Recent Results in Cancer Research

Managing Editors P. M. Schlag, Berlin H.-J.

H.-J. Senn, St. Gallen

Associate Editors P. Kleihues, Zürich F. Stiefel, Lausanne B. Groner, Frankfurt A. Wallgren, Göteborg

Founding Editor P. Rentchnick, Geneva Hans-Jörg Senn • Ursula Kapp • Florian Otto (Eds.)

Cancer Prevention II

Editors

Prof. Dr. med. H-J. Senn

Zentrum für Tumordiagnostik und Prävention Rorschacherstr. 150 9006 St. Gallen Schweiz hjsenn@sg.zetup.ch

Prof. Dr. med. Florian Otto

Zentrum für Tumordiagnostik und Prävention Rorschacherstr. 150 9006 St. Gallen Schweiz fotto@sg.zetup.ch

Prof. Dr. med. Ursula Kapp

Zentrum für Tumordiagnostik und Prävention Rorschacherstr. 150 9006 St. Gallen Schweiz ukapp@sg.zetup.ch

ISBN: 978-3-540-69296-6

e-ISBN: 978-3-540-69297-3

DOI: 10.1007/978-3-540-69297-3

Library of Congress Control Number: 2008935892

ISSN. 0080-0015

© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: Frido Steinen-Broo, eStudio Calamar, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

More than 180 participants and experts from 31 countries met for the fifth time in 10 years in St. Gallen, Switzerland for a 3-day conference to discuss important current issues of clinical cancer prevention. The meeting was again organized and co-sponsored by St. Gallen Oncology Conferences (SONK).

While SONK has been extremely successful in organizing large international congresses on "Primary Therapy of Early Breast Cancer" as well as "Supportive Care in Cancer" for more than 20 years, the idea of promoting interdisciplinary, clinically oriented meetings on cancer prevention is a more recent and not yet generally accepted and welcomed concept in modern oncology. Since today's medical expenses are soaring and medical research budgets are stagnating or even being cut, neither politicians nor industry is willing to risk an additional unpredictable channel of expenses, such as that demanded by clinical cancer prevention efforts!

In Switzerland—and we fear in many other parts of the globe—some 97%–98% or even a greater percentage of health budgets is spent for curative and palliative/rehabilitative medicine. Since a meager 2%–3% of national health budgets is for preventive medicine, even less than that proportion is specifically allocated for cancer prevention. When the money for "curing and caring" for the diseased populace runs short, there is likely not much left for partly controversial disease prevention in the (still) healthy part of the population. Although this might be an extremely short-sighted view, it is noticeably prevalent with health politicians and even with large parts of the medical profession, at least in Continental Europe, today.

Despite this ironic situation, we have decided to keep trying to promote the promising field of clinical cancer prevention by organizing biannual international conferences in view of the accumulating interactions between molecular genetics and biology, epidemiology and clinical cancer prevention. Together with a growing number of scientific and professional partners, we intend to periodically set the stage for a comprehensive scientific discussion forum critically analyzing the development of more efficient and more acceptable primary and secondary cancer prevention approaches for the future. It is rather unfortunate that the oncology-oriented pharmaceutical industry—especially in Europe—is not yet willing or prepared to support this fascinating field, especially chemoprevention, by more appropriate research involvement and educational funding.

It was our privilege to co-organize this meeting again on behalf of the International Society of Cancer Prevention (ISCaP, New York, NY, USA) together with the European School of Oncology (ESO, Milan, Italy) and the European Society of Medical Oncology (ESMO, Lugano). For this fifth prevention conference in March 2008 we were able to generate some new and greatly welcomed additional and "neutral" supporters or sponsors: Cancer Research UK (CRUK, London, UK), the Union Internationale Contre le Cancer (UICC, Geneva, Switzerland), the European Association of Cancer Research (EACR, Nottingham, UK), the American Cancer Society (ACS, Atlanta, GA, USA), and the Swiss Cancer League (Bern, Switzerland). Very little financial support was provided by industry. The local organizers were Prof. Hans-Jörg Senn, MD, Prof. Ursula Kapp, MD, and Prof. Florian Otto, all from the prevention-oriented Tumor Center ZeTuP in St. Gallen, Switzerland.

