


Theory and Practice of Metal Electrodeposition



Yuliy D. Gamburg • Giovanni Zangari

Theory and Practice of Metal 
Electrodeposition

1  3



ISBN 978-1-4419-9668-8    e-ISBN 978-1-4419-9669-5
DOI 10.1007/978-1-4419-9669-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011930260

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dr. Yuliy D. Gamburg
Russian Academy of Sciences
A.N. Frumkin Institute of Physical  
Chemistry and Electrochemistry
Moscow 
Russia
gamb@list.ru

Dr. Giovanni Zangari
University of Virginia
Department of Materials Science  
and Engineering
Charlottesville VA 
USA
gz3e@virginia.edu



v

Preface

The book reflects in a concise form the modern state of both theoretical and ap-
plied aspects of metal electrodeposition. The theoretical part concerns the electro-
chemistry of metals and includes a discussion of electrochemical thermodynamics 
and kinetics, the structure at the metal/electrolyte interface, nucleation, growth and 
morphology of metals and alloys, and current distribution. The applied part con-
tains general information on the applications of metallic coatings, their selection, 
electrochemical basics and technology of deposition of selected metals and alloys, 
including individual peculiarities, properties and structure of coatings, testing and 
characterization. The book includes, where possible at an elementary level, a quan-
titative discussion of phenomena of relevance, providing formulas for the calcula-
tion of important quantities. Additionally, it contains information on surface level-
ing, hydrogenation, inclusion of impurities, physical properties of deposits, that is 
rarely available in textbooks on electrodeposition. The section on electrodeposition 
technology includes the most important processes and chemistries; information on 
any definite material system is provided using a unified scheme, namely: properties 
of the coating, advantages and disadvantages, solution chemistries and methods of 
preparation, peculiarities, anodes, and additives.

The essential concepts in theoretical electrochemistry necessary for the investi-
gation of metal deposition processes is provided here, including data that are com-
monly absent in specialized academic courses. These topics are important for the 
reader aiming to achieve a thorough understanding of the latest scientific publica-
tions in this field. Information on different aspects of the process of electrolytic 
crystallization is gathered here from a large body of publications and is considered 
from a unified point of view.

The book is suitable for professional electrochemists, advanced undergraduate 
and postgraduate students and also for electrodeposition specialists with a physical, 
technical or chemical education. It can also be useful for engineers and specialists 
engaged in research on new electrodeposition technologies related to metallic lay-
ers, crystals and other metallic objects.

One of the authors (Yu. Gamburg) is hugely grateful to his colleagues from the 
Laboratory of the surface layers structure (A. N. Frumkin Institute, Russian Acad-
emy of Sciences) and particularly indebted to Maria R. Ehrenburg who translated 
the chapters 10 and 11 written originally in Russian.
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1

1.1   Electrodeposition of Metals

Electrodeposition refers to a film growth process which consists in the formation 
of a metallic coating onto a base material occurring through the electrochemical 
reduction of metal ions from an electrolyte. The corresponding technology is of-
ten known as electroplating. Besides the production of metallic coatings, electro-
chemical metal reduction is also used for the extraction of metals starting from their 
ores ( electrometallurgy) or for the reproduction of molds to form objects directly in 
their final shape ( electroforming). In most cases, the metallic deposit thus obtained 
is crystalline; this process can therefore be called also electrocrystallization; this 
term was introduced by the Russian chemist V. Kistiakovski in the early twentieth 
century.

The electrolyte is an ionic conductor, where chemical species containing the 
metal of interest are dissolved into a suitable solvent or brought to the liquid state 
to form a molten salt. The solvent is most often water, but recently various organic 
compounds and other ionic liquids are being used for selected electroplating pro-
cesses. This book will be concerned exclusively with electrodeposition from aque-
ous solutions.

The electrodeposition process consists essentially in the immersion of the object 
to be coated in a vessel containing the electrolyte and a counter electrode, followed 
by the connection of the two electrodes to an external power supply to make current 
flow possible. The object to be coated is connected to the negative terminal of the 
power supply, in such a way that the metal ions are reduced to metal atoms, which 
eventually form the deposit on the surface.

This chapter introduces the terms and concepts utilized in the description of the 
electrochemical process for metal reduction. Additionally, it includes an introduc-
tory discussion of the various concepts that will be rigorously developed in succes-
sive chapters of the book.

