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Foreword

It is a great pleasure to learn that the Centre for Interdisciplinary Mathematical
Sciences and the Department of Mathematics, Banaras Hindu University organized
an Advanced Training Programme on Nonconvex Optimization and Its Applica-
tions. This programme was organized to introduce the subject to young researchers
and college teachers working in the area of nonconvex optimization.

During the five-day period several eminent professors from all over the country
working in the area of optimization gave expository to advanced level lectures
covering the following topics.

(i) Quasi-convex optimization
(ii) Vector optimization

(iii) Penalty function methods in nonlinear programming
(iv) Support vector machines and their applications
(v) Portfolio optimization

(vi) Nonsmooth analysis
(vii) Generalized convex optimization

Participants were given copies of the lectures. I understand from Dr. S. K. Mishra,
the main organizer of the programme, that the participants thoroughly enjoyed the
lectures related to nonconvex programming. I am sure the students will benefit
greatly from this kind of training programme and I am confident that Dr. Mishra will
conduct a more advanced programme of this kind soon. I also appreciate the efforts
taken by him to get these lectures published by Springer. I am sure this volume will
serve as excellent lecture notes in optimization for students and researchers working
in this area.

Chennai, April 2010 Thiruvenkatachari Parthasarathy
INSA Senior Scientist

Indian Statistical Institute, Chennai, India
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Preface

Optimization is a multidisciplinary research field that deals with the characteriza-
tion and computation of minima and/or maxima (local/global) of nonlinear,
nonconvex, nonsmooth, discrete, and continuous functions. Optimization prob-
lems are frequently encountered in modelling of complex real-world systems for
a very broad range of applications including industrial and systems engineer-
ing, management science, operational research, mathematical economics, seismic
optimization, production planning and scheduling, transportation and logistics, and
many other applied areas of science and engineering. In recent years there has been
growing interest in optimization theory.

The present volume contains 16 full-length papers that reflect current theo-
retical studies of generalized convexity and its applications in optimization theory,
set-valued optimization, variational inequalities, complementarity problems,
cooperative games, and the like. All these papers were refereed and carefully
selected from those delivered at the Advanced Training Programme on Nonconvex
Optimization and Its Applications held at the DST-Centre for Interdisciplinary
Mathematical Sciences, Department of Mathematics, Banaras Hindu University,
Varanasi, India, March 22–26, 2010.

I would like to take this opportunity, to thank all the authors whose contribu-
tions make up this volume, all the referees whose cooperation helped in ensuring
the scientific quality of the papers, and all the people from the DST-CIMS and
Department of Mathematics, Banaras Hindu University, whose assistance was
indispensable in running the training programme. I would also like to thank to all
the participants of the advanced training programme, especially those who travelled
a long distance within India in order to participate. Finally, we express our appreci-
ation to Springer for including this volume in their series. We hope that the volume
will be useful for students, researchers, and those who are interested in this emerging
field of applied mathematics.

Varanasi, April, 2010 Shashi Kant Mishra
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Chapter 1
Some Equivalences Among Nonlinear
Complementarity Problems, Least-Element
Problems, and Variational Inequality Problems
in Ordered Spaces

Qamrul Hasan Ansari and Jen-Chih Yao

Abstract In this survey chapter we introduce several Z-type single-valued maps as
well as set-valued maps. We present several equivalences among different types of
nonlinear programs, different types of least-element problems, and different types
of variational inequality problems under certain regularity and growth conditions.

1.1 Introduction

It is well known that the theory of complementarity problems has been become
a very effective and powerful tool in the study of a wide class of linear and
nonlinear problems in optimization, economics, game theory, mechanics, engi-
neering, and so on, see, for example [9, 15–17], and the references therein. For
a long time, a great deal of effort has gone into the study of the equivalence of
complementarity problems and other problems. In 1980, Cryer and Dempster [10]
studied the equivalence of linear complementarity problems, linear programs, least-
element problems, variational inequality problems, and minimization problems in
vector lattice Hilbert spaces. In 1981, Riddle [28] established the equivalence of
complementarity and least-element problems as well as several related problems.
In 1995, Schaible and Yao [30] proved the equivalence of these problems by intro-
ducing strictly pseudomonotone Z-maps operating on Banach lattices. In 1999,
Ansari et al. [1] extended the results of Schaible and Yao [30] for point-to-set
maps and established equivalence among generalized complementarity problems,
generalized least-element problems, generalized variational inequality problems,
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and minimization problems. In [34] Yin, Xu, and Zhan established the equiva-
lence of F-complementarity, variational inequality, and least-element problems in
the Banach space setting. Very recently, Huang and Fang [14] introduced several
classes of strong vector F-complementarity problems and gave their relationships
with the least element problems of feasible sets. Furthermore, in [36], Zeng and Yao
first gave an equivalence result for variational-like inequality problems and least
element problems.