This 2008 St. Gallen International Cancer Prevention Conference—in contrast to the previous meetings in 2004 and 2006—was primarily targeted to primary prevention, and even more specifically at the chemoprevention of major cancer types such as breast, colorectal, cervical, and lung. Besides the traditional sessions on health politics and organ-siteoriented cancer prevention efforts, we tried for the first time to upgrade this 2008 conference with a well-prepared consensus session on the present state of the art of chemoprevention of colorectal cancer by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs), chaired by Prof. Jack Cuzick, president of ISCaP and director of the Wolfson Institute of Preventive Medicine in London, UK, and by Dr. Peter Greenwald, the director of the prevention branch of the NCI in Bethesda, MD, USA.

This consensus of the use of aspirin and NSAIDs in chemoprevention of colorectal cancers will be published separately in a major oncology journal. As is the tradition, the majority of the invited expert contributions to the conference are published in this internationally well-known series, *Recent Results in Cancer Research*, by Springer. We hope you enjoy its multifaceted content.

Already the organizers invite dedicated scientists, epidemiologists, and clinicians interested in primary and secondary (clinical) cancer prevention to the next international cancer prevention conference, which will be held in St. Gallen, 18–20 March 2010.

Hans-Jörg Senn, Ursula Kapp, Florian Otto

Contents

Part I Cancer Prevention and Health Politics

1	Do We	Make Optimal Use of the Potential	
	of Cano	cer Prevention?	3
	Peter G	reenwald and Barbara K. Dunn	
	1.1	Introduction	4
	1.2	Lifestyle Interventions	4
	1.3	Medical Interventions	7
	1.4	The Changing Landscape of Clinical Studies	7
	1.5	Prevention Clinical Trials	9
	1.6	Biomarkers for Cancer Prevention	11
	1.7	Systems Biology	13
	1.8	Future Directions for Attaining Optimal Impact	
		in Cancer Prevention	14
		References	15
2	Predict	ors of Successful Cancer Prevention Programs	19
	Franz P	orzsolt, Anita Kirner, and Robert M. Kaplan	
	2.1	Introduction	19
	2.2	Methods	20
	2.3	Results	20
	2.3.1	Quality of Prevention Programs	20
	2.3.2	Recommended Prevention Programs	24
	2.3.3	Critical Appraisal of Traditional Selection Criteria	25
	2.3.4	Incidence in Primary and Secondary Prevention	26
	2.4	Discussion	27
		References	29

3	Cancer I Franco C	Prevention in the Developing World: Mission Impossible? Cavalli	33
	3.1	A Changing Pattern	33
	3.2	A Possible Roadmap	35
	3.3	A Provisional Conclusion	37
		References	38
4	Is Cance Thomas	er Prevention Ever Going to Be Profitable? D. Szucs and Konstantin J. Dedes	41
	4.1	Introduction	41
	4.2	What Will Be the Economic Future of Cancer Care?	42
	4.3	How Do We Determine "Value for Money"?	42
	4.3.1	Types of Formal Economic Evaluations	45
	4.3.2	Applying Cost-Effectiveness Evaluations	46
	4.4	So Will Cancer Prevention Ever Be Profitable?	46
		References	47
Pa	rt II Ca	ncer Prevention: The Scientific-Epidemiological Base	
5	Energy 1	Metabolism, Cancer Risk, and Cancer	
	Preventi	on	51
	Michael	Pollak	
	Referenc	es	53
6	Promise David F.	s and Limitations of Biomarkers Ransohoff	55
	6.1	Promise Versus Product	55
	6.2	Threats to Validity from Chance and Bias	55
	6.3	Addressing Current Problems	56
	631	Every Study Should Be Reliable	56
	632	Drug Research Versus Marker Research	56
	633	Role of Specimens	57
	6.3.4	Shortcuts: By Using Already-Collected Specimens	57
	6.4	Conclusion	58
		References	58
Par	rt III Ca	ancer Prevention, Tobacco and Nutrition	
7	The EPI	C Study: An Update	63
	Paolo Vi	neis and Elio Riboli	
	7.1	The EPIC Study Design	63
	7.1.2	Exposure Variables	64
	7.1.3	Follow-Up and Case Ascertainment	64
	7.1.4	Biological Samples	65