Y. D. Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition, 
DOI 10.1007/978-1-4419-9669-5_1, © Springer Science+Business Media, LLC 2011

Chapter 1
Introduction to Electrodeposition: Basic Terms 
and Fundamental Concepts
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1.2   Examples of Electrocrystallization

The process of formation of a metallic coating may occur through various mecha-
nisms and can proceed through a variety of precursors. Some representative ex-
amples of electrodeposition include the following:

1. Electrodeposition of a zinc coating onto a low carbon steel sheet for corrosion 
protection; this process may occur for example through the following reaction:

 (1.1)

The Zn-containing salt is dissolved in water to form an aqueous solution and the 
electrons for the reaction are provided by the external power supply.

2. Copper powder production through copper electrodeposition from dilute acidi-
fied solutions of copper sulfate:

 (1.2)

Also in this case, the Cu salt is first dissolved in an aqueous solution.

3. Electroforming of nickel by means of electrodeposition of nickel metal from a 
neutral solution based on nickel sulfamate

 (1.3)

4. Formation of metallic lead at the anode of a lead acid battery during charging:

 (1.4)

All electrodeposition processes have in common the transfer of one or more elec-
trons through the electrode/solution interface, resulting in the formation of a metal-
lic phase Memet.

Metal deposition processes are and have been utilized for practical purposes in a 
wide variety of technical fields, ranging from metallurgy and heavy engineering in-
dustries to (more recently) microelectronics and nanotechnology. Examples of these 
applications include the following: gold and gold alloy deposition for electrical con-
tacts in electronic circuits, Cu deposition for microelectronic interconnects, Ni–Fe 
alloys for magnetic recording heads, or the production of high purity metals. Cur-
rently, the most intensively developing branches of electrodeposition are associated 
with information and energy technologies, as well as microelectronics, sensors and 
microsystems in general. The list of materials and structures that are being produced 
in commercial processes or at the development stage is also very long and will be 
discussed in successive chapters. Suffice here to say that the length scales of commer-
cially synthesized materials covers many orders of magnitude, going from the hun-
dreds of meter of tin-coated strips to the 20–100 nm width of copper interconnects.

1.3   Electrode Processes. Faraday’s Law

A general reaction for the process of metal formation is the following:

 (1.5)

Na2ZnO2 + H2O + 2e → Znmet + 2Na+ + 4OH−

CuSO4 + 2e → Cumet + SO4
2−

Ni(NH2SO3)2 + 2e → Nimet + 2NH2SO3
−

PbSO4 + H+ + 2e → Pb0 + HSO4
−

(
MxLy

)z + nxe → xM0 + yL

1 Introduction to Electrodeposition: Basic Terms and Fundamental Concepts
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L is a molecule, an ion, or radical (e.g. H2O or CN−) tightly bound to the metal ion 
M and thus forming a complex species (MxLy)

z which takes part in the charge trans-
fer process. This intermediate compound is usually named the electroactive species.

In Eq. (1.5) n is the net amount of electrons transferred in the overall process per 
deposited metal atom; this is always a positive quantity. z is the electric charge of 
the electroactive species in electron units; z can be both negative or positive, and 
may also be zero. For instance, the charge of the [Ag(CN)3]

2− ion is equal to −2. The 
electric charges of M and L are not shown in Eq. (1.5) but in the following they may 
sometimes explicitly indicated.

The simplest case of metal ion discharge is that of the simple (hydrated) metal 
ion, where n = z. The reaction in this case is written:

 (1.6)

where the dot indicates an electrostatic interaction. In general however n ≠ z, and n 
should not be confused with z.

Equation (1.5) shows that n electrons, i.e. a charge of ne, need to be transferred 
for the deposition of one atom of the metal. Consequently, the formation of one 
mole of the metal requires NAne = nF coulombs of electricity (NA is the Avogadro 
number NA = 6.022 × 1023 mol−1; F = NAe is the Faraday constant F = 96485 C mol−1). 
This relationship is referred to as Faraday’s Law:

 (1.7)

where m is the deposited metal mass (grams), Q the net charge passed through the 
circuit (coulombs), and A the atomic weight of the metal. At constant current Q = Iτ, 
otherwise Q = ∫ Idτ  ( I is the current, τ is the duration of electrolysis).

