tangent to E in B such that angles
∠F1BT1 and ∠F2BT2 are acute. By Proposition 2.3, these angles are congruent.
Notice that then AB is placed inside one of these angles, say ∠F1BT1. Since,
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by the billiard law, ∠ABT1
∼= ∠CBT1, the segment BC is placed inside angle

∠F2BT2, as shown on Figure 2.11. Let D1, D2 be points symmetric to F1, F2 with

Figure 2.11.

respect to lines AB, BC respectively.
We are going to show that �D1BF2

∼= �F1BD2. We have that D1B ∼= F1B,
F2B ∼= D2F , since the corresponding segments are symmetric with respect to
AB, BC. Also, ∠D1BF2 = ∠D1BF1 + ∠F1BF2 and ∠F1BD2 = ∠F2BD2 +
∠F1BF2. Since ∠D1BF1 = 2∠F1BA = 2(∠F1BT1 − ∠ABT1) = 2(∠F2BT2 −
∠CBT2) = 2∠F2BC = ∠D2BT2), we have that ∠D1BF2

∼= ∠F1BD2, which
proves the congruence of triangles �D1BF2 and �F1BD2. Hence, D1F2

∼= F1D2.
The segment D1F2 is equal to the minimal sum of distances from F1 and

F2 of a point on line AB, i.e., to the sum of distances of an arbitrary point on
ellipse E ′ from its foci, since this line is touching E ′. Similarly, F1D2 is equal to
the minimal sum of distances from F1 and F2 of a point on line BC, thus BC is
also tangent to E ′. �

We leave to the reader to prove the following

Exercise 2.5. Let two lines satisfy the billiard law on the ellipse E . If one of the
lines is tangent to the hyperbola H that is confocal with E , then the other one is
also tangent to H.

From Propositions 2.4 and Exercise 2.5, immediately we derive

Corollary 2.6. Let T be a billiard trajectory within ellipse T . If C is a conic confocal
to E such that one segment of T is tangent to C, then all segments of T are tangent
to C.

Corollary 2.7. Let B be a point outside the ellipse E ′ with focal points F1 and F2.
Denote tangents to the ellipse from the point B as BB1 and BB2, where Bi are
points of contact with the ellipse. Then the angles B1BF1 and B2BF2 are equal.
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2.4 Periodic orbits of billiards and Birkhoff’s theorem

We saw in Section 2.3 that billiards within an ellipse have remarkable properties. It
would be interesting to examine closer periodical trajectories of these billiards. As
a first step, let us present a classical result due to Birkhoff on periodic trajectories
of a more general class of billiards.

Consider a billiard table bounded by a closed convex curve in the plane.
Assume that the length of the curve is equal to 1 and introduce a natural parameter
ϕ. Suppose that ϕ1, . . . , ϕn represents the sequence of bouncing points of an n-
periodic trajectory. Additionally, we may choose the values ϕ1, . . . , ϕn, ϕn+1 such
that the differences ϕ2 − ϕ1, ϕ3 − ϕ2, . . . , ϕn − ϕn−1, ϕn+1 − ϕn are between 0
and 1, and ϕn+1 ≡ ϕ1 mod 1.

The integer k = ϕn+1 − ϕ1 is called the rotation number of the periodic
trajectory.

Theorem 2.8 (Birkhoff). Suppose there is given a smooth, closed, convex plane
curve having nonzero curvature at any point. Then for any numbers n, k ∈ N,
n > k, there exist at least two geometrically different periodic trajectories, with the
rotational number k and n bounces, of the billiard within the given curve. For one
of these trajectories, the corresponding polygonal line has maximal length among
all nearby closed polygonal lines inscribed in the curve. If this maximum is an
isolated critical point of the length function on the set of inscribed polygonal lines
with n vertices, then the polygonal line corresponding to the other trajectory is not
an isolated maximum of the length function.

2.5 Bicentric polygons

We have shown in Section 2.3 that billiard trajectories within an ellipse have a
caustic, which is a conic confocal to the boundary. Notice that any pair of conics in
a plane can be, by a projective mapping, transformed into a confocal pair. Thus,
it is natural to consider two general conics and polygonal lines inscribed in one
and circumscribed about the other one.

The case when these two conics are circles can be analyzed in an elemen-
tary way.

Triangles

It is easy to prove, even to students of elementary schools, that it is possible to
inscribe a circle in a triangle and also to circumscribe another one about it. Harder
is to find out, for two given circles, if they are inscribed and circumscribed about
some triangle. In the next proposition, a sufficient and necessary condition on two
circles is given.
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Theorem 2.9 (Chapple–Euler formula). Let k and K be two given circles with
radii r and R. Denote by d the distance between their centers. Then there exists a
triangle inscribed in K and circumscribed about k if and only if

d2 = R2 − 2Rr. (2.1)

Moreover, if condition (2.1) is satisfied, then every point of K is a vertex of
such a triangle.