	7.2.1	Fibres, Meat Intake and Colorectal Cancer
	7.2.2	Cancer, Hormones and BMI
		References
3	Anti-ang	iogenic Properties of Chemopreventive Drugs:
	Fenretin	ide as a Prototype
	Ilaria Sog	gno, Roberta Venè, Cristina Sapienza, Nicoletta Ferrari,
	Francesc	a Tosetti, and Adriana Albini
	8.1	Molecular Regulators of Angiogenesis as Drug
		Targets for Chemoprevention
	8.2	Angioprevention: When Cancer Chemoprevention
		Meets Angiogenesis
	8.3	Retinoids and 4HPR as Angiopreventive Molecules
		References
)	Retinoid	s and Breast Cancer Prevention
	Bernardo	Bonanni and Matteo Lazzeroni
	9.1	Introduction
	9.2	Clinical Trials
	93	Fenretinide and Ovarian Cancer
	1.5	I emetinde and Ovarian Caneer
	94	Conclusions and Future Perspectives
	9.4	Conclusions and Future Perspectives References
	9.4	Conclusions and Future Perspectives References
art	9.4 t IV Ca n	Conclusions and Future Perspectives References
ar	9.4 t IV Can	Conclusions and Future Perspectives References
art	9.4 t IV Can Cancer I	Conclusions and Future Perspectives References cer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B
ari	9.4 t IV Can Cancer I Mei-Hwe	Conclusions and Future Perspectives References Icer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B i Chang
ari	9.4 t IV Can Cancer I Mei-Hwe 10.1	Conclusions and Future Perspectives References Icer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B Et Chang Introduction
ari	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2	Conclusions and Future Perspectives References Icer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B i Chang Introduction Cancer Prevention by Vaccination
ari	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1	Conclusions and Future Perspectives References Incer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B in Chang Introduction
art)	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3	Conclusions and Future Perspectives References
ari	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3	Conclusions and Future Perspectives References recer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B Prevention by Vaccination Against Hepatitis B Fi Chang Introduction Cancer Prevention by Vaccination Advantage of Cancer Prevention by Vaccination Chronic Hepatitis B Virus Infection and Hepatocellular Carcinoma
ari	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4	Conclusions and Future Perspectives References
art)	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4	Conclusions and Future Perspectives References reer Prevention, Genetics and Vaccines Prevention by Vaccination Against Hepatitis B in Chang Introduction Cancer Prevention by Vaccination
art	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4	Conclusions and Future Perspectives References References
art	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4 2	Conclusions and Future Perspectives
ar(9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4 3	Conclusions and Future Perspectives
ar(9.4 IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4 4	Conclusions and Future Perspectives
ar(9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5	Conclusions and Future Perspectives
ar(9.4 IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5 10.6	Conclusions and Future Perspectives
art)	9.4 IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5 10.6	Conclusions and Future Perspectives
ar(9.4 IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.3 10.4.3 10.4.4 10.5 10.6 10.7	Conclusions and Future Perspectives
art	9.4 t IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5 10.6	Conclusions and Future Perspectives
art 0	9.4 IV Can Cancer I Mei-Hwe 10.1 10.2 10.2.1 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5 10.6 10.7 10.8	Conclusions and Future Perspectives

10.9	Demonstration of the Efficacy of Cancer Prevention	
	by Hepatitis B Vaccination	90
10.10	Problems in Preventing Liver Cancer by Vaccination	90
10.10.1	Inadequate Resources	91
10.10.2	Ignorance or Poor Compliance Due to Anxiety	
	to the Safety of Vaccine	91
10.10.3	Vaccine Failure or Nonresponders	91
10.10.4	No Effective Vaccine Available	92
10.11	Conclusions and Future Prospects	92
10.11.1	Hepatoma Control	92
10.11.2	Implication to the Control of Other Cancers	92
	References	92