This equation is extremely important and widely used in practice to calculate the 
amount of metal deposited during electrolysis, to determine the duration of electrol-
ysis necessary to achieve a predetermined thickness, the time of charge/discharge 
of a battery, etc.

The electrochemical process (1.5) occurs at the interface between metal and so-
lution; in this respect the structure and properties of this interface, as shown in suc-
cessive chapters, will greatly influence the process. Faraday’s Law however does 
not reflect said dependence, as it only relates m to Q.

1.4   Current Density

When applied to coatings, Eq. (1.7) is often used in a different form, as the depen-
dence of deposit thickness h upon the duration of electrolysis τ and the applied cur-
rent I. Taking into account that h = m/Sd ( S is the surface area, d is the density) and 
Q = Iτ, we obtain after rearranging

 (1.8)

or

 (1.9)

Mz+ · xH2O + ze → M0 + xH2O.

m = QA/nF

h = (I/S) Aτ/dnF ,

h = (Vm/nF) (I/S) τ.

1.4 Current Density
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In the last equation Vm = A/d is the molar volume of the metal. This equation high-
lights the importance of the current density ( CD) i = I/S.

Current density, usually expressed in amperes per square meter A m−2, governs 
the rate of the deposition process, usually measured in mol/cm2 s, or in microns per 
hour. The current density is the most practical measure for the rate of any electro-
chemical process since its value is readily determined from an ammeter reading and 
the knowledge of the electrode area S.

The factor Kv = Vm/nF is the volume electrochemical equivalent of the metal; it 
can be expressed, for instance, in cm3/C. Sometimes it is more convenient to use the 
mass equivalent Km = Kvd, which can be expressed in g/Ah. For electrodeposited 
coatings the one-dimensional equivalent of Kv, i.e. Kl (μm/(Ah/dm2)) is particularly 
convenient, since it immediately gives the thickness of a deposit in microns:

 (1.10)

if i is expressed in A/dm2, and τ in hours.
The electrochemical equivalents of some metals Kv, Km and Kl are listed in Ta-

ble 1.1. For alloy deposition one can use the equivalent calculated for alloys Km(alloy) 
which is given by

 (1.11)

In this equation ωi and Ki are respectively the mass fractions and mass equivalents 
of the elements in the alloy. To obtain the electrochemical equivalent for the alloy 
in linear form it is necessary to know the alloy density. This can be found experi-
mentally or it can be estimated approximately, for example for a two-component 
alloy, by

 (1.12)

In order to rigorously define current density it is necessary to precisely determine 
the surface area S. In fact, real surfaces are ideally smooth only in the case of liquid 
metals (for example mercury or an amalgam) or in monocrystalline smooth elec-
trodes. Only in this case the geometric surface area Sg coincides with the real one 
St. In real surfaces, any roughness results in an increased true surface as compared 
with Sg. The ratio kr = St/Sg is defined as the roughness coefficient. For polished or 
high quality electrodeposited surfaces k approximates 2–3. If kr > 1 a “real current 
density” ir. ir = iapp/kr should be used, where iapp is the apparent CD, calculated for 
the geometrical area.

Current density is usually assumed to be uniform across the surface. However, 
any real surface has heterogeneous properties, and electrochemical processes at 
solid electrodes start first at high energy sites, called active centers or growth 
sites. As a consequence the current density is initially highly non-uniform and 
its distribution tends to change during film growth; in particular, both changes 
in kr changes as well as distribution and overall area of active sites should be 
considered.

h = K l iτ

Km(alloy) = 1/ (ω1/K1 + ω2/K2 + ω3/K3 + . . . + ωn/Kn).

d(alloy) ≈ d1d2/ (d1ω1 + d2ω2).

1 Introduction to Electrodeposition: Basic Terms and Fundamental Concepts
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1.5   Electrodes and Electrode Potential

The term “electrode” has various connotations in electrochemistry. First, the elec-
trode is the region at which the electrochemical process of interest is occurring; 
depending on the current direction or the nature of the reaction, it can be the cathode 
(where a reduction occurs) or the anode (where oxidation occurs); in some cases an 
electrode can comprise both cathodic and anodic areas. Second, the electrode in a 
purely electrochemical sense is the half-cell element as a whole, i.e. the combination 
of the solid electrode and the electrolyte region in contact with the electrode, where 
a predetermined reaction is occurring. In some cases the reaction forms a new phase 
and the term “electrode” refers to a particular sequence of phases together with their 
interfaces. An example of electrode is the reference electrode where the equilibrium 
between Ag and AgCl takes place; this electrode is schematically indicated by the 
series of phases Ag|AgCl|KCl present at the interface.

