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of Ã2 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A. Erschler
On Continuity of Range, Entropy and Drift for Random Walks
on Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Y. Guivarc’h and C.R.E. Raja
Polynomial Growth, Recurrence and Ergodicity for Random Walks
on Locally Compact Groups and Homogeneous Spaces . . . . . . . . . . . . . . 65

M. Björklund
Ergodic Theorems for Homogeneous Dilations . . . . . . . . . . . . . . . . . . . . . . . 75

A. Gnedin
Boundaries from Inhomogeneous Bernoulli Trials . . . . . . . . . . . . . . . . . . . . 91

P.E.T. Jorgensen and E.P.J. Pearse
Resistance Boundaries of Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 111

M. Arnaudon and A. Thalmaier
Brownian Motion and Negative Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 143

R.K. Wojciechowski
Stochastically Incomplete Manifolds and Graphs . . . . . . . . . . . . . . . . . . . . 163



viii Contents

S. Haeseler and M. Keller
Generalized Solutions and Spectrum for Dirichlet Forms
on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

R. Froese, D. Hasler and W. Spitzer
A Geometric Approach to Absolutely Continuous Spectrum
for Discrete Schrödinger Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A. Bendikov, B. Bobikau and C. Pittet
Some Spectral and Geometric Aspects
of Countable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

P. Müller and P. Stollmann
Percolation Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

T.S. Turova
Survey of Scalings for the Largest Connected Component
in Inhomogeneous Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

D. D’Angeli, A. Donno and T. Nagnibeda
Partition Functions of the Ising Model on Some Self-similar
Schreier Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

I. Krasovsky
Aspects of Toeplitz Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



Preface

This book contains the joint proceedings of the workshop on Boundaries that
took place in Graz, from June 29–July 3, and the Alp-Workshop that was held
immediately afterwards in Sankt Kathrein am Offenegg, on the weekend July 4–5,
2009.

The two events were dedicated to related subjects.

The aim of the Boundaries workshop was to bring together mathematicians
working on groups, graphs, manifolds, etc., in the context of probability (random
walks, Brownian motion), harmonic analysis, potential theory, ergodic theory, geo-
metric group theory and related topics. The title indicates a central topic but was
not to be considered the exclusive theme.

The scientific committee of the meeting consisted of Tatiana Nagnibeda-
Smirnova (Geneva), Christophe Pittet (Marseille), Hamish Short (Marseille), and
Wolfgang Woess (Graz).

The local organisation rested on the shoulders of Ecaterina Sava and Wolf-
gang Woess at Graz University of Technology in the capital of Styria, southeastern
province of Austria.

Three special guests were particularly featured in view of their “milestone
birthdays” taking place in 2009:

• Donald I. Cartwright (Sydney; 60th birthday)
• Vadim A. Kaimanovich (Bremen; 50th birthday)
• Massimo Picardello (Rome; 60th birthday)

Each of these three has given substantial contributions to the mathematical subject
of the workshop, and to each of them, a half-day session was dedicated, featuring
in particular their own (respective) invited talks. In the present volume, we display
their lists of publications (state of September, 2010).

The Alp-Workshop 2009 was devoted to “Spectral and probabilistic prop-
erties of random walks on random graphs”. The aim was a discussion between
experts from spectral theory, ergodic theory and probability theory about the spe-
cial topics of random walk theory in which the methods from group theory and
harmonic analysis fail: Discrete structures with much irregularity, such as Perco-
lation, Random Graphs, or Branching Processes were the main focus. Instead of
a detailed discussion of each talk we refer to the attached programme. During the
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first afternoon-session, there were six twenty-minutes talks by young researchers
of whom several have contributed to the proceedings.

The Alp-Workshop was organised by Florian Sobieczky with the budget of
project P18703 (“Random Subgraphs of Transitive Graphs”) of the Austrian Sci-
ence Foundation (FWF). Furthermore, the main part of the publication cost of
these proceedings was carried by the budget of this research project.

