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Foreword

Targeted Learning, by Mark J. van der Laan and Sherri Rose, fills a much
needed gap in statistical and causal inference. It protects us from wasting
computational, analytical, and data resources on irrelevant aspects of a prob-
lem and teaches us how to focus on what is relevant – answering questions
that researchers truly care about.

The idea of targeted learning has its roots in the early days of econometrics, when Ja-
cob Marschak (1953) made an insightful observation regarding policy questions and
structural equation modeling (SEM). While most of his colleagues on the Cowles
Commission were busy estimating each and every parameter in their economic mod-
els, some using maximum likelihood and some least squares regression, Marschak
noted that the answers to many policy questions did not require such detailed knowl-
edge – a combination of parameters is all that is necessary and, moreover, it is of-
ten possible to identify the desired combination without identifying the individual
components. Heckman (2000) called this observation “Marschak’s Maxim” and has
stressed its importance in the current debate between experimentalists and struc-
tural economists (Heckman 2010). Today we know that Marschak’s Maxim goes
even further – the desired quantity can often be identified without ever specifying
the functional or distributional forms of these economic models.

Until quite recently, however, Marschak’s idea has not attracted the attention
it deserves. For statisticians, the very idea of defining a target quantity not as a
property of a statistical model but by a policy question must have sounded mighty
peculiar, if not heretical. Recall that policy questions, and in fact most questions
of interest to empirical researchers, invoke causal vocabulary laden with notions
such as “what if,” “effect of,” “why did,” “control,” “explain,” “intervention,” “con-
founding,” and more. This vocabulary was purged from the grammar of statistics by
Karl Pearson (1911), an act of painful consequences that has prevented most data-
driven researchers from specifying mathematically the quantities they truly wish to
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viii Foreword

be targeted. Understandably, seeing no point in estimating quantities they could not
define, statisticians showed no interest in Marschak’s Maxim.

Later on, in the period 1970–1980, when Donald Rubin (1974) popularized and
expanded the potential-outcome notation of Neyman (1923) and others and causal
vocabulary ascended to a semilegitimate status in statistics, Marschak’s Maxim met
with yet another, no less formidable, hurdle. Rubin’s potential-outcome vocabulary,
while powerful and flexible for capturing most policy questions of interest, turned
out to be rather inept for capturing substantive knowledge of the kind carried by
structural equation models. Yet this knowledge is absolutely necessary for turning
targeted questions into estimable quantities. The opaque language of “ignorabil-
ity,” “treatment assignment,” and “missing data” that has ruled (and still rules) the
potential-outcome paradigm is not flexible enough to specify transparently even the
most elementary models (say, a three-variable Markov chain) that experimenters
wish to hypothesize. Naturally, this language could not offer Marschak’s Maxim
a fertile ground to develop because the target questions, though well formulated
mathematically, could not be related to ordinary understanding of data-generating
processes.

Econometricians, for their part, had their own reasons for keeping Marschak’s
Maxim at bay. Deeply entrenched in the quicksands of parametric thinking, econo-
metricians found it extremely difficult to elevate targeted quantities such as policy
effects, traditionally written as sums of products of coefficients, to a standalone sta-
tus, totally independent of their component parts. It is only through nonparametric
analysis, where targeted quantities are defined procedurally by transformational op-
erations on a model (as in P(y | do(x)); Pearl 2009), and parameters literally disap-
pear from existence, that Marschak’s Maxim of focusing on the whole without its
parts has achieved its full realization.

The departure from parametric thinking was particularly hard for researchers
who did not deploy diagrams in their toolkit. Today, as shown in Chap. 2 of this
book, students of graphical models can glance at a structural equation model and
determine within seconds whether a given causal effect is identified while paying
no attention to the individual parameters that make up that effect. Likewise, these
students can write down an answer to a policy question (if identified) directly in
terms of probability distributions, without ever mentioning the model parameters.
Jacob Marschak, whom I had the great fortune of befriending a few years before his
death (1977), would have welcomed this capability with open arms and his usual
youthful enthusiasm, for it embodies the ultimate culmination of his maxim in al-
gorithmic clarity.

Unfortunately, many economists and SEM researchers today are still not versed
in graphical tools, and, consequently, even authors who purport to be doing non-
parametric analysis (e.g., Heckman 2010) are unable to fully exploit the potentials
of Marschak’s Maxim. Lacking the benefits of graphical models, nonparametric re-
searchers have difficulties locating instrumental variables in a system of equations,
recognizing the testable implications of such systems, deciding if two such systems
are equivalent, if two counterfactuals are independent given another, whether a set
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of measurements will reduce bias, and, most importantly, reading the causal and
counterfactual information that such systems convey (Pearl 2009, pp. 374–380).

Targeted learning aims to fill this gap. It is presented in this book as a nat-
ural extension to the theory of structural causal models (SCMs) that I intro-
duced in Pearl (1995) and then in Chaps. 3 and 7 of my book Causality (Pearl
2009). It is a simple and friendly theory, truly nonparametric, yet it subsumes
and unifies the potential outcome framework, graphical models, and structural
equation modeling in one mathematical object. The match is perfect.

I will end this foreword with a description of a brief encounter I recently had
with another area in dire need of targeted learning. I am referring to the analysis
of mediation, also known as “effect decomposition” or “direct and indirect effects”
(Robins and Greenland 1992; Pearl 2001).

The decomposition of effects into their direct and indirect components is of both
theoretical and practical importance, the former because it tells us “how nature
works” and the latter because it enables us to predict behavior under a rich vari-
ety of conditions and interventions. For example, an investigator may be interested
in assessing the extent to which an effect of a given exposure can be reduced by
weakening one specific intermediate process between exposure and outcome. The
portion of the effect mediated by that specific process should then become the target
question for mediation analysis.

Despite its ubiquity, the analysis of mediation has long been a thorny issue in
the social and behavioral sciences (Baron and Kenny 1986; MacKinnon 2008) pri-
marily because the distinction between causal parameters and their regressional sur-
rogates have too often been conflated. The difficulties were amplified in nonlinear
models, where interactions between pathways further obscure their distinction. As
demands grew to tackle problems involving categorical variables and nonlinear in-
teractions, researchers could no longer define direct and indirect effects in terms
of sums or products of structural coefficients, and all attempts to extend the linear
paradigms of effect decomposition to nonlinear systems, using logistic and probit
regression, produced distorted results (MacKinnon et al. 2007). The problem was
not one of estimating the large number of parameters involved but that of combin-
ing them correctly to capture what investigators mean by direct or indirect effect
(forthcoming, Pearl 2011).