In this survey chapter we introduce several Z-type single-valued maps as well
as multivalued maps. We present several equivalences among different types of
nonlinear programs, least-element problems, complementarity problems, and varia-
tional inequality problems under certain regularity and growth conditions.

1.2 Preliminaries

In this section, we introduce some notations and definitions that are used in the
sequel.

Let B be a real Banach space with its dual B∗, and let K ⊆ B be a closed convex
cone. Let K∗ be the dual cone of K; that is,

K∗ = {u ∈ B∗ : 〈u,x〉 ≥ 0 for all x ∈ K},

where 〈u,x〉 denotes the pairing between u ∈ B∗ and x ∈ B.
The vector ordering induced by K on B and induced by K∗ on B∗ is denoted

by ≤:

x≤ y if and only if y− x ∈ K, for all x,y ∈ B,

u≤ v if and only if v− u∈ K∗, for all u,v ∈ B∗.

Nonzero elements of K∗ are said to be positive, and u ∈ K∗ is said to be strictly
positive if

〈u,x〉> 0, for all x ∈ K, x 	= 0.

The space B is a vector lattice with respect to ≤ if each pair x,y ∈ B has a unique
infimum x∧ y characterized by the properties

x∧ y≤ x, x∧ y≤ y, z≤ x,z≤ y if and only if z≤ x∧ y.

If B is a vector lattice, so is B∗ with respect to the ordering ≤ induced by K∗; see,
for example, [22].

Proposition 1.1 ([2, pp. 533]). Let K be a nonempty convex subset of B and let
f : K → R be a lower semicontinuous and convex functional. Then, f is weakly
lower semicontinuous.
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Remark 1.1. From Proposition 1.1, we can see that, if f : K → R is upper semi-
continuous and concave, then f is weakly upper semicontinuous.

Definition 1.1. Let Ω be an open subset of a real Banach space B. A function f :
Ω → R is said to be Gâteaux differentiable at x ∈Ω if there exists ∇ f (x) ∈ B∗ such
that

lim
t→0+

f (x + th)− f (x)
t

= 〈∇ f (x),h〉, ∀h ∈ B.

∇ f (x) is called the Gâteaux derivative of f at the point x. The function f is Gâteaux
differentiable in Ω if it is Gâteaux differentiable at each point of Ω .

Let K be a closed subset of B and f : K → R. By saying f is Gâteaux differen-
tiable in K we mean that f is Gâteaux differentiable in an open set neighborhood
of K.

Definition 1.2 ([3]). Let Ω be an open subset of a real Banach space B and f : Ω →
R be Gâteaux differentiable. The function f is said to be

(i) Pseudoconvex on Ω if for every pair of points x,y ∈Ω , we have

〈∇ f (x),y− x〉 ≥ 0⇒ f (y) ≥ f (x)

(ii) Strictly pseudoconvex on Ω if for every pair of distinct points x,y ∈Ω , we have

〈∇ f (x),y− x〉 ≥ 0⇒ f (y) > f (x)

The relation of (strict) pseudoconvexity and (strict) pseudomonotonicity is the
following.

Theorem 1.1 ([19, 20]). Let Ω be an open convex subset of a real Banach space B
and f : Ω → R be Gâteaux differentiable. Then f is (strictly) pseudoconvex on Ω if
and only if ∇ f : Ω → B∗ is (strictly) pseudomonotone.

We note that if f : Ω → R is strictly pseudoconvex, then the solution of minx∈Ω
f (x) is unique provided a solution exists [3].

Definition 1.3. Let f : B→ R be a functional. Then an element u ∈ B∗ is called a
subgradient of f at the point x ∈ B if f (x) is finite and

〈u,y− x〉 ≤ f (y)− f (x), ∀y ∈ B.