Proof. Let ABC be a triangle inscribed in K and circumscribed about k and
denote by O, S the centers of these circles. Let N,M be the second intersection
points of lines AS, NO with K, as shown on Figure 2.12. It is easy to see that

Figure 2.12.

ON is a bisector of BC.
The power of S with respect to circle K equals d2 −R2 = −SA · SN .
From triangle SNC, we see that SN = NC. Namely, ∠SCN = ∠SCB +

∠BCN =
∠BCA

2
+∠BAN =

∠BCA+ ∠CAB
2

and ∠CSN = ∠SCA+∠SAC =
∠BCA + ∠CAB

2
.

Thus, SO2 −R2 = −SA · SN = −SA ·NC.
Notice that �AST ∼ �MNC, where T is a common point of k and AC.

Therefore, AS ·NC = ST ·MN = r · 2R.
Thus, the relation (2.1) follows.

Now, suppose the equality (2.1) holds. Let A be an arbitrary point on K.
Denote by N the intersection of AS with K, and with B,C points on K such

that NB = NC = NS. �ABC is inscribed in K and its inscribed circle k′ is
concentric with k. Then, SO2 = R2 − 2Rr′, where r′ is the radius of k′. Since we
also have SO2 = R2 − 2Rr, it is r = r′, i.e., k = k′. �
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Quadrilaterals

In this section, we are going to prove the following

Theorem 2.10. Let k and K be two given circles with radii r and R. Denote by
d the distance between their centers. Then there exists a quadrilateral inscribed in
K and circumscribed about k if and only if

d2 = r2 +R2 − r
√
r2 + 4R2. (2.2)

Moreover, if condition (2.2) is satisfied, then every point of K is a vertex of
such a quadrilateral.

First, let us prove several lemmata.

Lemma 2.11. Let ABCD be a cyclic quadrilateral. If K,L,M,N are normal projec-
tions of the intersection of the diagonals to the sides of ABCD, then quadrilateral
KLMN is circumscribed about a circle.

Proof. Let P = AC ∩ BD. Since ABCD, AKPN and KBLP are cyclic quadri-
laterals, we have

∠PKN ∼= ∠PAN = ∠CAD ∼= ∠CBD = ∠LBP ∼= ∠LKP,

i.e., ∠PKN ∼= ∠LKP . Thus KP is a bisector of ∠NKL. Similarly, LP , MP , NP

Figure 2.13.

are bisectors of corresponding angles, hence P is the center of the circle inscribed
in KLMN . �
Lemma 2.12. Let ABCD be a cyclic quadrilateral and K,L,M,N as in Lemma
2.11. Additionally, suppose that AC is perpendicular to BD, P = AC∩BD. Let O
be the circumcenter and R1 the circumradius of ABCD, r the inradius of KLMN ,
and d1 = OP . Then

r =
R2

1 − d2
1

2R1
. (2.3)
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Proof. Let α = ∠DAC, β = ∠CAB. Then we have

r = PK · sinα
= PB · sin(90◦ − β) · sinα

= PB · PD · sin(90◦ − β) · sinα
PD

= |pP,k| ·
sin(90◦ − β) · sinα

PD

= (R2
1 − d2

1) ·
sin(90◦ − β) · sinα

AD · sinα

= (R2
1 − d2

1) ·
sin(90◦ − β)

2R1 · sin(90◦ − β)

=
R2

1 − d2
1

2R1
. �

Lemma 2.13. Let ABCD be a cyclic quadrilateral with AC ⊥ BD, P , K, L,
M , N , R1, O, d1 as in Lemmata 2.11 and 2.12, and S1, S2, S3, S4 midpoints of
AB,BC,CD,AD (see Figure 2.14). Then K,L,M,N, S1, S2, S3, S4 belong to the

Figure 2.14.

same circle. If R is its radius, then

R =
1
2

√
2R2

1 − d2
1. (2.4)

Proof. First, let us prove that PS3 ⊥ AB, i.e., S3, P,K are collinear. Namely,

∠S3PK = ∠KPA+ ∠APD + ∠DPS3

= 90◦ − ∠PAK + 90◦ + ∠DPS3

= 180◦ − ∠PDC + ∠DPS3.