Fortunately, nonparametric analysis permits us to define the target quantity in
a way that reflects its actual usage in decision-making applications. For example,
if our interest lies in the fraction of cases for which mediation was sufficient for
the response, we can pose that very fraction as our target question, whereas if our
interest lies in the fraction of responses for which mediation was necessary, we
would pose this fraction as our target question. In both cases we can dispose of
parametric analysis altogether and ask under what conditions the target question
can be identified/estimated from observational or experimental data.
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Taking seriously this philosophy of “define first, identify second, estimate last”
one can derive graphical conditions under which direct and indirect effects can
be identified (Pearl 2001), and these conditions yield (in the case of no unmea-
sured confounders) simple probability estimands, called mediation formulas (Pearl
2010b), that capture the effects of interest. The mediation formulas are applicable to
both continuous and categorical variables, linear as well as nonlinear interactions,
and, moreover, they can consistently be estimated from the data.

The derivation of the mediation formulas teaches us two lessons in targeted learn-
ing. First, when questions are posed directly in terms of the actual causal relations
of interest, simple probability estimands can be derived while skipping the painful
exercise of estimating dozens of nonlinear parameters and then worrying about how
to combine them to answer the original question.

Second, and this is where targeted learning comes back to parametric analysis,
the expressions provided by the mediation formulas may demand a new param-
eterization, unrelated to the causal process underlying the mediation problem. It
is this new set of parameters, then, that need to be optimized over while posing
the estimation accuracy of the mediation formula itself as the objective function
in the maximum likelihood optimization. Indeed, in many cases the structure and
dimensionality of the mediation formula would dictate the proper shaping of this
reparametrization, regardless of how intricate the multivariate nonlinear process is
that actually generates the data.

I am very pleased to see the SCM serving as a language to demonstrate the work-
ings of targeted learning, and I am hopeful that readers will appreciate both the
transparency of the model and the power of the approach.

Los Angeles, January 2011 Judea Pearl



Foreword

Mark J. van der Laan and Sherri Rose both describe their “journey” to this wonder-
ful book in their preface. As an epidemiologist, I too have a journey with respect
to this book. In 2001, I approached Mark about collaborating with me on a very
difficult project. I brought with me my applied training in “traditional” statistical
applications that I had learned as a master’s student and over many years as a prac-
ticing epidemiologist. During our discussions, Mark opened up a new world for me
regarding how one uses statistical methods to answer causal questions. I have spent
the years since then continuing to collaborate with Mark on questions related to
the epidemiology of aging and the effects of air pollution on children’s respiratory
health. I have learned a great deal (conditioned, of course, by my somewhat lim-
ited background in formal mathematics and statistics) about these approaches and
their tremendous value as tools for the formulation of hypotheses and the design and
analysis of observational data. My collaboration with Mark has radically changed
my approach to teaching master’s and doctoral students in epidemiology about the
theoretical concepts related to epidemiological studies and their analysis.

Having made this journey myself along with many of my students, I want to
share some of my excitement about this book with scientists from all disci-
plines who conduct studies in the hopes that many of them will use this book
to take a journey of their own.

For those who are faint of heart when it comes to more in-depth biostatistical
treatises, do not fear; the authors’ clear writing and extremely helpful examples will
carry you along the way or allow you to skip over fine details without missing the
forest for the trees. What I have tried to do in this foreword is to provide a preview to
each introductory chapter in the hopes that these previews will stimulate the reader’s
interest in seeing what van der Laan and Rose have to say.

To quote the authors, Chap. 1 “was intended to motivate the need for causal
inference, highlight the troublesome nature of the traditional approach to effect
estimation, and introduce important concepts such as the data, model, and target
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xii Foreword

parameter.” They have achieved their goal with clear exposition, easily understood
examples, and well-defined notation. The chapter should be accessible to anyone
with a basic course in biostatistics and some practical experience. The case for an
alternative approach to traditional parametric statistical models and modeling has
a strong logic behind it, and the reader is primed to open herself to learning how
to see things in a different light. That light has three important elements. (1) Those
who carry out observational studies need to be absolutely clear about what they ac-
tually know about the distributions that generate their observed data. (2) Statistical
models, at their heart, are models for the true data-generating distribution that pro-
duced the observed data. (3) The parameters of interest in observational studies are
not simply the regression coefficients in front of an exposure (or treatment) variable;
instead, they are expressions of a specific research question.

Chapter 2 takes the reader from nonparametric structural equation models through
counterfactuals, the definition of the parameter of interest, and the problem of esti-
mation. It asks more of the nonstatistician reader than does Chap.1: (1) familiarity
with basic concepts of causal graphs, although this is not absolute, since the basic
concepts are presented in a lucid but abbreviated manner; and (2) patience to stick
with the notation and the logic that is built into it. If the reader brings these requi-
sites, particularly the second one, the presentation is logical and lucid, with simple
examples to guide the way. It is easy to miss the forest for the trees in the chap-
ter on the first read; therefore, several reads will be needed. For those who have
patience for only one read, several important messages are encoded in the jargon;
look for them. (1) Uncertainty (unmeasured or mismeasured exogenous variables,
also known as unmeasured confounders) is integral to the data-generating distri-
bution and all attempts to define a parameter of interest must be prepared to make
assumptions of more or less strength about them. (2) “Models” are statistical models
augmented with nontestable assumptions that encode assumptions that make iden-
tifiability possible. (3) Target parameters can have statistical and causal interpreta-
tions, the major distinction being that causal interpretations are based on models that
must encode some untestable assumptions. One brief comment for nonstatisticians,
particularly epidemiologists: failure of the positivity assumption across any stratum
of covariates makes statistical (and thereby causal) inference a fantasy. Pay close
attention!

“Since a parametric statistical model is wrong...we want an estimator that is able
to learn from the data using the true knowledge represented by the actual statistical
model...” for the unknown data-generating distribution. So begins Chap. 3 and the
exploration of “super learning.” However, how are we to know which estimator
to use a priori? This chapter takes the reader through the answers to a series of
questions related to how we find the “best” estimator of the true target parameter,
given our limited knowledge about the true data-generating distribution for our data
as represented by the statistical model. The questions are simple and the answers
complicated. However, the concept is clear: Having defined our data, model and
target parameter, we need to “learn” from our data what the “maximally unbiased
and semiparametric efficient normally distributed estimator” of our target parameter
is. What do van der Laan and Rose mean by “learn” from the data, and what is a
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super learner? “Learning,” in this context, is being open to the possibility that your
favorite parametric model (e.g., logistic regression), or semiparametric model in the
more frequent use of the term (e.g., Cox proportional hazards model), just does not
represent any of the possible data-generating distributions from which your data
could have been derived. In other words, you made a bad guess! “Learning” is the
process that attempts to provide the best estimate of our target parameter from a
library of guesses. What is the best? It is the estimator that is closest to that which
we would have derived had we known the true data-generating distribution. What
is the library of guesses? It is the collection of “models” that we think might be
consistent with the true data-generating function. What is the super learner? It is
the loss-function-based tool that allows us to obtain the best prediction of our target
parameter based on a weighted average of our guesses. Thus, we “learn” what our
data have to say about this parameter based on the true knowledge that we have
about the data and any causal assumptions that we made to assure identifiability!

