Lecture Notes in Statistics 201

Synthetic Datasets
for Statistical
Disclosure Control




Lecture Notes in Statistics 201

Edited by P. Bickel, PJ. Diggle, S. Fienberg, U. Gather,
I. Olkin, S. Zeger






Jorg Drechsler

Synthetic Datasets for
Statistical Disclosure Control

Theory and Implementation

@ Springer



Jorg Drechsler

Department for Statistical Methods
Institute for Employment Research
Regensburger Straf3e 104

90478 Niirnberg

Germany

Joerg.Drechsler@iab.de

ISSN 0930-0325

ISBN 978-1-4614-0325-8 e-ISBN 978-1-4614-0326-5
DOI 10.1007/978-1-4614-0326-5

Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2011931290

© Springer Science+Business Media, LLC2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my mother and my father (in loving
memory) for their love and support






Foreword

The topic of Jorg Drechsler’s work is, in my view, extremely important because
it addresses two conflicting demands that are becoming ever more important and
complex with the increasing sophistication of our society. First, there is the demand
to have access to the vast amounts of publicly supported data collected on all of us.
Second, there is the demand to preserve the confidentiality of critical information
about individuals in the data being released.

For a specific example of the first demand, in the United States there is the recent
call to use the vast collection of medical data, routinely collected on patients from
hospitals, pharmacies, etc., to conduct “comparative effectiveness research” in order
to find the best combination of medical treatments for individuals. The search for
answers to such questions, and therefore the request for publicly available micro-
data, i.e., data on individuals, is legitimate. Nevertheless, the release of such data
threatens the privacy of patients.

The second demand, therefore, is for any released data to preserve confidential
information from the individuals whose data are being released, whether because
of explicit or implicit guarantees made to them. Even the release of one piece of
confidential information can have relatively dire consequences when combined with
publicly available information. For another U.S. example, with a person’s name
and birth date, both of which are available essentially to anyone, all an “intruder”
needs is a social security number (taxpayer number) to open credit card accounts,
obtain loans, charge hospital bills, open Internet and cell phone accounts, etc. —
with all records and debts attached to that social security number. The result is that
the holder of that social security number can have a disastrous credit rating that is
essentially impossible to correct, even after thousands of dollars in expenses and
many years of trying. This “stolen identity” problem is just one example of the
untoward effects of the release of confidential information, which may include life-
altering consequences, such as being denied mortgages on home purchases.

The work that Jorg Drechsler is pursuing in this book addresses both demands
by trying to find ways to benefit society by releasing microdata, here multiply im-
puted synthetic microdata, that simultaneously preserve individuals’ confidential in-
formation and yet allow valid inferences at some level of detail through the use of
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viii Foreword

specialized methods for combining the analyses of the resulting multiply imputed
datasets. The topic is a statistically challenging one that needs much development,
and I’m sure that this book will be a critical stimulus to this development. Jorg is to
be congratulated for this great contribution.

Cambridge, Massachusetts, March 2011 D. B. Rubin
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