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂ f (x). That is,

∂ f (x) = {u ∈ B∗ : 〈u,y− x〉 ≤ f (y)− f (x)}, ∀y ∈ B,

and therefore the subdifferential of f is the point-to-set map ∂ f : x �→ ∂ f (x) from B
to B∗.
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Lemma 1.1 ([52]). Let (X ,‖ · ‖) be a normed vector space and H be a Hausdorff
metric on the collection CB(X) of all nonempty, closed, and bounded subsets of X,
which is defined as

H (U,V ) = max

{
sup
u∈U

inf
v∈V
‖u− v‖,sup

v∈V
inf
u∈U
‖u− v‖

}
,

for U and V in CB(X), where the metric d is induced by d(u,v) = ‖u− v‖. If U and
V are compact sets in X, then for each u ∈U, there exists v ∈V such that

‖u− v‖ ≤H (U,V ).

Let D be a nonempty subset of a topological vector space X . A point-to-set map
G : D→ 2X is called a KKM map if for each finite subset {x1, . . . ,xn} ⊆ D,

co{x1, . . . ,xn} ⊆
n⋃

i=1

G(xi),

where co{x1, . . . ,x2} denotes the convex hull of {x1, . . . ,xn}.
Lemma 1.2 ([11]). Let D be an arbitrary nonempty subset of a Hausdorff topo-
logical vector space X. Let the point-to-set map G : D→ 2X be a KKM map such
that G(x) is closed for all x ∈ D and is compact for at least one x ∈ D. Then
∩x∈DG(x) 	= /0.

1.3 Equivalence of Nonlinear Complementarity Problems and
Least-Element Problems

Given are a closed convex cone K ⊆ B, T : K → B∗ and f : K → R whose special
properties do not concern us for the moment. We denote by F the feasible set of T
with respect to K; that is,

F = {x ∈ B : x ∈ K and T (x) ∈ K∗}.

In this section, we consider the following problems.

(I) Nonlinear program : For a given u ∈ B∗, find x ∈F such that

〈u,x〉= min
y∈F

〈u,y〉.

(II) Least-element problem : Find x ∈F such that

x≤ y, ∀y ∈F .
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(III) Complementarity problem : Find x ∈F such that

〈u,x〉= 0.

(IV) Variational inequality problem : Find x ∈ K such that

〈T (x),y− x〉 ≥ 0, ∀y ∈ K.

(V) Unilateral minimization problem : Find x ∈ K such that

f (x) = min
y∈K

f (y).

The equivalence of (I) and (II) on the one hand, and among (III), (IV), and (V) is
well known; see, for example [18, 28]. The purpose of this section is to investigate
suitable conditions under which these five problems are equivalent.

Definition 1.4 ([28]). Let B be a Banach space that is also a vector lattice with
positive cone K; let T : K → B∗ be a mapping. Then T is called a Z-map relative to
K if for any x,y,z ∈ K,

〈T (x)−T (y),z〉 ≤ 0, whenever (x− y)∧ z = 0.

In the case where T is linear, Definition 1.4 reduces to the definition of condition
Z in [10]. In the case where B = Rn and K is the nonnegative orthant, T is a Z-map
relative to K if and only if it is off-diagonally antitone in the sense of [27].

Definition 1.5 ([18, 20, 28]). Let B be a Banach space, K a nonempty convex subset
of B, and T : K → B∗ a mapping. Then T is called

(i) Pseudomonotone if for any x,y ∈ K,

〈T (y),x− y〉 ≥ 0 implies 〈T (x),x− y〉 ≥ 0

(ii) Strictly pseudomonotone if for any distinct points x,y ∈ K

〈T (y),x− y〉 ≥ 0 implies 〈T (x),x− y〉> 0

(iii) Hemicontinuous if it is continuous on the line segments in K with respect to
weak∗ topology in B∗; that is, for any fixed x,y,z ∈ K, the function

t �→ 〈T (x + ty),z〉, 0≤ t ≤ 1

is continuous
(iv) Positive at infinity if for any x ∈ K, there exists a positive real number ρ(x)

such that 〈T (y),y− x〉> 0 for every y ∈ K such that ‖y‖ ≥ ρ(x).
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Lemma 1.3 ([30]). Let K be a convex cone in a Banach space B and T : K → B∗
be (strictly) pseudomonotone. Then for each fixed z ∈ K, the operator Tz : K → 2B∗

defined by
Tz(x) = T (x + z), ∀x ∈ K

is also (strictly) pseudomonotone.