Chapter 4 provides an introduction to targeted maximum likelihood estimators
(TMLEs). The key message is that a TMLE is a semiparametric method that pro-
vides an optimal tradeoff between bias and variance in the estimation of the tar-
get parameter (e.g., difference between treated and untreated in the example in the
chapter). The introductory material of the chapter expresses these ideas clearly and
concisely. The highlight of the chapter is Sect. 4.2, which is a step-by-step exam-
ple based on real data that illustrates the TMLE. The example is linked to the more
detailed theoretical presentation in the next chapter. The sections on the TMLE in
randomized controlled trials and observational studies are particularly relevant for
epidemiologists. Chapter 5 provides the theoretical support for the implementation
described in Chap.4 and really is targeted at statisticians. Nonstatisticians will just
need to follow along, perhaps reading only the gray summary boxes, to get the gen-
eral idea.

Chapter 6 provides comparisons between TMLEs and other estimators. Some
of the material requires statistical knowledge that is beyond many epidemiologists.
However, the tables provide summaries that contain the take-away messages. The
conclusions about the desirability of unbiased efficient estimators is obvious. How-
ever, the authors highlight one important property of the TMLE that is particularly
desirable – good performance with respect to bias and efficiency in finite samples.

The remaining chapters in the book delve into additional data structures, param-
eters, and methodological extensions of the TMLE. You may wish to jump imme-
diately to the chapters relevant to your work, such as case-control data, genomics,
censored data, or longitudinal data, once you have a firm understanding of the core
material presented in Part I. Readers who plan to implement these methods will ben-
efit from reading all of the chapters in Part II, which include: continuous outcomes,
direct effects, marginal structural models, and the positivity assumption. However,
there are two chapters that warrant careful reading by everyone. Chapter 8 deals with
estimation of direct effects when covariates are hypothesized as causal intermedi-
ates and distinguishes the assumptions for this estimation from the situation where
covariates are considered confounders. The key concepts are found in the gray box
at the end of Sect. 8.2 and the first paragraph of the discussion. Investigators who
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carry out observational studies need to pay special heed to these concepts. Chap-
ter 10 deals with the concept of positivity – the concept, to quote the authors, that
“[t]he identifiability of causal effects requires sufficient variability in treatment or
exposure assignment within strata of confounders.” This is a concept that is all but
ignored in most published epidemiologic studies. The introductory material states
the issues clearly and identifies the choices one has when faced with this problem.
This chapter provides methods to address the problem and is a must read!

In summary, this book should be on the shelf of every investigator who con-
ducts observational research and randomized controlled trials. The concepts
and methodology are foundational for causal inference and at the same time
stay true to what the data at hand can say about the questions that motivate
their collection. The methods presented provide the tools to remain faithful
to the data while providing minimally biased and efficient estimators of the
parameters of interest. To my epidemiologic colleagues, the message is: the
parameters of exposure that interest us are not simply regression coefficients
derived from statistical models whose relevance to the data-generating distri-
bution is unknown! This book really does provide super learning!

Berkeley, January 2011 Ira B. Tager



Preface

The statistics profession is at a unique point in history. The need for valid statistical
tools is greater than ever; data sets are massive, often measuring hundreds of thou-
sands of measurements for a single subject. The field is ready for a revolution, one
driven by clear, objective benchmarks under which tools can be evaluated.

Statisticians must be ready to take on this challenge. They have to be dynamic
and thoroughly trained in statistical concepts. More than ever, statisticians need to
work effectively in interdisciplinary teams and understand the immense importance
of objective benchmarks to evaluate statistical tools developed to learn from data.
They have to produce energetic leaders who stick to a thorough a priori road map,
and who also break with current practice when necessary.

Why do we need a revolution? Can we not keep doing what we have been doing?
Sadly, nearly all data analyses are based on the application of so-called parametric
(or other restrictive) statistical models that assume the data-generating distributions
have specific forms. Many agree that these statistical models are wrong. That is,
everybody knows that linear or logistic regression in parametric statistical models
and Cox proportional hazards models are specified incorrectly. In the early 1900s,
when R.A. Fisher developed maximum likelihood estimation, these parametric sta-
tistical models were suitable since the data structures were very low dimensional.
Therefore, saturated parametric statistical models could be applied. However, today
statisticians still use these models to draw conclusions in high-dimensional data and
then hope these conclusions are not too wrong.

It is too easy to state that using methods we know are wrong is an acceptable
practice: it is not!

The original purpose of a statistical model is to develop a set of realistic assump-
tions about the probability distribution generating the data (i.e., incorporating back-
ground knowledge). However, in practice, restrictive parametric statistical models
are essentially always used because standard software is available. These statistical
models also allow the user to obtain p-values and confidence intervals for the tar-
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get parameter of the probability distribution, which are desired to make sense out
of data. Unfortunately, these measures of uncertainty are even more susceptible to
bias than the effect estimator. We know that for large enough sample sizes, every
study, including one in which the null hypothesis of no effect is true, will declare a
statistically significant effect.

Some practitioners will tell you that they have extensive training, that they are
experts in applying these tools and should be allowed to choose the statistical models
to use in response to the data. Be alarmed! It is no accident that the chess computer
beats the world chess champion. Humans are not as good at learning from data and
are easily susceptible to beliefs about the data.

For example, an investigator may be convinced that the probability of having a
heart attack has a particular functional form – a function of the dose of the studied
drug and characteristics of the sampled subject. However, if you bring in another
expert, his or her belief about the functional form may differ. Or, many statistical
model fits may be considered, dropping variables that are nonsignificant, resulting
in a particular selection of a statistical model fit. Ignoring this selection process,
which is common, leaves us with faulty inference.

With high-dimensional data, not only is the correct specification of the paramet-
ric statistical model an impossible challenge, but the complexity of the parametric
statistical model also may increase to the point that there are more unknown pa-
rameters than observations. The true functional form also might be described by a
complex function not easily approximated by main terms.

For these reasons, allowing humans to include only their true, realistic knowl-
edge (e.g., treatment is randomized, such as in a randomized controlled trial, and
our data set represents n independent and identically distributed observations of a
random variable) is essential. That is, instead of assuming misspecified parametric
or heavily restrictive semiparametric statistical models, and viewing the (regression)
coefficients in these statistical models as the target parameters of interest, we need
to define the statistical estimation problem in terms of nonparametric or semipara-
metric statistical models that represent realistic knowledge, and in addition we must
define the target parameter as a particular function of the true probability distribu-
tion of the data. This changes the game in a dramatic way relative to current practice;
one starts thinking about real knowledge in terms of the underlying experiment that
generated the data set and what the real questions of interest are in terms of a feature
of the data-generating probability distribution.