Electrode potential is another physical variable, along with current density, con-
trolling the electrode process. The potential φ of the electrode is the potential drop 
between the solution and the bulk of the metal, otherwise called the Galvani poten-

Table 1.1   Electrochemical equivalents of some metals
Metal Kv, cm3/A-h Km, g/A-h Kl, μm/(A-h/dm2)
Ag 0.3837 4.025 38.37
Au(I) 0.380 7.35 38.0
Au(III) 0.127 2.45 12.7
Bi 0.1590 1.560 15.9
Cd 0.2424 2.097 24.24
Co 0.1243 1.099 12.43
Cr 0.0449 0.323 4.49
Cu(I) 0.2652 2.371 26.52
Cu(II) 0.1326 1.186 13.26
Fe(II) 0.1324 1.042 13.24
Fe(III) 0.0883 0.695 8.83
In 0.1956 1.428 19.56
Mn 0.1374 1.025 13.74
Mo 0.0670 0.597 6.70
Ni 0.1229 1.095 12.29
Pb 0.3409 3.866 34.09
Pd 0.1651 1.985 16.51
Pt 0.1696 3.640 16.96
Re 0.0472 0.993 4.72
Rh 0.1032 1.280 10.32
Ru 0.1017 1.257 10.17
Sb 0.1359 0.909 13.59
Sn 0.3033 2.214 30.33
W 0.0587 1.143 5.87
Zn 0.1711 1.220 17.11

1.5 Electrodes and Electrode Potential
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tial difference. This quantity cannot be measured experimentally since the solution 
potential cannot be defined operationally without introducing an additional metal/
electrolyte interface, and therefore cannot be used as a reference point. For this rea-
son in actual practice it is conventional to measure the electrode potential with ref-
erence to some other electrode having a constant, reproducible and stable potential. 
Various reference electrodes of this kind exist; the Standard Hydrogen Electrode 
(SHE) uses the equilibrium between H+ and hydrogen gas to generate this potential, 
and is most often used as a standard. Its potential at any temperature is defined equal 
to zero. Electrode potential expressed relative to SHE is symbolized by the letter E.

SHE is too inconvenient to be practical; in the laboratory practice therefore one 
can use other reference electrodes (calomel or silver/silver chloride electrode), us-
ing other reactions to generate the potential; their potentials at different tempera-
tures are listed in Table 1.2.

The concepts connected with electrode potentials (the problem of absolute po-
tential drop, the rigorous definition of Volta and Galvani potentials, etc.) are of 
great importance in electrochemistry but are beyond the scope of the present book; 
pertinent information is available elsewhere [1].

Current density and electrode potential of any given electrode reaction at steady 
state are related to each other through a one-to-one correspondence; however, actual 
conditions at an electrode where a growth process is occurring are rarely station-
ary. For this reason a potentiostatic process (at E = const) occurs with the current 
density changing over time; similarly, a galvanostatic process ( i = const) is usually 
accompanied by variations in E. Possible reasons for these changes include the fol-
lowing: (a) the surface state (roughness, morphology) evolves with time, and (b) 
composition of the solution adjacent to the electrode (concentration of chemical 
species, pH) can change during the process. In the initial stages of electrolysis these 
changes can be significant.

Along with stationary processes, dynamically changing conditions at the elec-
trode are rather common, particularly for the investigation of electrode phenomena; 
most utilized are potentiodynamic procedures. These processes are usually carried 
out at predetermined linear sweep rate of the potential, e.g., E = E0 + aτ, where a may 
range from 10−4 to 106 V/s, typically 10 mV/s. At very slow sweep rate, the elec-
trochemical process under study is quasi-stationary and it is often indistinguishable 
from a stationary one. At very fast sweep rates the concentrations of species near 
the electrode cannot follow the potential change due to the limited reaction rates and 

Table 1.2   Potentials of the reference electrodes
Electrode Symbol Potential  

at 298 К, mV
Temperature  
coef., mV/K

1 М calomel Pt|Hg|Hg2Cl2|1 М KCl + 283 −0.24
Satur. calomel Pt|Hg|Hg2Cl2|satur. KCl + 244 −0.65
Silver chloride Ag|AgCl|HCl + 222 −0.65
Mercury sulfate Pt|Hg|Hg2SO4|a(SO4

2−) = 1 + 615 −0.82
Cadmium oxide Cd|CdO, a(OH−) = 1 + 13

1 Introduction to Electrodeposition: Basic Terms and Fundamental Concepts
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the quantities of interest are often time-dependent. In general, various scan rates are 
necessary for the different methods used in electrode studies.