Proof. For any x,y ∈ K, suppose that 〈Tz(y),x− y〉 ≥ 0. Then 〈T (y + z),x− y〉
≥ 0, from which it follows that 〈T (y + z),(x + z)− (y + z)〉 ≥ 0. Because T is
pseudomonotone, we have

〈T (x + z),(x + z)− (y + z)〉 ≥ 0

and hence
〈Tz(x),x− y〉 ≥ 0.

Therefore, Tz is also pseudomonotone. The case where T is strictly pseudomonotone
can be dealt with by a similar argument.

We need the following result to derive the equivalence of problems (I)–(V) under
suitable conditions.

Theorem 1.2. Let K be a nonempty, closed, bounded convex subset of a reflexive
Banach space B and let T : K→B∗ be weakly pseudomonotone and hemicontinuous.
Then there exist x ∈ K such that

〈T (x),y− x〉 ≥ 0, ∀y ∈ K.

Furthermore, if in addition T is strictly pseudomonotone, the solution is unique.

Theorem 1.2 is an extension of classical existence results for variational inequali-
ties due to [4, 13]. By employing Theorem 1.2, we obtain the following result for
perturbed variational inequalities.

Proposition 1.2 ([30]). Let K be a nonempty, closed, convex cone in a reflexive
Banach space B, and T : K→ B∗ be pseudomonotone, hemicontinuous, and positive
at infinity. Then for each fixed z ∈ K, there exist x ∈ K such that

〈T (x + z),y− x〉 ≥ 0, ∀y ∈ K. (1.1)

If, in addition, T is strictly pseudomonotone, then for each z ∈K, (1.1) has a unique
solution.

Proof. For each z ∈ K, we define Tz : K → B∗ by

Tz(x) = T (x + z), ∀x ∈ K.

Then obviously, Tz is hemicontinuous.
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By Lemma 1.2, Tz is also pseudomonotone. Let ρ = ‖z‖+ ρ(z), where ρ(z) is
defined as in the definition of positive at infinity. Let

D = {y + z : y ∈ K,‖y‖ ≤ ρ},

which is a closed, bounded, convex subset of a reflexive Banach space B. Then by
Theorem 1.2, there exist x ∈ K with ‖x‖ ≤ ρ such that

〈Tz(x),y− x〉 ≥ 0, ∀y ∈ K with ‖y‖ ≤ ρ . (1.2)

We note that ‖x‖< ρ . Suppose that ‖x‖= ρ ; then

‖x + z‖ ≥ ‖x‖−‖z‖= ρ(z).

T is positive at infinity, thus we have

〈T (x + z),x〉> 0,

or
〈Tz(x),x〉> 0. (1.3)

On the other hand, letting y = 0 in (1.2), we have

〈Tz(x),x〉 ≤ 0,

which is a contradiction of (1.3). Therefore, ‖x‖ < ρ and by standard technique it
can be shown that x is indeed a solution of (1.1).

If, in addition, T is strictly pseudomonotone, then by Lemma 1.3, Tz is also
strictly pseudomonotone. Consequently, the solution is unique.

In the remaining part of this section, we assume that B is a real Banach space
and K is a closed convex cone of B, and, whenever the ordering induced by K is
mentioned, (B,≤) is a vector lattice.

Now we establish the equivalence of problems (I)–(V) under suitable conditions.

Proposition 1.3 ([30]). Let T : K→B∗ be the Gâteaux derivative of f : K→R. Then
any solution of (V) is also a solution of (IV). If in addition, T is pseudomonotone,
then, conversely, any solution of (IV) is also a solution of (V).

Proposition 1.4 ([18, Lemma 3.1]). Let T : K → B∗. Then x is a solution of (III) if
and only if it is a solution of (IV).

Proposition 1.5 ([30]). Suppose that T : K → B∗ is strictly pseudomonotone and a
Z-map relative to Z. Then any solution of (IV) is also a solution of (II).

Proposition 1.6 ([18, Lemma 3.1]). Let T : K → B∗ and u ∈ K∗. Then any solution
of (II) is a solution of (I).