Part V Cancer Prevention and Target Organs I: Breast Cancer

11	Energy R	estriction for Breast Cancer Prevention	97
	Anthony H	Iowell, Mary Chapman, and Michelle Harvie	
	11.1	Introduction	97
	11.2	Risk Factors for Breast Cancer	98
	11.3	Effect of Weight and Weight Gain and Exercise	
		Deficiency on Breast Cancer Risk	98
	11.4	Mechanism of Weight Gain and Exercise Deficiency on Risk	99
	11.5	Chronic Energy Restriction Reduces Cancer Risk	99
	11.6	Intermittent Energy Restriction Also Reduces	
		Breast Cancer Risk	100
	11.7	Mechanism of the Effect of CER and IER	100
	11.8	Energy Restriction Mimetic Agents	101
	11.9	Inhibitors of Glycolysis	102
	11.10	Inhibitors of Lipid Synthesis	103
	11.11	Activation of AMP-Activated Protein Kinase	104
	11.12	Stimulation of Mitochondrial Activity and Fat Oxidation	104
	11.13	Activation of SIRT1	104
		Summary and Conclusions	105
		References	105
12	The Use o	f Tamoxifen and Raloxifene for the Prevention	
	of Breast	Cancer	113
	D. Lawren	ce Wickerham, Joseph P. Costantino, Victor G. Vogel.	
	Walter M.	Cronin, Reena S. Cecchini, Leslie G. Ford, and	
	Norman W	/olmark	
	12.1	Introduction	114
	12.2	The Study of Tamoxifen and Raloxifene	114
	12.3	Results	115
	12.3.1	Invasive Breast Cancer	115

	12.3.2	Noninvasive Breast Cancer	116
	12.3.3	Other Secondary Endpoints	116
	12.4	Discussion	117
		References	118
13	Preven	tion of ER-Negative Breast Cancer	121
	Yuxin I	Li and Powel H. Brown	
	13.1	SERMs and Aromatase Inhibitors	122
	13.2	Novel Agents for the Prevention of ER-Negative	
		Breast Cancer	123
	13.3	Retinoids	124
	13.4	Vitamin D Receptor	127
	13.5	EGFR/Tyrosine Kinase Inhibitors	127
	13.6	COX-2 Inhibitors	129
	13.7	Statins	130
	13.8	Combination Chemoprevention	130
	13.9	Conclusion	131
		Acknowledgement	131
		References	132
14	Exoger	nous and Endogenous Hormones. Mammographic	
	Density	v and Breast Cancer Risk: Can Mammographic Density	
	Be Cor	nsidered an Intermediate Marker of Risk?	135
	Susen I	Becker and Rudolf Kaaks	100
	000011		
	14.1	Introduction	135
	14.2	General Determinants and Correlates	
		of Mammographic Density	137
	14.3	Sex Steroid Hormones and Breast Density	137
	14.3.1	Postmenopausal Hormone Replacement Therapy	137
	14.3.2	Endogenous Sex Hormones	138
	14.4	Selective Estrogen Receptor Modulators	142
	14.5	Aromatase Inhibitors	143
	14.6	Gonadotropin-Releasing Hormone Agonists	144
	14.7	IGF-I and Its Binding Proteins	145
	14.8	Prolactin	146
	14.9	Discussion	149
		References	150
Part	tVI C	ancer Prevention and Target Organs II:	
	С	ancer of the Digestive Tract	
15	Chemo	nrevention of Assonhageal Cancer and the AsnECT Trial	161
13	Debasis	sh Das, Andrew P. Chilton, and Janusz A. Jankowski	101
	15.1	Introduction	161

15.3	Need for Chemoprevention Approach Rather	
	Than Surveillance	162
15.4	The AspECT Trial	163
15.5	Trials Related to AspECT	164
15.6	The Evidence Base for Using Aspirin and Esomeprazole	165
15.6.1	Aspirin	165
15.6.2	Esomeprazole	165
15.7	Conclusion	167
	References	167

Part VII Cancer Prevention and Target Organs III: Prostate Cancer

16	Review of Fritz H	of Diagnostic Markers for Prostate Cancer	173
	16.1	Characteristics of PSA Driven Screening	174
	16.1.1	PSA and Cancer Aggressiveness	174
	16.2	How to Improve on PSA in the Detection	175
	10.2	of Prostate Cancer?	176
	1621	PSA Use in Men Less Than 50 Years Old	176
	16.3	Selective Detection of Aggressive Prostate Cancer	178
	16.3.1	PSA Velocity	170
	16.4	Needs and Expected Future Developments	179
	16.5	Conclusions	180
	10.5	References	180
		References	100
17	Seleniun	a and Vitamin E. Cancer Prevention Trial:	
1,	A Nutrient Approach to Prostate Cancer Prevention		
	Barbara	K. Dunn, Anne Ryan, and Leslie G. Ford	105
	17.1	Introduction	183
	17.1.1	A Preventive Approach to the Problem of Prostate Cancer	183
	17.1.2	SELECT: Selection of Study Interventions	184
	17.2	SELECT: Study Design	186
	17.2.1	Study Objectives	186
	17.2.2	Selection of Study Agents	186
	17.2.3	Study Cohort	187
	17.2.4	Study Design	187
	17.2.5	Statistical Considerations	188
	17.2.6	Evaluation of Prostate Cancer Endpoint	189
	17.2.7	SELECT in Contrast to PCPT	189
	17.2.8	Ancillary Studies	189
	17.3	Study Implementation	190
	17.4	Future Challenges in the Conduct of SELECT	190
		References	191