Modern studies in this field are made with experimental instruments especially 
built for electrochemical investigations, among which electronic potentiostats/gal-
vanostats have a significant role and considerable capabilities. Detailed descriptions 
of these instruments can be found elsewhere [2]. The typical dependence of current 
density upon E for an electrodeposition process is shown in Fig. 1.1. This curve 
corresponds to copper deposition from an acidic sulfate solution. The details of the 
curve are discussed in the following section.

1.6   Equilibrium Potential and Overpotential

The electrode potential at which the current density i is zero assumes particular 
importance. If this potential corresponds to the thermodynamic equilibrium of a 
well defined electrode process this potential value is defined as the equilibrium 
potential of this process Eeq. This potential is directly determined by the thermody-

1.6 Equilibrium Potential and Overpotential

Fig. 1.1   Current–potential 
characteristics for a metal 
deposition process without 
agitation ( 1) and with elec-
trolyte stirring ( 2). At high 
overvoltages (more nega-
tive potentials) the region of 
limiting current density ilim 
is approached; ilim increases 
by stirring. The equilibrium 
potential is E; cathodic ηc and 
anodic ηa overpotentials are 
also shown
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namic activity of the electroactive species in solution and is described by the Nernst 
equation, which in the simplest case of an equilibrium between a metal ion and a 
metallic electrode takes the form

 (1.13)

In this equation f = F/RT = 11604/T (V−1); R = 8.3145 J/mol K (gas constant), and 
T is the absolute temperature. E0 is called the standard potential for this process, 
observed under standard conditions (unit activity for all the species involved, 
T = 298 K, and atmospheric pressure).

It is important to realize that the thermodynamic equilibrium corresponds to the 
condition where the observed overall rate for the process of interest is zero; howev-
er, this equilibrium is achieved by the balance of two partial reactions occurring in 
opposite directions. This very important idea was firstly stated by Ershler and Shly-
gin [3] where the term “exchange current density” i0 was introduced to quantify the 
rate of these two partial processes at equilibrium. In other words, the equilibrium is 
a dynamic process that can occur slow or fast, depending on the characteristics of 
the process involved. Typically, the exchange current will be large when the energy 
barrier for the transformation of interest is low.

A more general form of the Nernst equation can be written for a generic electro-
chemical reaction:

 (1.14)

where the νi denote stoichiometric coefficients; the corresponding Nernst equation 
can be written as

 (1.15)

Very often in practice, especially for diluted solutions, the thermodynamic activi-
ties ai are substituted by the molar concentrations ci. It should be recalled that the 
activity of a pure solid phase is equal to unity; this is the reason for the absence of 
the corresponding term in Eq. (1.13).

In order to deposit a metal at a finite rate it is necessary to shift the electrode 
potential in the cathodic (negative) direction from its equilibrium value. It follows 
that a negative potential shift speeds up reduction processes whereas a positive 
shift accelerates anodic reactions (oxidation). The value of this shift is called the 
overpotential (overvoltage) of this process and is usually indicated by the greek 
letter η:

 (1.16)

Defined in such a manner the overpotential has a well defined sign; according to 
another convention however the overpotential is defined as η =

∣∣E − Eeq

∣∣ and is 
always positive, and its actual effect is determined by whether it is cathodic ( ηc) or 
anodic ( ηa).

Eeq = E0 + (RT/nF) ln (aMz+) = E0 + (1/nf ) ln (aMz+).

�νoxAox + ne ↔ �νredAred

Eeq = E0 + (RT/nF) ln
(
�aOX

ν(OX)/�ared
ν(red)

)
.