The concept of a statistical model is very important, but we need to go back to
its true meaning. We need to be able to incorporate true knowledge in an effective
way. In addition, we need to develop and use data-adaptive tools for all parameters
of the data-generating distribution, including parameters targeting causal effects of
interventions on the system underlying the data-generating experiment. The latter
typically represent our real interest. We are not only trying to sensibly observe, but
also to learn how the world operates.

What about machine learning, which is concerned with the development of black-
box algorithms that map data (and few assumptions) into a desired object? For ex-
ample, an important topic in machine learning is prediction. Here the goal is to
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map the data, consisting of multiple records with a list of input variables and an
output variable, into a prediction function that can be used to map a new set of
input variables into a predicted outcome. Indeed, this is in sharp contrast to using
misspecified parametric statistical models. However, the goal is often a whole pre-
diction function, and the machines are tailored to fit this whole prediction function.
As a consequence, these methods are too biased (and not grounded by efficiency
theory) for a particular effect of interest. Typical complexities in the data such as
missingness or censoring have also received little attention in machine learning. In
addition, statistical inference in terms of assessment of uncertainty (e.g., confidence
intervals) is typically lacking in this field.

Even in machine learning there is often unsupported devotion to beliefs, in this
case, to the belief that certain algorithms are superior. No single algorithm (e.g.,
random forests, support vector machines, etc.) will always outperform all others in
all data types, or even within specific data types (e.g., SNP data from genomewide
association studies). One cannot know a priori which algorithm to choose. It’s like
picking the student who gets the top grade in a course on the first day of class.

The tools we develop must be grounded in theory, such as an optimality theory,
that shows certain methods are more optimal than others and, in addition, should be
evaluated with objective benchmark simulation studies. For example, one can com-
pare methods based on mean squared error with respect to the truth. It is not enough
to have tools that use the data to fit the truth well. We also require an assessment
of uncertainty (e.g., confidence intervals), the very backbone of statistical learning.
That is, we cannot give up on the reliable assessment of uncertainty in our estimates.

Examples of new methodological directions in statistical learning satisfying these
requirements include (1) the full generalization and utilization of cross-validation as
an estimator selection tool so that the subjective choices made by humans are now
made by the machine and (2) targeting the fitting of the probability distribution of the
data toward the target parameter so that the mean squared error of the substitution
estimator of the target parameter with respect to the target parameter is optimized.
Important and exciting statistical research areas where new developments are taking
place in response to the nonvalidity of the previous generation of tools are: adaptive
designs in clinical trials and observational studies, multiple and group sequential
testing, causal inference, and Bayesian learning in realistic semiparametric statisti-
cal models, among others.

Statisticians cannot be afraid to go against standard practice. Remaining open to,
interested in, and a developer of newer, sounder methodology is perhaps the one
key thing each statistician can do. We must all continue learning, questioning, and
adapting as new statistical challenges are presented.

The science of learning from data (i.e., statistics) is arguably the most beautiful
and inspiring field – one in which we try to understand the very essence of human
beings. However, we should stop fooling ourselves and actually design and develop
powerful machines and statistical tools that can carry out specific learning tasks.
There is no better time to make a truly meaningful difference.1

1 A version of this content originally appeared in the September 2010 issue of Amstat News, the
membership magazine of the American Statistical Association (van der Laan and Rose 2010).
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The Journey

Mark: I view targeted maximum likelihood estimation (TMLE), presented in this
book, as the result of a long journey, starting with my Ph.D. research up to now. We
hope that the following succinct summary of this path towards a general toolbox
for statistical learning from data will provide the reader with useful perspective and
understanding.

During my Ph.D. work (1990–1993) under the guidance of Dr. Richard Gill,
I worked on the theoretical understanding of the maximum likelihood estimator
for semiparametric statistical models, with a focus on the nonparametric maxi-
mum likelihood estimator of the bivariate survival distribution function for bi-
variate right-censored survival times and a nonparametric statistical model for the
data-generating distribution. This challenging bivariate survival function estimation
problem demonstrated that the nonparametric maximum likelihood estimator easily
fails to be uniquely defined, or fails to approximate the true data-generating distri-
bution for large sample sizes. That is, for realistic statistical models for the data-
generating distribution, and even for relatively low-dimensional data structures, the
maximum likelihood estimator is often ill defined and inconsistent for target param-
eters, and regularization through smoothing or stratification is necessary to repair it.
It also demonstrated that, for larger dimensional data structures, the repair of max-
imum likelihood estimation in nonparametric statistical models through smoothing
comes at an unacceptable price with respect to finite sample performance.

Right after completing my Ph.D., I met Dr. James M. Robins, whose research
focused on estimation with censored data and, in particular, estimation of causal ef-
fects of time-dependent treatment regimens on an outcome of interest based on ob-
serving replicates of high-dimensional longitudinal data structures in the presence of
informative missingness and dropout and time-dependent confounding of the treat-
ment. This was an immensely exciting time, and a whole new world opened up for
me. Instead of working on toy extractions of real-world problems, Robins and his
colleagues worked on solving the actual estimation problems as they occur in prac-
tice, avoiding convenient simplifications or assumptions. The work of Robins’ group
made clear that statistical learning was far beyond the world of standard software
and the corresponding practice of statistics based on restrictive parametric statisti-
cal models, and also far beyond the world of maximum likelihood estimation for
semiparametric statistical models.

Concepts such as coarsening at random, orthogonal complement of the nuisance
tangent space of a target parameter, estimating functions for the target parameter
implied by the latter, double robustness of these estimating functions and their cor-
responding estimators, locally efficient estimators of the target parameter, and so on,
became part of my language. As a crown on our collaborations, in 2003 we wrote a
book called Unified Methods for Censored Longitudinal Data and Causality. This
book provided a comprehensive treatment of the estimating equation methodol-
ogy for estimation of target parameters of the data-generating distribution in semi-
parametric statistical models, demonstrated on complex censored and longitudinal
(causal inference) data structures.
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From a person trying to repair maximum likelihood estimation, I had become
a proponent for estimating equation methodology, a methodology that targets the
parameter of interest instead of the maximum likelihood estimation methodology,
which aims to estimate the whole distribution of the data. When writing the book in
2003, some nonnatural hurdles occurred and we proposed no solutions for them. To
start with, the optimal estimating function for the target parameter might not exist
since the efficient influence curve, though a function of the distribution of the data on
the unit, cannot necessarily be represented as an (estimating) function in the target
parameter of interest and a variation-independent nuisance parameter. If we ignored
this first hurdle, we were still left with the following hurdles. Estimators defined by
a solution of an estimating equation (1) might not exist, (2) might be nonunique due
to the existence of multiple solutions, (3) are not substitution estimators and thus
do not respect known statistical model constraints, and (4) are sensitive to how the
nuisance parameter (that the estimating function depends on) is estimated, while a
good fit of the nuisance parameter itself is not a good measure for its role in the
mean squared error of the estimator of the target parameter.