Since S3 is the midpoint of CD, we have ∠DPS3 = ∠PDS3. Thus ∠S3PK = 180◦.
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It follows that S3P ‖ OS1, because both lines OS1, S3P are perpendicular
to AB. Similarly, OS3 ‖ PS1. It follows that OS3PS1 is a parallelogram. Thus

S1S
2
3 +OP 2 = 2 ·

(
PS2

3 + PS2
1

)

= 2 ·
((

CD

2

)2

+
(
AB

2

)2
)

=
1
2
(
(2R1 sinα)2 + (2R1 sin(90◦ − α))2

)

= 2R2
1,

with α = ∠DAC. Hence, S1S
2
3 = 2R2

1 − OP 2 = 2R2
1 − d2

1.
Now, we are going to prove that all points K, L, M , N , S1, S2, S3, S4 belong

to the circle with radius S1S3/2 and center at the midpoint of OP . Clearly, S1S3

is a diameter of this circle, and K,M belong to it because ∠S3MS1 = ∠S3KS1 =
90◦. We get the same for S2, S4, L, N .

Finally, we have R = 1
2S1S3 = 1

2

√
2R2

1 − d2
1. �

Now, let us return to the bicentric quadrilateral from Theorem 2.10 – denote
it by KLMN .

Construct lines perpendicular to the bisectors of angles of KLMN at the
vertices. These lines determine a quadrilateral ABCD. Let P be the incenter of
KLMN .

It is easy to prove that ABCD is inscribed in a circle, that P is the intersec-
tion of its diagonals and that the diagonals are perpendicular to each other.

Denote as in previous lemmata: O – the center of the circle circumscribed
about ABCD; R1 – its radius; r, R – the radii of inscribed and circumscribed
circle of KLMN ; d1 = PO; S – the midpoint of PO; d = SO = d1/2.

By Lemmata 2.12 and 2.13,

r =
R2

1 − 4d2

2R1
and R =

1
2

√
2R2

1 − 4d2. (2.5)

Eliminating R1 from (2.5), we get

1
r2

=
1

(R+ d)2
+

1
(R − d)2 . (2.6)

From (2.6) it is possible to express d and obtain equation (2.2).
Now, let us prove the opposite part of Theorem 2.10. Suppose that k(P, r)

and K(S,R) are given circles, such that equation (2.2) holds, d = PS.
Construct the point O such that S is the midpoint of OP and the circle

K1(O,R1), where R1 satisfies (2.3) with d1 = 2d. Notice that equation (2.3) is
quadratic with respect to R1, but only one of its solutions is positive.
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Take A to be an arbitrary point on K1 and construct B,C,D ∈ K1 such that
AC ∩BD = P , AC ⊥ BD. Denote by K,L,M,N the normal projections of P to
the sides of ABCD. By Lemmata 2.11 and 2.12, KLMN is circumscribed about
k. By Lemma 2.13, KLMN is also inscribed in a circle with center O and radius
equal to 1

2

√
2R2

1 − d2
1. Eliminating r from (2.2) and (2.3), we obtain that this is

equal to R.
Thus, we constructed a quadrilateral KLMN inscribed in K and circum-

scribed about k. In the construction, choosing arbitrarily the initial point A on
K1, we can get that any point on K can be a vertex of such a quadrilateral.

2.6 Poncelet theorem

In this section, we are going to state the Poncelet theorem and give its mechanical
interpretation. The proof of the theorem will be given at the end of Chapter 4 and
in Chapter 5.

Poncelet theorem

As we already mentioned, the Poncelet theorem is one of the most beautiful and
deepest theorems of geometry, with numerous consequences and interrelations in
a wide range of areas of mathematics. It was proved by Jean Victor Poncelet,
while he was imprisoned in Russia, in 1813. He published another proof in 1822
in [Pon1822].

Theorem 2.14 (Poncelet Theorem). Let C and D be two conics in the plane. Sup-
pose that there is a polygon inscribed in C and circumscribed about D. Then there
are infinitely many such polygons and all of them have the same number of sides.
Moreover, each point of C is a vertex of such a polygonal line.

Figure 2.15: Three triangles inscribed in an ellipse and circum-
scribed about the other one
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Mechanical interpretation of the Poncelet theorem

Figure 2.16: Elliptical billiard table

The Poncelet theorem obtains a natural and beautiful mechanical interpre-
tation, if we take that C is an ellipse and D a conic confocal to C. Then, as was
shown in Section 2.3, the polygonal lines inscribed in C and circumscribed about
D are trajectories of the billiard motion within C.

In other words, consider a billiard trajectory within ellipse C. Suppose that
a line containing one segment of the trajectory is tangent to a conic D, confocal
with C. Then, all segments of the trajectory are also tangent to D (see Figure
2.17).

Figure 2.17: Billiard system and confocal conics

If a billiard trajectory is not periodic, then it will densely wind in the region
bounded with the caustic and the billiard boundary as is shown on Figure 2.18.