Proposition 1.7 ([30]). Let B be a reflexive Banach space. Assume that T : K → B∗
is a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
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infinity. Then the feasible set F = {x ∈ B : x ∈ K and T (x) ∈ K∗} is a ∧-sublattice;
that is, x ∈F and y ∈F imply x∧ y ∈F .

Proposition 1.8 ([30]). Let B be a reflexive Banach space. Assume that T : K → B∗
is a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
infinity. Let u ∈ K∗ be strictly positive. Then Problem (I) corresponding to u has at
most one solution, and any solution of (I) is also a solution of (II).

By combining Propositions 1.3 and 1.5–1.7, we have the following main result
of this section.

Theorem 1.3. Let K be a closed convex cone in a reflexive Banach space B such
that B is a vector lattice with respect to the order ≤ induced by K. Let T : K → B∗
be a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
infinity. If u ∈ K∗ is a strictly positive element, then there exists x ∈F which is a
solution of problems (I)–(IV). Moreover, the solution x is unique. If T is the Gâteaux
derivative of f : K → R, then x is also a unique solution of problem (V).

Corollary 1.1. Let K be a closed convex cone in a reflexive Banach space B such
that B is a vector lattice with respect to the order ≤ induced by K. Let T : K → B∗
be a Z-map relative to K, strongly pseudomonotone and hemicontinuous. If u ∈ K∗
is a strictly positive element, then there exists x ∈F which is a solution of problems
(I)–(IV). Moreover, the solution x is unique. If T is the Gâteaux derivative of f :
K → R, then x is also a unique solution of problem (V).

The following example illustrates that the extension of Riddell’s result is not
empty.

Example 1.1. Let B = Rn with the Euclidean norm. Then B∗ = Rn. The pairing
between x = (x1, . . . ,xn) ∈ B and u = (u1, . . . ,un) ∈ B∗ is given by

〈u,x〉=
n

∑
i=1

uixi.

Let K be the nonnegative orthant. Then K∗ = K and the reduced ordering makes B
a vector lattice with

x∧ y = (z1, . . . ,zn), zi = min〈yi,xi〉.

Let T : [0,∞)→R be defined as T (x) = 2+(1/10)x+ sinx for x≥ 0. Then it can be
checked that T is strictly pseudomonotone and a Z-map relative to [0.∞). T is also
positive at infinity. Note that T is not monotone because 〈T (x)−T (y),x−y〉< 0 for
x = (3/2)π and y = 0.
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1.4 Equivalence Between Variational-Like Inequality Problem
and Least-Element Problem

Let B be a real Banach space with norm ‖ · ‖ and dual B∗. Let K ⊂ B be a non-
empty convex subset, f : K → B∗ be a single-valued mapping, and ϕ : K → R be a
convex functional. For a given mapping η : K×K → B, we consider the following
variational-like inequality problem of finding x∗ ∈ K such that

〈 f (x∗),η(x,x∗)〉 ≥ F(x∗)−F(x), for all x ∈ K. (1.4)

If B = H is a real Hilbert space, K = H, η(x,y) = x−y for all x,y∈H, f : H→H
is a single-valued mapping, and F : H→R is a linear continuous functional, then the
problem (1.4) reduces to the following variational inequality problem. Find x∗ ∈ K
such that

〈 f (x∗),x− x∗〉 ≥ F(x∗)−F(x), for all x ∈ K. (1.5)

If F ≡ 0, then the problem (1.4) reduces to the following variation-like inequality
problem: Find x∗ ∈ K such that

〈 f (x∗),η(x,x∗)〉 ≥ 0, for all x ∈ K. (1.6)

The problem (1.6) is studied in the setting of finite-dimensional Eucludian space in
[26] and infinite-dimensional spaces in [31].

If K ⊂ B is a closed convex cone, and η(x,y) = x− y for all x,y ∈ K, then the
problem (1.4) reduces to the variational inequality problem: find x∗ ∈ K such that

〈 f (x∗),x− x∗〉 ≥ F(x∗)−F(x), for all x ∈ K. (1.7)

In order to study the F-complementarity problem, Yin, Xu, and Zhang [34] intro-
duced and considered the problem (1.7), and established the equivalence between
problem (1.7) and the F-complementarity problem in the case when F : K → R is
positively homogeneous. More precisely, let B be a real Banach space and B∗ the
dual space. Let K be a closed convex cone in B, f : K → B∗ and F : K → R. The
F-complementarity problem is to find x∗ ∈ K such that

〈x∗, f (x∗)〉+ F(x∗) = 0 and 〈x, f (x∗)〉+ F(x)≥ 0, for all x ∈ K.