The “Almenland” in the mountains east of Graz provided a picturesque en-
vironment for the interdisciplinary discussion about random walks. Its remoteness
allowed inviting more people with the given budget while keeping a high standard
of the venue.

The editing of the proceedings contributed by the Alp-Workshop’s partici-
pants was undertaken by Daniel Lenz and Florian Sobieczky. The contributions
from the Boundaries-Workshop were edited by Wolgang Woess. All articles under-
went anonymous refereeing by experts from the respective field.

We would like to thank everyone who was directly or indirectly involved in
helping to organise these meetings.

This volume is dedicated to

Donald I. Cartwright Massimo A. Picardello Vadim A. Kaimanovich

October 2010, Daniel Lenz
Florian Sobieczky
Wolfgang Woess



Programme of the Workshop on “Boundaries”

June 29th (Mon.)

09:00–09:10 Opening
09:10–10:10 Francois Ledrappier, University of Notre Dame

Linear drift for the Brownian motion on covers
10:10–10:40 Coffee & Registration
10:40–11:10 Martin Dunwoody, University of Southampton

An inaccessible graph
11:20–1150 Panos Papazoglou, University of Athens

Topology of boundaries and splittings
12:00–12:20 Barbara Bobikau, University of Wroclaw

Spectral properties of a class of random walks
on locally finite groups

12:20–14:30 Lunch
14:30–15:20 Massimo Picardello, Tor Vergata University in Rome

Harmonic functions on homogeneous trees and buildings
15:30–16:00 Sara Brofferio, University of Paris-Sud 11

Poisson boundary of matrix groups with rational coefficients
16:10–16:40 Coffee
16:40–17:30 Yves Guivarc’h, University of Rennes

Random walk in a random medium on Z, and random walks
on homogeneous spaces

17:40–18:00 Daniele D’Angeli, University of Geneva
The boundary action of the Basilica group

June 30th (Tue.)

09:30–09:50 Tim Riley, Cornell University
How wild can a group with a quadratic Dehn function be?

10:00–10:30 Coffee
10:40–11:11 Anton Thalmaier, University of Luxembourg

The Poisson boundary of certain Cartan-Hadamard
manifolds of unbounded curvature

11:20–11:50 Alexander Gnedin, Utrecht University
Boundaries of the generalised Pascal triangles
and larger graded graphs

12:00–12:20 Jeremy Macdonald, McGill University
Compressed words and automorphisms in fully
residually free groups

12:20–14:30 Lunch
14:30–15:20 Tim Steger, University of Sassari

Background on fake planes
15:30–16:00 Jean Lécureux, Claude Bernard University Lyon 1

Combinatorial boundaries of buildings
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16:10–16:40 Coffee
16:40–17:30 Donald Cartwright, University of Sidney

The 50 fake projective planes
17:40–18:00 Bernhard Krön, University of Vienna

Vertex cuts, ends and group splittings

July 1st (Wed.)

09:00–09:50 Anna Erschler, University of Paris-Sud 11
Boundaries of amenable groups

10:00–10:50 Poster Session & Coffee
Poster: Elisabetta Candellero, Lorenz Gilch, Motoko Kotani,
Jeremy Macdonald, Sebastian Müller, Svetla Vassileva

10:50–11:20 Matthias Keller, Universität Jena
Heat transfer to the boundary on discrete graphs

11:30–12:00 Erin Pearse, University of Iowa & University of Oklahoma
Resistance analysis of infinite networks

Afternoon Excursion

July 2nd (Thu.)