η = E − Eeq

1 Introduction to Electrodeposition: Basic Terms and Fundamental Concepts
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In practical metal deposition processes the overpotential may range from few 
mV to more than 2 V. Its value determines the rate of the process and to a large 
extent the structure and properties of the deposit. Upon application of relatively 
high η fine grained and dense coatings are obtained. The extent of adsorption at 
the electrode of surface-active components from the solution, which strongly influ-
ences the deposition process and the structure of the deposit, is also determined by 
the electrode potential during deposition, i.e. by the overpotential.

In the following chapters we will repeatedly direct our attention to the influence 
of overpotential and adsorption processes on the microstructure and morphology 
of the deposits. Here we only underline the interesting possibility of classifying the 
metals according to the value of η corresponding to ordinary current densities (10–
100 mA/cm2). The first group of metals includes those having high overpotential (of 
the order of hundreds of millivolts): Fe, Co, Ni, Cr, Mn, Pt. The second comprises 
the metals with intermediate η (Cu, Bi, Zn). The overpotentials characteristic for 
the third group (typically low-melting elements: Pb, Sb, Ag, Sn, Cd, Tl) are low (up 
to tens of millivolts). This classification is closely related to the exchange current 
densities measured for the reduction/oxidation of these elements: high values of i0 
correspond to low overpotential and vice-versa. Metals deposited at high overpo-
tentials are usually much more fine-grained as compared to those of the second and 
third groups. It should however be noted that this classification is valid only when 
the metal ions in solution are not bound to form complexes; in this latter case in fact 
it is possible to sharply increase the value of η at a given current density and cor-
respondingly change the characteristic film morphology.

At positive (anodic) overpotential the reverse process of anodic dissolution oc-
curs. If the process of metal deposition is performed using a soluble anode from the 
same metal as the counter electrode then the voltage U between cathode and anode 
is equal to the sum |ηc| + |ηa| plus the ohmic drop in the solution:

 (1.17)

Finally, it should be noted that it is not always necessary to apply a potential nega-
tive to the redox potential of the metal under study in order to achieve metal deposi-
tion; a metal can be deposited at potentials more positive than the equilibrium one, 
due to strong interactions with the substrate material. This phenomenon is referred 
to as underpotential deposition (upd, [4]). This phenomenon, very interesting both 
for electrodeposition and for electrocatalysis will be considered later.

1.7   Mixed Potential

The equilibrium potential is achieved only when the influence of other electro-
chemical processes occurring in parallel with the reaction of interest can be ne-
glected. If this condition is not satisfied the zero current condition corresponding 
to a situation of macroscopic equilibrium is achieved at a different potential, often 
named the steady-state, rest or mixed potential Er. For instance, if several direct and 

U = |ηc| + |ηa| + IR

1.7 Mixed Potential
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reverse electrode processes occur simultaneously, then in the absence of external 
power sources the potential assumes spontaneously the value at which the net cur-
rent is zero. Under this condition, no single process is in equilibrium, and each one 
proceeds at a non-zero rate. Corrosion processes often occur under these conditions. 
The actual value of the mixed potential depends on the relevant reactions and on 
electrode surface conditions, for example roughness, the presence of adsorbed spe-
cies and/or films produced by corrosion processes, etc.

1.8   Potential–Current Curves (Voltammograms)

The potential–current density ( E–i) relationships for generic electrochemical re-
actions are also called voltammograms, polarization curves, or current–potential 
characteristics, and are of fundamental importance in electroplating. The theory of 
the functional dependence of i vs. E is presented in Chap. 3. These curves (see for 
example Fig. 1.1) can be derived experimentally or theoretically and show clearly 
the key features of various electrochemical processes. As a consequence, they are 
extensively used in general electrochemistry and particularly in investigations of 
metal deposition.

Potential–current density characteristics for two different processes occurring 
simultaneously at an electrode are shown in Fig. 1.2. Two electrochemical pro-
cesses can occur in the electrodeposition of a pure metal from aqueous solutions 
when the applied cathodic potential is sufficient to induce the reaction of hydrogen 
evolution. Equilibrium potentials of the two processes are shown in the figure along 
with values of current densities (“partial current densities” and overall current den-

Fig. 1.2   Current–potential 
characteristics for simultane-
ous metal deposition ( 1) and 
hydrogen evolution ( 2). 1 
and 2 are the partial current 
curves, and 3 represents the 
experimentally measured 
total current. Cathodic over-
potentials η1 and η2 for both 
processes are shown along 
with equilibrium potentials 
and the working potential EW
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sity) and overpotentials. We emphasize that hydrogen evolution is very important in 
electroplating as atomic hydrogen can be incorporated in the deposit and/or into the 
substrate and impact their properties. Only a small fraction of the hydrogen evolved 
is incorporated in the metal, while the most part evolves in gaseous form.