Furthermore, by virtue of the existence of solutions of problem (1.7), they studied
the equivalence between the F-complementarity problem and the least element
problem.

In this section, we establish the existence results for solutions of variational-like
inequality problems in the case when K ⊂ B is a nonempty closed convex subset
containing zero. Furthermore, we prove that the feasible sets of problem (1.4) are
∧-sublattices in the vector lattice. Moreover, we investigate the equivalence between
problem (1.4) and the least element problems. The results of this section improve
and generalize the results of Yin et al. [34] by extending the variational inequality
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problem (1.7) in [34] to the variational-like inequality problem (1.4). In addition,
these results also generalize and extend the corresponding results in [26, 28, 30].

We give some notations and definitions that are used in the rest of this section.

Definition 1.6. Let f : K→ B∗ and η : K×K→ B. f is said to be η-hemicontinuous
on K if for every fixed x,y ∈ K, the function

t �→ 〈 f (x + t(y− x)),η(y,x)〉

is continuous at 0+. In particular, if η(x,y) = x− y for all x,y ∈ K, then f is said to
be hemicontinuous on K.

Definition 1.7. Let f : K→ B∗ and η : K×K→ B. Let α : R+→R+ be a nonnega-
tive function and F : K → R be a convex functional.

(i) f is said to be strictly η – α-monotone on K if for each x,y ∈ K and x 	= y,

〈 f (x)− f (y),η(x,y)〉 > α(‖x− y‖).

In the case where α(t) = 0, f is said to be strictly η-monotone on K. In parti-
cular, if η(x,y) = x−y for all x,y ∈ K, then f is said to be strictly α-monotone
on K.

(ii) f is said to be η – F-pseudomonotone on K if for each x,y ∈ K and x 	= y,

〈 f (y),η(x,y)〉 ≥ F(y)−F(x) =⇒ 〈 f (x),η(x,y)〉 ≥ F(y)−F(x).

In particular, if η(x,y) = x− y for all x,y ∈ K, then f is said to be F-pseudo-
monotone on K.

(iii) f is said to be strictly η – F-pseudomonotone on K if for each x,y ∈ K,

〈 f (y),η(x,y)〉 ≥ F(y)−F(x) =⇒ 〈 f (x),η(x,y)〉 > F(y)−F(x).

In particular, if η(x,y) = x− y for all x,y ∈ K, then f is said to be strictly
F-pseudomonotone on K.

(iv) f is said to satisfy the η-coercive condition with respect to F if for any given
y ∈ K, there exists a positive number ρ(y) such that

〈 f (x + y),η(x,0)〉+ F(x) > F(0)

for all x ∈ K with ‖x‖ = ρ(y). In particular, if η(x,y) = x− y for all x,y ∈ K,
then f is said to satisfy the coercive condition with respect to F .

It is clear that strictly η – α-monotone ⇒ strictly η-monotone ⇒ strictly η –
F-pseudomonotone⇒ η−F-pseudomonotone.

Remark 1.2. If η(x,y) = x−y for all x,y ∈K, then Definitions 1.6 and 1.7 reduce to
Definitions 2.1 and 2.2 in Yin, Xu, and Zhang [34], respectively. Definition 1.6 with
η(x,y) = x− y was previously introduced by Riddell [28].
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Definition 1.8 ([34]). Let α : R+→R+ be a nonnegative function and F : K →R a
functional, where K + K ⊂ K. F is said to be α-bounded on K if for each x,y ∈ K,

F(x)+ F(y)−F(x + y)≤min{α(‖x‖),α(‖y‖)}.

Throughout this section, unless otherwise specified, we assume that B is a real
Banach space and that K ⊂ B is a nonempty, closed, convex subset containing zero.

Theorem 1.4 ([36]). Let B be a reflexive Banach space, and F : K → R a lower
semicontinuous and convex functional. Let f : K → B∗ be an η-hemicontinuous and
η – F-pseudomonotone mapping, where η : K×K → B has the properties:

(i) η(x,y)+η(y,x) = 0 for all x,y ∈ K.
(ii) η(·, ·) is affine in the first variable.