09:00–09:50 James Parkinson, University of Sydney
Random walks on p-adic groups and affine buildings

10:00–10:30 Coffee
10:40–11:10 Agelos Georgakopoulos, Graz University of Technology

Uniqueness of currents in an electrical network of finite
total resistance

11:20–11:50 Jörg Schmeling, Lund University
Large dimension of limit sets of Kleinian groups and
transience of critical random walks

12:00–12:20 Riddhi Shah, Jawaharlal Nehru University
Distal actions on locally compact groups

12:20–14:30 Lunch
14:30–15:20 Vadim Kaimanovich, University of Ottawa

Random graphs, stochastic homogenization and
equivalence relations

15:30–16:00 Alexander Bendikov, University of Wroclaw
On a class of random walks on groups with infinite
number of generators

16:00–16:40 Coffee
16:40–17:30 Volodymyr Nekrashevych, Texas A& M University

Hyperbolic duality
17:40–18:00 Fréderic Mathéus, LMAM University of South-Brittany

Poisson boundary of free-by-cyclic groups
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July 3rd, (Fri.)

09:00–09:50 Klaus Schmidt, University of Vienna
Sandpiles and the harmonic model

10:00–10:40 Coffee
10:40–11:10 Tatiana Smirnova-Nagnibeda, University of Geneva

Sandpiles and self-similar groups
11:20–11:50 Markus Neuhauser, RWTH Aachen

Further examples to a question of Atiyah
11:50–13:30 Lunch
13:30–14:00 Michael Björklund, Hebrew University

Sharp sumset inequalities for Bohr sets
14:10–15:00 Anatoly Vershik, St.Petersburg State University

Adjoint dynamics to a question of Atiyah

Programme of the Alp-Workshop 2009

July 4th (Sat.)

09:15–09:30 Welcome
09:30–10:15 Christoph Pittet, University of Aix-Marseille 1

Return probabilities and spectral distribution
of Laplace operators

10:20–11:05 Peter Müller, Ludwigs Maximilians University Munich
Ergodic properties of randomly coloured aperiodic point sets

11:05–11:20 Coffee
11:20–12:05 Tatyana Turova, Lund University

Asymptotic size of the largest cluster in inhomogeneous
random graphs: sub-critical and critical phases

12:10–12:55 Vadim Kaimanovich, Jacobs University Bremen
Stochastic homogenization of graphs: case studies

12:55–14:00 Lunch
14:00–16:30 Short Talks-Session & Coffee

Wolfgang Spitzer, Bernt Metzger, Radoslaw Wojciechowski,
Matthias Keller, Sebastian Müller, Erin Pearse

Evening Hike and Dinner at Mountain Cabin

July 5th (Sun.)

10:00–10:45 Daniel Lenz, Universität Jena
Amenability of Horocyclic Products of
uniformly growing trees

10:45–11:00 Coffee
11:00–11:45 Tatiana Smirnova-Nagnibeda, Geneva University

Amenability and percolation
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11:50–12:35 Jörg Schmeling, Lund University
Random trees generated by a dynamical system
and the structure of typical orbits

12:35–14:00 Lunch
14:00–14:45 Franz Lehner, Graz University of Technology

On the Eigenspaces of Lamplighter Random Walks and
Percolation Clusters on Graphs

14:50–15:55 Poster-Session & Coffee
Erin Pearse, Lorenz Gilch, Ecaterina Sava,
Wilfried Huss, Seon Hee Lim, Michael Matter,
Uta Freiberg, Elisabetta Candellero

16:00–16:45 Peter Mörters, University of Bath
Simultaneous multifractal analysis of branching and
visibility measure on a Galton-Watson tree

17:00–17:45 Ivan Veselić, TU Chemnitz
Percolation clusters on Caley graphs and their spectra

18:00–18:45 Tyll Krüger, Rainer Siegmund-Schultze, TU Berlin
Epidemic processes on networks and generalisations

A Steyr 480a “Postbus” waiting for its passengers to board before
taking them to St. Kathrein am Offenegg, the venue of the Alp-
Workshop 2009.
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J. Aust. Math. Soc., 64 (1998), 329–344.