18	Prostate C The Ratio	Cancer Prevention by Short-Term Anti-androgens: nale Behind Design of Pilot Studies	195
	Tim Oliver	r, Attila Lorincz, and Jack Cuzick	
	18.1	Introduction	195
	18.2	Modern Evidence of a Contributory Role for Sexually	
		Acquired Infection to Causation of Prostate Cancer	
		But Lack of Specificity of Organism	196
	18.3	Modern Ideas on the Role of Inflammation as Causative	
		of Malignant Transformation and Its Relevance	
		to Prostate Cancer	197
	18.4	PSA Screening and Impact on Over-Diagnosis	
		of Prostate Cancer	198
	18.5	Evidence of Harm from Prostate Biopsy	199
	18.6	Lack of Evidence of Major Therapeutic Gain from Current	
		Approaches to Radical Treatment of Prostate Cancer	199
	18.7	Possible New Approaches to Chemo-prevention	
		of Prostate Cancer	200
	18.8	Choice of Patient Populations for Chemo-prevention	
		Studies	200
	18.8.1	Patients with Low-Grade Prostate Cancer Volunteering	
		for Surveillance Protocols	200
	18.8.2	Patients with Persistent PSA Elevation After a Negative	
		Biopsy Developing Prostate Cancer	201
	18.8.3	Patients with STDs	201
	18.8.4	Patients with Male Factor Infertility	201
	18.9	Conclusion	202
		References	202

Part VIII Cancer Prevention: Metabolic Aspects

19	Anti-angiogenic Activity of a Novel Class			
	of Chemopreventive Compounds: Oleanic Acid Terpenoids		209	
	Ilaria Sogno, Nicola Vannini, Girieca Lorusso, Rosaria Cammarota,			
	Douglas	M. Noonan, Luca Generoso, Michael B. Sporn, and Adriana Albini		
	19.1	Introduction	210	
	19.2	Angioprevention and Anti-angiogenic Therapy	210	
	19.3	Triterpenoids: New Promising Angiogenesis Regulators	211	
		References	212	

Part	art IX Aspirin and NSAIDs in Cancer Prevention: Attempts at an International Consensus		
20	Pharmac for the R Use of As Michael J	ologic Effects of NSAIDs and Implications isks and Benefits of Long-Term Prophylactic pirin to Prevent Cancer	215
	20.1 20.2 20.3	Introduction Risk–Benefit Considerations Conclusions References	215 219 220 220
21	Aspirin a John A. B	and NSAIDs for the Prevention of Colorectal Cancer	223
	21.1 21.2 21.3 21.4	Introduction Colorectal Neoplasia: Observational Studies Clinical Trial Data: Sporadic Colorectal Neoplasia Special Populations References	223 224 225 226 227
22	Aspirin a Cristina E	and Cancer Risk: A Summary Review to 2007 Bosetti, Silvano Gallus, and Carlo La Vecchia	231
	22.1 22.2 22.3 22.3.1 22.3.2 22.3.3 22.3.4 22.3.5 22.3.6 22.3.7 22.4	Introduction Materials and Methods Results Colon and Rectal Cancer Other Digestive Tract Cancers Lung Cancer Breast and Ovarian Cancers Prostate Cancer Bladder and Kidney Cancers Lymphatic and Haematopoietic Cancers Discussion References	231 232 232 238 243 243 244 244 244 244 245 245

List of Contributors

Adriana Albini, PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

John A. Baron, MD MS MSc

Evergreen Center, Biostatistics and Epidemiology Suite 300, 46 Centerra Parkway Lebanon, NH 03756 USA

Susen Becker, Dr.