(iii) For each fixed y ∈ K, x �→ η(y,x) is sequentially continuous from the strong
topology to the weak topology.

Assume that there exists a positive number r > 0 such that

〈 f (x),η(x,0)〉+ F(x) > F(0), for all x ∈ K with ‖x‖= r. (1.8)

Then the variational-like inequality problem (1.4) has a solution in K. In particular,
if f is strictly η – F-pseudomonotone, then the solution is unique.

As consequences of Theorem 1.4, we immediately obtain the following
corollaries.

Corollary 1.2 ([34, Theorem 3.1]). Let B be a reflexive Banach space, and
F : K → R a lower semicontinuous and convex functional. Let f : K → B∗ be a
hemicontinuous and F-pseudomonotone mapping. If there exists a positive number
r > 0 such that

〈 f (x),x〉+ F(x) > F(0), for all x ∈ K with ‖x‖= r,

then the variational inequality problem (1.7) has a solution in K. In particular, if f
is strictly F-pseudomonotone on K, then the solution is unique.

Corollary 1.3 ([34, Corollary 3.2]). Let B be a reflexive Banach space, and
F : K → R a lower semicontinuous and convex functional. Let f : K → B∗ be a
hemicontinuous and strictly monotone mapping. If f satisfies the coercive condition
with respect to F, then for any given z ∈ K, there exists a unique element x∗ ∈ K
such that

〈x− x∗, f (x∗+ z)〉 ≥ F(x∗)−F(x), for all x ∈ K.

Following the idea of Yin, Xu, and Zhang [34], we define the feasible set of the
variational-like inequality problem (1.4) as follows,

D = {w ∈ K : 〈 f (w),η(u,u∧w)〉+ F(u− u∧w)≥ 0 for all u ∈ K}.
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In particular, if η(x,y) = x−y for all x,y∈K, then the feasible set of the variational-
like inequality problem (1.4) reduces to that of the variational inequality problem
(1.7); that is,

D = {x ∈ K : 〈 f (x),y− y∧ x〉+ F(y− y∧ x)≥ 0 for all u ∈ K}.

Definition 1.9. Let (B,≤) be a vector lattice. A function f : K → B∗ is said to be an
η−Z-mapping on K if for each u,v,w ∈ K,

v∧ (w− u) = 0⇒ 〈 f (w)− f (u),η(u + v,u)〉 ≤ 0.

In particular, if η(x,y) = x− y for all x,y ∈ K, then f is said to be a Z-mapping
on K.

Theorem 1.5 ([36]). Let B be a reflexive Banach space, and (B,≤) a vector
lattice. Let F : K → R be a functional and f : K → B∗ an η – Z-mapping, where
η : K×K → B is a mapping such that η(x,y)+η(y,x) = 0 for all x,y ∈ K. Assume
that the following conditions are satisfied.

(i) There exists a nonnegative function α : R+ → R+ such that

(a) f is strictly η – α-monotone on K.
(b) F is α-bounded on K.

(ii) For any given z ∈ K, there exists x∗ ∈ K such that

〈 f (x∗+ z),η(u,u∧ z+ x∗)〉 ≥ F(x∗)−F(u−u∧ z) for all u ∈ K.

If the feasible set D of the variational-like inequality problem (1.4) is nonempty,
then D is a ∧-sublattice of B.

Corollary 1.4 ([36]). Let B be a reflexive Banach space, and (B,≤) a vector lattice.
Let F : K → R be a lower semicontinuous and convex functional, f : K → B∗ a
hemicontinuous Z-mapping, and f satisfies the coercive condition with respect to
F. Assume that there exists a nonnegative function α : R+ → R+ such that

(i) f is strictly α-monotone on K.
(ii) F is α-bounded on K.

If the feasible set D of the variational inequality problem (1.7) is nonempty, then D
is a ∧-sublattice of B.