[38] Harmonic functions on buildings of type Ãn. Proceedings of the 1997 Cortona
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An Inaccessible Graph

M.J. Dunwoody

Abstract. An inaccessible, vertex transitive, locally finite graph is described.
This graph is not quasi-isometric to a Cayley graph.
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1. Introduction

Let X be a locally finite connected graph. A ray is a sequence of distinct vertices
v0, v1, . . . such that vi is adjacent to vi+1 for each i = 1, 2, . . . . Obviously for a ray
to exist, the graph X has to be infinite. For any two vertices u, v ∈ V X let d(u, v)
be the length of a shortest path joining u, v.

We say that two rays R,R′ belong to the same end ω, if for no finite subset
F of V X or EX do R1 and R2 eventually lie in distinct components of X \F . We
define E(X) to be the set of ends of X .

We say that ω is thin if it does not contain infinitely many vertex disjoint
rays. As in [16] the end ω is said to be thick if it is not thin.

In their nice paper [16] Thomassen and Woess define an accessible graph. A
graph X is accessible if there is some natural number k such that for any two ends
ω1 and ω2 of X , there is a set F of at most k vertices in X such that F separates
ω1 and ω2, i.e., removing F from X disconnects the graph in such a way that rays
R1, R2 of ω1, ω2 respectively eventually lie in distinct components of X \ F .

A finitely generated group G is said to have more than one end (e(G) > 1) if
its Cayley graph X(G,S) with respect to a finite generating set S has more than
one end. This property is independent of the generating set S chosen. Stallings
[14] showed that if e(G) > 1 then G splits over a finite subgroup, i.e., either
G = A ∗C B where C is finite, C �= A,C �= B or G is an HNN extension G =
A∗C = 〈A, t|t−1ct = θ(c)〉, where C is finite, C ≤ A and θ : C → A is an injective
homomorphism. A group is accessible if the process of successively factorizing
factors that split in a decomposition of G eventually terminates with factors that
are finite or one ended.
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Thomassen and Woess show that the Cayley graph of a finitely generated
group G is accessible if and only if G is accessible. In [5, 6] I have given examples
of inaccessible groups, and so not every locally finite connected graph is accessible.

Let ω be an end of X . As in [16], p. 259 define k(ω) to be the smallest integer
k such that ω can be separated from any other end by at most k vertices. If this
number does not exist, put k(ω) = ∞.

Thomassen and Woess show that X is accessible if and only if k(ω) <∞ for
every end ω. We say that an end ω is special if k(ω) = ∞.

In this paper we construct a locally finite, connected, inaccessible, vertex
transitive graph X . The property of being inaccessible is invariant under quasi-
isometry. If X,Y are graphs, then a quasi-isometry θ : X → Y induces a bijection
E(θ) : E(X) → E(Y ) which takes thick ends to thick ends, and special ends to
special ends. One can put a topology on E(X) in a natural way. The map E(θ) is
then a homeomorphism.

Woess asked in [17, 15] if every vertex transitive, locally finite graph is quasi-
isometric to a Cayley graph. It was shown in [11, 12] that the Diestel-Leader
graph DL(m,n),m �= n (see [3] or [17]) is not quasi-isometric to a Cayley graph,
answering the question of Woess. It is shown here that the graph X is another
example. I originally thought that X was hyperbolic, and the fact that X was
not quasi-isometric to a Cayley graph then followed because a hyperbolic group
is finitely presented, and would therefore have an accessible Cayley graph by [4].
However there are arbitrarily large cycles in X for which the distance apart of two
vertices in the cycle is the same as that in X . This cannot happen in a hyperbolic
graph. It seems likely that a hyperbolic graph must be accessible.

The vertex transitive graph X we construct is based on a construction in [7].
In that paper, Mary Jones and I construct a finitely generated group G for which
G ∼= A ∗C G where C is infinite cyclic. The vertex set of the graph X is the set of
left cosets of D in G, where D has index 2 in C. One could take the vertex set of
X to be the left cosets of A or C as they are commensurable with D. In fact it
is easier to work with a G-graph Y quasi-isometric to X , in which there are two
orbits of vertices for the action of G on Y .