These hurdles, which also affect the practical performance and robustness of the
estimators, made it impossible to push this impressive estimating equation method-
ology forward as a general statistical tool to replace current practice. It made me
move back towards substitution estimators using methods based on maximizing or
minimizing an empirical criterion such as the maximum likelihood estimator, and
plugging in the resulting estimator in the target parameter mapping that maps a
probability distribution of the data into the desired target parameter.

Specifically, additional research we conducted in 2003 proposed a unified loss-
based learning methodology (van der Laan and Dudoit 2003). The methodology
was based on defining a (typically infinite-dimensional) parameter of the probability
distribution of the data as a minimizer of the expectation of a loss function (e.g.,
log-likelihood or squared error loss function) and the aggressive utilization of cross-
validation as a tool to select among candidate estimators. The loss function for the
desired part of the probability distribution of the data was also allowed to be indexed
by an unknown nuisance parameter, thereby making this methodology very general,
including prediction or density estimation based on general censored data structures.

The general theoretical optimality result for the cross-validation selector among
candidate estimators generated a new concept called “loss-based super learning,”
which is a general system for fitting an infinite-dimensional parameter of the proba-
bility distribution of the data that allows one to map a very large library of candidate
estimators into a new improved estimator. It made it clear that, given some global
bounds on the semiparametric statistical model, humans should not choose the esti-
mation procedure for fitting the probability distribution of the data, or a relevant part
thereof, but an a priori defined estimator (i.e., the super learner) should fully utilize
the data to make sound informed choices based on cross-validation. That is, the the-
ory of super learning allows us to build machines that remove human intervention
as much as possible.

Even though the theory teaches us that the super learner of the probability dis-
tribution does make the optimal bias–variance tradeoff with respect to the prob-
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ability distribution as a whole (i.e., with respect to the dissimilarity between the
super learner and the truth, as implied by the loss function), it is too biased for
low-dimensional target features of the probability distribution, such as an effect of
a variable/treatment/exposure on an outcome. The super learner is instructed to do
well estimating the probability distribution, but the super learner was not told that
it was going to be used to evaluate a one-dimensional feature of the probability
distribution such as an effect of a treatment. As a consequence, the substitution esti-
mator of a target parameter obtained by plugging in the super learner into the target
parameter mapping is too biased.

By definition of an efficient estimator, it was clear that the efficient influence
curve needed to play a role for these substitution estimators to become less biased
and thereby asymptotically linear and efficient estimators of the target parameter.
But how? The current literature on efficient estimation had used the efficient influ-
ence curve as an estimating function (van der Laan and Robins 2003), and one either
completely solved the corresponding estimating equation or one used the first step
of the Newton–Raphson method for solving the estimating equation (e.g., Bickel
et al. 1997) in case one already had a root-n-consistent initial estimator available. A
new way of utilizing the efficient influence curve within the framework of loss-based
learning needed to be determined.

The super learner had to be modified so that its excess bias was removed. The
idea of the two-stage targeted maximum likelihood estimator was born: (1) use, for
example, the super learner as the initial estimator, (2) propose a clever parametric
statistical working model through the super learner, providing a family of candidate
fluctuations of the super learner and treating the super learner as fixed offset, (3)
choose the fluctuation that maximizes the likelihood (or whatever loss function was
used for the super learner), and (4) iterate so that the resulting modified super learner
solves the efficient influence curve estimating equation. This resulted in the original
TMLE paper with Daniel B. Rubin (van der Laan and Rubin 2006), which provides
a general recipe for defining a TMLE for any given data structure, semiparametric
statistical model for the probability distribution, and target parameter mapping, and
thereby served as the basis of this book.

TMLEs can also be represented as loss-based learning. Here, the loss function is
defined as a targeted version of the loss function used by the initial estimator, where
the nuisance parameter of this targeted loss function plays the role of the unknown
fluctuation parameters in the TMLE steps. TMLEs are a special case of loss-based
learning.

TMLEs solved the above mentioned remaining issues that the estimating equa-
tion methodology suffered from: a TMLE does not require that the efficient influence
curve be an estimating function, a TMLE solves the efficient influence curve esti-
mating equation but is not defined by it (just like a maximum likelihood estimator
solves a score equation but is uniquely defined as a maximum of the log-likelihood),
a TMLE is a substitution estimator and thus respects the global constraints of the
statistical model, a TMLE naturally integrates loss-based super learning (i.e., gen-
eralized machine learning based on cross-validation) and can utilize the same loss
function to select among different TMLEs indexed by different nuisance parameter
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estimators that are needed to carry out the targeting update step. That is, even the
choice of nuisance parameter estimator can now be tailored toward the target param-
eter of interest (van der Laan and Gruber 2010). Finally, under conditions that allow
efficient estimation of the target parameter, a TMLE is an asymptotically efficient
substitution estimator. ��

Sherri: My methodological contributions have largely focused on adapting TMLE
for case-control studies. Additionally, I’ve spent significant time with Mark formu-
lating a general framework for teaching TMLE, with comprehensive notation and
language, in a way that is accessible for researchers and students in fields such as
epidemiology.

I received my B.S. in statistics in 2005 with the goal of going to graduate school
for a career in medical research. Thus, I thought this meant I would be an “applied”
statistician using existing tools. Then I took one of Mark’s upper division courses
during the first year of my Ph.D. program at UC Berkeley. Even though I didn’t
immediately understand all of the technical aspects of what he was teaching, the
concepts made complete sense. I contacted him and projects took off immediately.

My point in this addendum to Mark’s journey is that you need not be a fully
trained theoretical statistician to start understanding and using these methods. The
work is driven by real-world problems, and thus is immediately applicable in prac-
tice. It is theoretical because new methods needed to be developed based on effi-
ciency theory, but it is also very applied. You see this in the many examples that
permeate this text. We don’t present anything that isn’t based on a real data set that
we’ve encountered. In short, this book is not meant to sit on a shelf. ��

The book: The book itself also went through a journey of its own. We started seri-
ously writing for the book in January 2010 and for many months went back and forth
debating the level we were trying to target. Should we generate a textbook that was
more like an epidemiology text and would be broadly accessible to a greater number
of applied readers with less formal statistical training? Should we develop a purely
theoretical text that would mostly be of interest to a certain subset of statisticians?
Ultimately, we struck a level that is somewhere in between these two extremes.
Since there is no other book on targeted learning, we could not escape the inclusion
of statistical formalism. However, we also did not want to lose all accessibility for
nontheoreticians.