An experimental E–i relationship is obtained by successively imposing various 
values of the electrode potentials and measuring the corresponding values of current 
density; after a rapid switch of potential from one value to another a certain time 
(about 10–100 s) is needed to stabilize the current. In an alternative experimental 
set-up it is also possible to impose a set of current values and measure the corre-
sponding potentials; the first method is called potentiostatic, the second galvano-
static. The two curves can be different, especially when processes of inhibition at 
the electrode surface occur, causing the appearance of maxima in the i vs. E curve. 
In addition, potentiodynamic and galvanodynamic measurements (including cyclic 
ones), where the potential or current change continuously with time, can be per-
formed and are often used. The shape of dynamic E–i curves depends on the sweep 
rate; some electrochemical methods are based on this dependence.

The derivative of the potential with respect to current density dE/di = dη/di  
(i.e. the slope of the E–i curve) is designated polarizability. This quantity is relevant 
in the analysis of the uniformity of current distribution throughout the electrode 
surface. As a rule, the higher the polarizability, the more uniform the current distri-
bution is; as a consequence the thickness of the metal deposited becomes more uni-
form. The electrode for which dη/di → ∞  is identified as an ideally polarizable 
electrode. This idealized electrode is important in the theory of current distribution. 
The electrode having dη/di → 0  on the other hand is called non-polarizable. The 
values of polarizabilities for several plating processes are given in Table 1.3.

The overpotential of any process depends strongly on the deposition conditions: 
solution composition and pH, temperature, electrolyte stirring, etc. Two methods 
can be used to compare i–E characteristics obtained under different conditions. For 
example, consider curves 1 and 2 in Fig. 1.1, obtained experimentally for the same 
reaction with and without solution agitation. It can be said that at the same potential 
the current density CD for curve 2 is higher than for curve 1; it can also be said 
however that at the same CD the deposition potential in curve 2 is decreased; both 

1.8 Potential–Current Curves (Voltammograms)

Metal Type of the electrolyte Polarizability, Ohm cm2

Ag Cyanide 20–24
Cd Stannate 12–14
Cd Sulfate 1.3–1.5
Cu Sulfate 2.2–2.5
Cu Cyanide 11–16
Cu Pyrophosphate 10–15
Fe Sulfate 1.7–2.0
Ni Sulfate 4.0–4.5
Zn Sulfate 1.5–1.8
Zn Zincate 8–10

Table 1.3   Polarizabilities of 
several electrolytes (averaged 
values)
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statements are equivalent. The decrease in CD ( η increase) is described as an inhibi-
tion of the process, while the decrease of η (CD raise) is called depolarization.

1.9   Current Efficiency

In most practical processes the overall current (charge) is consumed in part for side 
processes occurring in parallel with metal deposition. In this case it is important to 
determine the relationship between the current densities of the two or more parallel 
processes occurring simultaneously at some predetermined potential.

Side reactions can be of various nature. As already noted, hydrogen evolution 
may occur as the result of water electrolysis:

 (1.18)

Besides, deposition (co-deposition) of another metal can take place:

 (1.19)

Furthermore, partial reduction of metal ions is possible, for example:

 (1.20)

and finally, the reduction of surface oxide layers can occur, such as

 (1.21)

along with some other reactions, some of which can be purely chemical in origin.
If the second process is the deposition of another metal, evaluation of the current 

density for the two processes is closely related with the composition of the deposit-
ing alloy, considering that the ratio of the molar concentrations of the two metals 
in the alloy is proportional to the corresponding current densities. When other side 
reactions proceed, the ratio between the partial current of the process of interest ip 
and the overall current is called “current efficiency” CE:

 (1.22)

The current efficiency is often expressed in percent.
Practical determination of CE in electroplating processes is performed by both 

pre- and post-electrolysis weighing of the sample on an analytical balance in paral-
lel with precise determination of the charge passed (by means of an electronic cur-
rent integrator or by using an ammeter and a stop-watch). The current efficiency is 
equal to the ratio of the actual deposit mass Δm to its theoretical value calculated 
from Faraday’s Law:

 (1.23)

2H3O+ + 2e = H2 + 2H2O

M2
z+ + ze → M2

0

Fe3+ + e → Fe2+,

MxOy + 2yH3O+ + 2ye → xM + 3yH2O

CE = ip/�j ij = Qp/�j Qj .