In general, if a group G is the commensurizer of a subgroup H , and G is
generated by H ∪ S, then one can construct a vertex transitive, connected graph,
in which the vertices are the cosets of H , and there are edges (H, sH) for each
s ∈ S. If G actually normalizes H , then this graph is a Cayley graph for G/H .
Conversely if X is a connected, vertex transitive, locally finite graph and H is the
stabilizer of a vertex v, then G is the commensurizer of H and G is generated by
H ∪ S, where S is any subset of G with the property that for each u adjacent to
v there is an s ∈ S such that sv = u.

The graph Y has an orbit of cut points, i.e., vertices whose removal discon-
nects the graph. It is well known that cut points in a graph give rise to a tree
decomposition. This is described – for example – in [10], in which the theory of
structure trees is extended to graphs that can be disconnected by removing finitely
many vertices rather than finitely many edges. The cut point tree T for Y has two
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orbits of vertices under G. One orbit corresponds to the set of 2-blocks, where each
2-block is a maximal 2-connected subgraph, and the other orbit corresponds to the
cut points. It is then shown that after a subdivision and two folding operations,
each of which is a quasi-isometry, and removing spikes (a spike is an edge with a ver-
tex of degree one) each 2-block becomes a graph isomorphic to Y . Thus the graph
Y has a self-similarity property that comes from the fact that G ∼= A∗CG where C
is infinite cyclic. One would not expect this to happen in a Cayley graph, as it is not
possible that for a finitely generated group G to be isomorphic to A ∗CG where C
is finite. This follows from a result of Linnell [13], which indicates that in a process
of successively factorizing factors that split in a decomposition of an inaccessilbe
group G, the size of the finite groups over which the factors split must increase.

Thus after carrying out the subdivision and folding operations, the graph
Y = Y1 becomes a graph Y2 which has a single orbit of disconnecting edges.
Removing (the interior of) all these edges will give a single orbit of points each
with stabilizer a conjugate of A, and a second orbit, consisting of 2-blocks each of
which is isomorphic to Y , with stabilizer conjugate to the subgroup of G which
is the second factor in the decomposition G ∼= A ∗C G. If we repeat this process
n− 1 times, then we a obtain a graph Yn which has n− 1 orbits of disconnecting
edges. Removing these edges produces n − 1 orbits of vertices each of which has
finite stabilizer, isomorphic to A, and a single orbit of 2-blocks each of which
is isomorphic to Y . Let Bn be one of these blocks. The graph Y has an orbit
of subgraphs each of which is a trivalent tree. Let Z be a particular trivalent
subtree of Y . Although the folding operations do involve folding Z, the result of
the operations is another trivalent tree. We will see that any two rays in Z represent
a particular special end ω of Y . There will also be uncountably many special ends
that do not correspond to a translate of Z. A ray representing a special end must
eventually lie in a translate of Bn, since otherwise it will represent a thin end.
However the initial number xn of points in the ray outside a translate of Bn may
tend to infinity with n. There will be uncountably many such special ends. If the
ray eventually ends up in a translate of Z, then xn is bounded, since each translate
of Z lies in a translate of Bn. Since each translate of Bn contains a translate of Z,
the orbit of ω is dense in the space of special ends.

We will show that in a Cayley graph, if there is a countable set of special ends
which is dense in the subspace of all special ends, then there must be a special end
corresponding to a 1-ended subgraph. There is no special end of Y corresponding
to a 1-ended subgraph, and so the graph Y cannot be quasi-isometric to a Cayley
graph.

As it is important in our construction, we repeat the description of G below.
In another paper [8], Mary Jones and I went on to construct a finitely generated
group G1 for which G1

∼= G1 ∗C1 G1 with C1 infinite cyclic. It might be expected
that the coset graph X1 of C1 in G1 has similar properties to X . This will not be
the case. Although X1 is inaccessible and locally finite, it is quasi-isometric to a
Cayley graph. This is because C1 contains a central subgroup Z as a subgroup of
finite index. Then X1 is quasi-isometric to the Cayley graph of G1/Z.