Theorem 1.6 ([36]). Let B be a reflexive Banach space and (B,≤) be a vector
lattice. Let F : K → R be a functional and f : K → B∗ an η – Z-mapping, where
η : K×K → B is a mapping such that η(x,y)+η(y,x) = 0 for all x,y ∈ K. Assume
that there exists a nonnegative function α : R+ → R+ such that the condition (i)
in Theorem 10.20 is satisfied. If the variational-like inequality problem (1.4) has a
solution x∗ in the feasible set D , then x∗ is the least element of D .
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Corollary 1.5 ([36]). Let (B,≤) be a vector lattice. Let F : K → R be a positively
homogeneous and convex functional, and f : K → B∗ a Z-mapping. Assume that
there exists a nonnegative function α : R+ → R+ such that the conditions (i) and
(ii) in Corollary 10.5 are satisfied. If the variational inequality problem (1.7) has a
solution x∗ in K, then x∗ is the least element of D .

Now, from Theorems 1.4–1.6 we immediately obtain the following result.

Theorem 1.7 ([36]). Let B be a reflexive Banach space, and (B,≤) a vector lattice.
Assume that the following conditions are satisfied.

(i) F : K → R is a lower semicontinuous and convex functional.
(ii) f : K → B∗ is an η-semicontinuous η – Z-mapping, where η : K×K → B has

the following properties.

(a) η(x,y)+η(y,x) = 0 for all x,y ∈ K.
(b) η(·, ·) is affine in the first variable.
(c) For each fixed y ∈K, x �→ η(y,x) is sequentially continuous from the strong

topology to the weak topology.

(iii) There exists a positive number r > 0 such that

〈η(x,0), f (x)〉+ F(x) > F(0), for all x ∈ K with ‖x‖= r.

(iv) There exists a nonnegative function α : R+ → R+ such that

(a) f is strictly η – α-monotone on K.
(b) F is α-bounded on K.

(v) For any given z ∈ K, there exists x∗ ∈ K satisfying the following inequality.

〈 f (x∗+ z),η(u,u∧ z+ x∗)〉 ≥ F(x∗)−F(u−u∧ z), for all u ∈ K.

Then the variational-like inequality problem (1.4) has a unique solution x∗ in K.
In particular, if this solution x∗ lies in D , then D is a ∧-sublattice of B, and x∗ is the
least element of D .

Finally, from Corollaries 1.3, 1.4, and 1.5 we immediately have the following
corollary.

Corollary 1.6 ([36]). Let B be a reflexive Banach space, and (B,≤) a vector lattice.
Assume that the following conditions are satisfied.

(i) F : K → R is a lower semicontinuous, positively homogeneous and convex
functional.

(ii) f : K → B∗ is a semicontinuous Z-mapping.
(iii) f satisfies the coercive condition with respect to F.
(iv) There exists a nonnegative function α : R+ → R+ such that

(a) f is strictly α-monotone on K.
(b) F is α-bounded on K.
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Then the variational inequality problem (1.7) has a unique solution x∗ in the feasible
set D of itself, D is a ∧-sublattice of B, and x∗ is the least element of D .

1.5 Equivalence Between Extended Generalized
Complementarity Problems and Generalized Least-Element
Problem

In this section, we extend the formulations and results of Section 1.3 for set-valued
maps.

Given is a closed convex cone K ⊆ B and T : K → 2B∗ , where 2B is the family of
all nonempty subsets of B. We denote by F , the feasible set of T with respect to K;
that is,

F = {x ∈ B : x ∈ K and T (x)∩K∗ 	= /0}.
We consider the following problems.

(I) Generalized nonlinear program: For a given u ∈ B∗, find x ∈F such that

〈u,x〉= min
y∈F

〈u,y〉.

(II) Generalized least-element problem: Find x ∈F such that

x≤ y, ∀y ∈F .

(III) Extended generalized complementarity problem: Find x∈K and u∈T (x) ∩K∗
such that

〈u,x〉= 0.

(IV) Generalized variational inequality problem: Find x∈K and u∈ T (x) such that

〈u,y− x〉 ≥ 0, ∀y ∈ K.

The equivalence of (III) and (IV) has been studied by Saigal [29]. The main
object of this section is to investigate suitable conditions under which these four
problems are equivalent.

Definition 1.10. Let B be a Banach space that is also a vector lattice with positive
cone K; let T : K → 2B∗ be a point-to-set map. Then T is called

(i) Z-map relative to K if for any x,y,z ∈ K,

〈u− v,z〉 ≤ 0, ∀u ∈ T (x) and v ∈ T (y), whenever (x− y)∧ z = 0

(ii) Monotone if for any x,y ∈ K,

〈u− v,x− y〉 ≥ 0, ∀u ∈ T (x) and v ∈ T (y)