CE = �m/(QA/nF).

1 Introduction to Electrodeposition: Basic Terms and Fundamental Concepts
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When the CE value for a specific process is already known, one can input this value 
into the formula of Faraday’s Law, to determine the actual deposit thickness

 (1.24)

The values of CE can differ widely for different metal deposition processes of met-
al. CE depends on the metal, the solution type, temperature, current density, pH 
and so on. Commercial processes usually have relatively high CE; the tentative and 
averaged values for some processes are listed in Table 1.4.

The dependence of CE upon current density for several processes is depicted in 
Fig. 1.3; it can be noticed that CE may either rise or fall with current density.

1.10   The Various Steps Occurring in Electrode Processes. 
Fast and Slow Steps

The overall process of electrochemical metal deposition is complex and can be di-
vided into sequential steps. Together with one (or more) charge transfer process(es), 
other steps such as chemical reactions, mass transfer and crystallization occur. 

h = CE · Kliτ.

1.10 The Various Steps Occurring in Electrode Processes. Fast and Slow Steps

Metal Type of the electrolyte Average cathodic efficiency 
Ag Cyanide 0.98
Au Citrate 0.60
Au Phosphate 0.95
Cd Cyanide 0.90
Cd Sulf.-ammonia 0.90
Co Sulfate 0.88
Cr Chromate 0.18
Cu Sulfate 1.00
Cu Cyanide 0.75
Cu Pyrohosphate 0.99
Fe Chloride 0.90
Fe Sulfate 0.92
Fe Fluoroboric 0.95
Ni Sulfate 0.96
Ni Sulfamate 0.98
Pb Fluoroboric 0.99
Pd Amino-chloride 0.80
Re Sulf.-ammonia 0.25
Rh Sulfate 0.70
Sb Citrate 0.94
Sn Stannate 0.80
Sn Pyrophosphate 0.90
Sn Sulfate 0.95
Zn Cyanide 0.80
Zn Sulfate 0.97

Table 1.4   Cathodic efficien-
cies in some electrolytes
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Chemical steps occurring near the electrode may involve ion dehydration or ligand 
dissociation.

Consumption of electroactive species at the electrode is balanced by mass trans-
fer, which occurs by diffusion, convection and electric migration from the bulk of 
solution. Mass transfer of reducible species to the electrode is therefore the first step 
of the overall deposition process. Near the electrode the electroactive species may 
be dissociated from the ligand and/or dehydrated; in parallel, charge transfer occurs 
and the (partially) reduced metal atoms adsorbs at the growing surface. Finally, 
adsorbed ions or metal atoms (adions or adatoms) diffuse across the surface to ac-
tive growth sites, where they are incorporated into the crystal lattice of the deposit, 
resulting in its growth. These steps are schematically shown in Fig. 1.4.

A generic multi-step process can be schematically represented as a chain of el-
ementary reactions, as follows:

 (1.25)

where A represents the initial state of the electrochemical system (the ion is located 
in the bulk of the solution, the electrons in the crystal lattice), and M is its final 
state, namely the metal atom in the crystal lattice. B etc. are intermediate states of 

A
1→ B

2→ C
3↔ D

4→ M

Fig. 1.4   The fundamental 
steps of electrodeposition 
at an electrode surface. 1 
hydrated ions in the solution, 
2 ions (atoms) at the surface 
while they diffuse to the 
surface steps, 3 kinks at the 
step (growth sites)

1

3
2
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Fig. 1.3   The dependence of 
cathodic current efficiencies 
on current density for various 
metal deposition processes. 1 
copper (cyanide solution), 2 
cadmium (cyanide), 3 copper 
(pyrophosphate), 4 tin (stan-
nate), 5 antimony (citrate), 
6 zinc (cyanide), 7 iron (sul-
fate), 8 nickel (sulfate), 9 zinc 
(sulfate), 10 gold (citrate)
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