This led to a book that begins with six chapters that should be generally readable
by most applied researchers familiar with basic statistical concepts and traditional
data analysis. That is not to say many topics won’t be new and challenging, but
these chapters are peppered with intuition and explanations to help readers along.
The book progresses to more challenging topics and data structures, and follows a
recognizable pattern via a road map for targeted learning and the general description
of each targeted estimator. Thus, applied readers less interested in why it works and
more interested in implementation can tease out those parts. Yet, mathematicians
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and theoretical statisticians will not get bored, as extensive rigor is included in many
chapters, as well as a detailed appendix containing proofs and derivations.

Lastly, this book is unique in that it also contains wonderful contributions from
multiple invited authors, yet it is not a traditional edited text. As the authors of
Targeted Learning, we have spent significant time crafting and reworking each of
the contributed chapters to have consistent style, content, format, and notation as
well as a familiar road map. This yields a truly cohesive book that reads easily as
one text. ��

Intended Readership

We imagine a vast number of readers will be graduate students and researchers in
statistics, biostatistics, and mathematics. This book was also written with epidemiol-
ogists, medical doctors, social scientists, and other applied researchers in mind. The
first six chapters of the book, which comprise Part I, are a complete introduction to
super learning and TMLE, including related concepts necessary to understand and
apply these methods. Part I is designed to be accessible on many levels, and chap-
ters that deal with more advanced statistical concepts feature guides that direct the
reader to key information if they’d rather skip certain details. Additionally, these
chapters could easily be used for a one-semester introductory course. The remain-
ing chapters can be digested in any order that is useful to the reader, although we
attempted to order them according to ease and subject matter. Parts II–IX handle
more complex data structures and topics, but applied researchers will immediately
recognize these data problems from their own research (e.g., continuous outcomes,
case-control studies, time-dependent covariates, HIV data structures).

Outline

Introduction. The book begins with an introduction written by Richard J.C.M. Star-
mans titled “Models, Inference, and Truth: Probabilistic Reasoning in the Informa-
tion Era.” This introduction puts the present state of affairs in statistical data analyis
in a historical and philosophical perspective for the purpose of clarifying, under-
standing, and accounting for the current situation and to underline the relevance of
topics addressed by TMLE for both the philosophy of statistics and the epistemol-
ogy/philosophy of science. It identifies three major developments in the history of
ideas that provide a context for the emergence of the probabilistic revolution and
it discusses some important immanent developments in the history of statistics that
have led to the current situation or at least may help to understand it.
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Part I – Targeted Learning: The Basics

The chapters in Part I of the book can stand alone as material for a complete intro-
ductory course on super learning and TMLE in realistic nonparametric and semi-
parametric models. They cover essential information crucial to understanding this
methodology, encapsulated in the convenient road map for targeted learning. We
present in detail the TMLE of an additive causal effect of treatment on a binary or
continuous outcome based on observing n independent and identically distributed
random variables defined by the following type of experiment: randomly sample a
subject from a population, measure baseline covariates, subsequently assign a treat-
ment, and finally measure an outcome of interest. This TMLE is demonstrated in
the estimation of the effect of vigorous exercise on survival in an elderly cohort.

Chapter 1. This chapter introduces the open problem of targeted statistical learn-
ing. We discuss, in general terms, the traditional approach to effect estimation as
well as the concepts of data, data-generating distribution, model, and the target pa-
rameter of the data-generating distribution. We also motivate the need for estimators
that are targeted and present the road map for targeted learning that will be explained
in depth in Chaps. 2–5.

Chapter 2. In this chapter, readers will learn about structural causal models
(SCMs), causal graphs, causal assumptions, counterfactuals, identifiability of the
target parameter, and interpretations of the target parameter (i.e., causal or purely
statistical). This material is essential background before moving on to the estima-
tion steps in the road map for targeted learning. The chapter is based on the methods
pioneered by Judea Pearl and are given thorough treatment in the recently published
second edition of Causality (Pearl 2009).

Chapter 3. The first step in the TMLE is an initial estimate of the data-generating
distribution P0, or the relevant part Q0 of P0 that is needed to evaluate the target pa-
rameter. Estimation of Q0 incorporating the flexible ensemble learner super learner
is presented in this chapter. Cross-validation is an essential component of super
learning and is also presented. Simulation studies and multiple data analysis exam-
ples illustrate the advantages of super learning.

Chapters 4 and 5. In these two chapters, the TMLE methodology is presented
in detail, including a conceptual overview, implementation, and theory. TMLE is a
two-step procedure where one first obtains an estimate of the relevant portion Q0
of P0. The second stage updates this initial fit in a step targeted toward making an
optimal bias–variance tradeoff for the parameter of interest (i.e., target parameter),
instead of the overall density P0. It does this by proposing a parametric submodel
through the initial fit of Q0, and estimating the unknown parameter of this submodel
that represents the amount of fluctuation of the initial fit. The submodel typically
depends on a fit of a nuisance parameter such as a treatment or censoring mecha-
nism. Finally, one evaluates the target parameter of this TMLE fit of Q0, which is
called the TMLE of the target parameter. The TMLE of the target parameter is dou-
ble robust and can incorporate data-adaptive likelihood-based estimation procedures
to estimate Q0 and the nuisance parameter. Inference (i.e., confidence intervals) and
interpretation are also explained, concluding the road map for targeted learning.
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Chapter 6. The many attractive properties of TMLE include the fact that it pro-
duces well-defined, loss-based, consistent, efficient substitution estimators of the
target parameter. These topics are explained in depth, and the TMLE is compared
to other estimators of a target parameter of the data-generating distribution, with
respect to these properties.

Part II – Additional Core Topics

Part II delves deeper into some core topics: the choice of submodel and loss function
that defines the TMLE, causal parameters defined by marginal structural working
models, and an in-depth coverage of methods dealing with violations of the posi-
tivity assumption. It focuses on experiments involving the measurement of baseline
covariates, a treatment, possibly an intermediate random variable, and a final out-
come.

Chapter 7. The TMLE of a parameter of a data-generating distribution, known
to be an element of a semiparametric statistical model, involves constructing a para-
metric statistical working model through an initial density estimator with parame-
ter ε representing an amount of fluctuation of the initial density estimator, where
the score of this fluctuation model at ε = 0 equals or spans the efficient influence
curve/canonical gradient. The latter constraint can be satisfied by many parametric
fluctuation models, since it represents only a local constraint of its behavior at zero
fluctuation. However, it is very important that the fluctuations stay within the semi-
parametric statistical model for the observed data distribution, even if the parameter
can be defined on fluctuations that fall outside the assumed observed data model. In
particular, in the context of sparse data, a violation of this property can heavily affect
the performance of the estimator. We demonstrate this in the context of estimation
of a causal effect of a binary treatment on a continuous outcome that is bounded. It
results in a TMLE that inherently respects known bounds and, consequently, is more
robust in sparse data situations than the TMLE using a naive fluctuation model. The
TMLE is based on a quasi-log-likelihood loss function and a logistic regression
fluctuation model.

Chapter 8. In this chapter we consider estimation of a direct effect of treatment
on an outcome in the presence of an intermediate variable. The causal model, the
direct effect, the estimand defined by the identifiability result for the direct effect,
and the TMLE of the target parameter are presented. As an illustration we estimate
the direct effect of gender on salary in a gender-inequality study. It is shown that
the same TMLE can be used to estimate the estimand defined by the identifiability
result for the causal effect of a treatment on an outcome among the treated within
an appropriate (different) causal model.

Chapter 9. One is often interested in assessing how the effect of a treatment is
modified by some baseline covariates. For this purpose, we present marginal struc-
tural models that model the causal effect of treatment as a function of such effect
modifiers. The TMLE of the unknown coefficients in the marginal structural model
is presented. The marginal structural models are used as working models to define
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the desired effect modification parameters, so that they do not make unrealistic as-
sumptions in the causal model and thereby on the data-generating distribution. As
an example, we assess the effect of missing doses on virologic failure as a function
of the number of months of past viral suppression in an HIV cohort.

Chapter 10. The estimand that is defined by the identifiability result for the
causal quantity of interest defines the target parameter of the data-generating dis-
tribution. The definition of the estimand itself often requires a particular support
condition, which is called the positivity assumption. For example, the estimand
that defines the additive causal effect of treatment on an outcome is only defined
if for each value of the covariates (representing the confounders) there is a posi-
tive probability on both treatment and control. This chapter provides an in-depth
discussion of the positivity assumption, and the detrimental effect of the practical or
theoretical violation of this assumption on the statistical inference, due to the sparse-
data bias induced by this violation. In addition, this chapter presents a parametric
bootstrap-based diagnostic tool that allows one to diagnose this sparse-data bias. Its
performance is demonstrated on simulated data sets and in assessing the effect of
a mutation in the HIV virus on drug resistance in an HIV data application. Finally,
the chapter presents common approaches to dealing with positivity violations and
concludes with the presentation of a systematic general approach.

Part III – TMLE and Parametric Regression in Randomized Controlled Trials

Part III still considers an experiment that generates baseline covariates, treatment,
and a final outcome, as highlighted in Parts I and II, but it delves deeper into the
special case where treatment is randomized. In this case, the TMLE is always con-
sistent and asymptotically linear, thereby allowing the robust utilization of covariate
information. We demonstrate that a TMLE that uses as initial estimator a maximum
likelihood estimator according to a parametric regression model does not update the
initial estimator, proving a remarkable robustness property of maximum likelihood
estimation in randomized controlled trials (RCTs). In addition, we show how the fit
of the parametric regression model (i.e., the initial estimator in the TMLE) can be
optimized with respect to the asymptotic variance of the resulting TMLE, thereby
guaranteeing improvement over existing practice.

Chapter 11. The TMLE of a causal effect of treatment on a continuous or binary
outcome in an RCT is presented. It is shown that the TMLE can be based on a
maximum likelihood estimator according to a generalized linear working model,
where the maximum likelihood estimation fit is inputted in the target parameter
mapping defined by the so-called g-formula for the desired causal effect.

Chapter 12. As in Chap.11, the TMLE in this chapter is based on a parametric
regression model, but the coefficients of the initial estimator in the TMLE are fit-
ted so that the resulting TMLE has minimal asymptotic variance. This results in a
TMLE that is guaranteed to outperform current practice (i.e., unadjusted estimator),
even if the parametric model is heavily misspecified. Other estimators presented in
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the literature are also discussed, and a simulation study is used to evaluate the small
sample performance of these estimators.

Part IV – Case-Control Studies

The data-generating experiment now involves an additional complexity called bi-
ased sampling. That is, one assumes the underlying experiment that randomly sam-
ples a unit from a target population, measures baseline characteristics, assigns a
treatment/exposure, and measures a final binary outcome, but one samples from the
conditional probability distribution, given the value of the binary outcome. One still
wishes to assess the causal effect of treatment on the binary outcome for the target
population. The TMLE of a causal effect of treatment on the binary outcome based
on such case-control studies is presented. Matched case-control studies are consid-
ered as well. It is also shown how to apply super learning to risk prediction in a
nested case-control study.

Chapter 13. Case-control study designs are frequently used in public health and
medical research to assess potential risk factors for disease. These study designs
are particularly attractive to investigators researching rare diseases, as they are able
to sample known cases of disease, vs. following a large number of subjects and
waiting for disease onset in a relatively small number of individuals. Our proposed
case-control-weighted TMLE for case-control studies relies on knowledge of the
true prevalence probability, or a reasonable estimate of this probability, to eliminate
the bias of the case-control sampling design. We use the prevalence probability in
case-control weights, and our case-control weighting scheme successfully maps the
TMLE for a random sample into a method for case-control sampling.

Chapter 14. Individually matched case-control study designs are commonly im-
plemented in the field of public health. While matching is intended to eliminate
confounding, the main potential benefit of matching in case-control studies is a gain
in efficiency. This chapter investigates the use of the case-control-weighted TMLE
to estimate causal effects in matched case-control study designs. We compare the
case-control-weighted TMLE in matched and unmatched designs in an effort to de-
termine which design yields the most information about the causal effect. In many
practical situations where a causal effect is the parameter of interest, researchers
may be better served using an unmatched design.

Chapter 15. Using nested case-control data from a large Kaiser Permanente
database, we generate a function for mortality risk prediction with super learning.
The ensemble super learner for predicting death (risk score) outperformed all single
algorithms in the collection of algorithms, although its performance was similar to
several included algorithms. Super learner improved upon the worst algorithms by
17% with respect to estimated risk.
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Part V – RCTs with Survival Outcomes

In Part V we consider the following experiment: one randomly samples a unit from
a target population, measures baseline characteristics, randomly assigns a treatment,
and follows the subject to the minimum of dropout, the time to event of interest, and
time to the end of study. The dropout time is allowed to be affected by the baseline
covariates. We present the TMLE of the causal effect of treatment on survival, and
we also consider effect modification by discrete baseline factors.

Chapter 16. In most RCTs, the primary outcome is a time-to-event outcome
that may not be observed due to dropout or end of follow-up. The dropout or right
censoring time may depend on the baseline characteristics of the study subject. The
TMLE of a causal effect of treatment on the survival function of such a time-to-event
outcome requires estimation of the conditional failure time hazard as a function
of time, treatment, and the baseline covariates. The super learner of this hazard
function is presented and is demonstrated with a lung cancer RCT.

Chapter 17. The TMLE of a causal effect of treatment on a survival function in
an RCT is presented. This requires an update of the initial estimator of the condi-
tional hazard function (e.g., super learner), where the update relies on an estimator
of the right censoring mechanism and the treatment assignment mechanism (where
the latter is known in an RCT). The statistical properties of the TMLE are dis-
cussed showing that it provides a superior alternative to current practice in terms of
unadjusted Cox proportional hazards estimators or multiple imputation (maximum
likelihood estimation)-based estimators.

Chapter 18. It is often of interest to assess if the causal effect of treatment on sur-
vival is modified by some baseline factors. In this chapter, we define the appropriate
causal model and the target parameters that quantify effect modification by a dis-
crete baseline factor. We present the TMLE of these effect modification parameters.
The TMLE is demonstrated on an HIV clinical trial to assess effect modification by
gender and by baseline CD4 in an HIV study. The results are contrasted with current
practice, demonstrating the great utility of targeted learning.

Part VI – C-TMLE

Collaborative TMLE (C-TMLE) provides a further advance within the framework of
TMLE by tailoring the fit of the nuisance parameter required in the TMLE-step for
the purpose of the resulting TMLE of the target parameter. That is, the C-TMLE in-
troduces another level of targeting beyond a regular TMLE. This part demonstrates
the C-TMLE for the causal effect of treatment on an outcome, including time-to-
event outcomes that are subject to right censoring. Simulation studies as well as
data analyses are provided to demonstrate the practical utility of C-TMLE.

Chapter 19. The C-TMLE of the additive causal effect of treatment on an out-
come is presented, allowing an a priori-specified algorithm to decide what covariates
to include in the treatment mechanism fit, where the decisions are based on a loss-
function that measures the fit of the corresponding TMLE instead of the fit of the
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treatment mechanism itself. The TMLE and C-TMLE are compared in simulation
studies. The C-TMLE is also applied to assess the effect of all mutations in the HIV
virus on drug-resistance, controlling for the history of the patient, dealing with the
many strong correlations between mutations resulting in practical violations of the
positivity assumption.

Chapter 20. The C-TMLE of the causal effect of treatment on a survival time that
is subject to right censoring is developed. A simulation study is used to evaluate its
practical performance in the context of different degrees of violation of the positivity
assumption.

Chapter 21. This chapter uses simulation studies proposed in the literature to
evaluate a variety of estimators for estimating the mean of an outcome under miss-
ingness, and the additive effect of treatment when treatment is affected (i.e., con-
founded) by baseline covariates. These simulations are tailored to result in serious
practical violations of the positivity assumption, causing a lot of instability and chal-
lenges for double robust efficient estimators such as the TMLE. These simulations
have been extensively debated in the literature. This chapter includes TMLE and C-
TMLE in the debate. We contrast the C-TMLE to the TMLE and other estimators,
showing that the C-TMLE is able to deal with sparsity (i.e., violations of positivity)
in a sensible and robust way, while still preserving the optimal asymptotic properties
of TMLE.

Part VII – Genomics

In Part VII we consider the experiment in which one randomly samples a unit from
a target population, one measures a whole genomic profile on the unit, beyond other
baseline characteristics, one possibly measures a treatment, and one measures a fi-
nal outcome. In such studies one is often interested in assessing the effect of each
genomic variable on the outcome or on the effect of the treatment. TMLE targets
the effect of each genomic variable separately, contrary to current practice in vari-
able importance analysis. These genomic variables are often continuous, so that
one needs to define an effect of a continuous marker on the outcome of interest.
For that purpose we employ semiparametric regression models. The TMLE of the
effect measures defined by these semiparametric regression models are presented,
and demonstrated in genomic data analyses.

Chapter 22. The TMLE for assessing the effect of biomarkers is presented and
compared with other methods for variable importance analysis, such as random for-
est, in a comprehensive simulation study, and a breast cancer gene expression study.

Chapter 23. We present the TMLE and C-TMLE for assessing the effect of a
marker on a quantitative trait, across a very large number of markers along the whole
genome. Simulations and genomic data analyses are used to demonstrate the TMLE
and C-TMLE.
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Part VIII – Longitudinal Data Structures

In Part VI, we consider experiments that generate the full complexity of current
day longitudinal data structures: one randomly samples a unit from a target popula-
tion, measures baseline characteristics, and at regular or irregular monitoring times
collects measurements on time-dependent treatments or exposures, time-dependent
covariates, and intermediate outcomes, until the minimum of right-censoring or time
to the event of interest. Observing such longitudinal data structures on a unit allows
the identification of causal effects of multiple time point treatment regimens as well
as individualized treatment rules. In this part, we demonstrate the roadmap for ad-
dressing the scientific questions of interest and the corresponding TMLE for three
such longitudinal case studies. Technically-inclined readers may first wish to read
the longitudinal sections of Appendix A before digesting these chapters.

Chapter 24. A longitudinal HIV cohort is presented and three scientific ques-
tions of interest are formulated. The road map is applied. It starts out with the def-
inition of the causal model, the definition of the target causal parameters that rep-
resent the answers to the scientific questions, and the identifiability result resulting
in the estimand of interest. The statistical model and the estimand/target parameter
of the data-generating distribution define the estimation problem. Different meth-
ods for estimation are reviewed and presented: maximum likelihood estimation,
inverse probability of censoring weighted estimation (IPCW), targeted maximum
likelihood estimation, and inefficient practically appealing TMLEs referred to as
IPCW reduced-data TMLEs.

Chapter 25. A longitudinal study is presented which involves the follow up of
women going through an in vitro fertilization (IVF) program. One is interested in
assessing the probability of success of a complete IVF program. The road map is
applied as in all chapters. The TMLE of the probability of success of a complete
IVF program is developed, and applied to the study. Simulations are also presented.

Chapter 26. In this chapter, targeted maximum likelihood learning is illustrated
with a data analysis from a longitudinal observational study to investigate the ques-
tion of “when to start” antiretroviral therapy to reduce the incidence of AIDS defin-
ing cancer in a population of HIV infected patients. Two treatment rules are con-
sidered: (1) start when CD4 count drops below 350, and (2) start when CD4 count
drops below 200. The TMLE of the corresponding causal contrast is developed and
applied to the database maintained by Kaiser Permanente.

Part IX – Advanced Topics

We deal with the following explicit questions. Is the utilization of machine learning
in the TMLE a concern for establishing asymptotic normality? Can we develop a
TMLE for group sequential adaptive designs in which the treatment assignment
probabilities are set in response to the data collected in previously observed groups?
What are the asymptotics of this TMLE for such a complex experiment in which all
subjects are correlated due to treatment assignment being a function of the outcomes