German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg Germany

Bonny Blackard, BSPH

Epidemiology and Surveillance Research American Cancer Society 250 Williams Street, NW Atlanta, GA 30303-1002 USA

Bernardo Bonanni, MD

Division of Cancer Prevention and Genetics European Institute of Oncology Via Ripamonti 435 20141 Milan Italy

Cristina Bosetti, ScD

Istituto di Ricerche Farmacologiche "Mario Negri" Via Giuseppe La Masa 19 20156 Milan Italy

Powel H. Brown, Prof. Dr. MD PhD

Lester and Sue Smith Breast Center Baylor College of Medicine Dan L. Duncan Cancer Center One Baylor Plaza, BCM 600 Houston, TX 77030 USA

Rosaria Cammarota, PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

Franco Cavalli, Prof. Dr. MD

IOSI Ospedale San Giovanni Servizio Oncologico 6500 Bellinzona Switzerland

Reena S. Cecchini, MS

Operations Center National Surgical Adjuvant Breast and Bowel Project (NSABP) Four Allegheny Center, 5th Floor Pittsburgh, PA 15212, USA and Department of Biostatistics Graduate School of Public Health University of Pittsburgh 201 North Craig Street, Suite 350 Pittsburgh, PA 15213 USA

Mei-Hwei Chang, MD

National Taiwan University Hospital No. 7, Chung-Shan S. Road 100 Taipei ROC Taiwan

Mary Chapman

The Genesis Prevention Centre University Hospital of South Manchester Manchester M20 9LT UK

Andrew P. Chilton, Dip Pharm FRCP

Department of Gastroenterology Kettering General Hospital Rothwell Road Kettering, Northants NN16 8UZ Kettering UK

Joseph P. Costantino, Dr. PH

Operations Center National Surgical Adjuvant Breast and Bowel Project (NSABP) Four Allegheny Center, 5th Floor Pittsburgh, PA 15212 USA

and

Department of Biostatistics Graduate School of Public Health University of Pittsburgh Pittsburgh, PA 15261 USA

Walter M. Cronin, MPH

Operations Center National Surgical Adjuvant Breast and Bowel Project (NSABP) Four Allegheny Center, 5th Floor Pittsburgh, PA 15212 USA and Department of Biostatistics, Graduate School of Public Health University of Pittsburgh 201 North Craig Street, Suite 350 Pittsburgh, PA 15213 USA

Jack Cuzick, PhD

Wolfson Institute of Preventive Medicine Queen Mary University London Charterhouse Square London EC1M 6BQ UK

Debasish Das, MD MRCP(UK)

Digestive Disease Centre Leicester Royal Infirmary Infirmary Sq. Leicester, LE1 5WW UK

Konstantin J. Dedes, MD

Division of Gynecology Department of Obstetrics and Gynecology University Hospital of Zurich 8091 Zurich Switzerland

Barbara K. Dunn, MD PhD

National Cancer Institute NIH Division of Cancer Prevention EPN 2056 6130 Executive Blvd. Bethesda, MD 20852 USA

Nicoletta Ferrari, PhD

Molecular Oncology and Angiogenesis Laboratory National Cancer Research Institute (IST) Largo R. Benzi, 10 16132 Genoa Italy

Leslie G. Ford, MD Division of Cancer Prevention National Cancer Institute NIH EPN 2046, 6130 Executive Blvd. Bethesda, MD 20892

USA

Silvano Gallus, ScD

Istituto di Ricerche Farmacologiche "Mario Negri" Via Giuseppe La Masa 19 20156 Milan Italy

Peter Greenwald, MD Dr. PH

National Cancer Institute NIH Division of Cancer Prevention Room 2040 6130 Executive Blvd. Bethesda, MD 20892 USA

Michelle Harvie

The Genesis Prevention Centre University Hospital of South Manchester Manchester M20 9LT UK

Anthony Howell, Prof. Dr.

Christie Hospital NHS Trust University of Manchester CRUK Department of Medical Oncology Wilmslow Road Manchester M20 4BX UK

Janusz A Jankowski, Prof.

James Black Senior Clinical Fellow Department of Clinical Pharmacology University of Oxford Radcliffe Infirmary Woodstock Road Oxford OX2 6HA UK

Rudolf Kaaks, Prof. Dr.

German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg Germany

Robert M. Kaplan, PhD

Department of Health Services UCLA School of Public Health PO Box 951772 Room 31-293C CHS Los Angeles, CA 90025-1772 USA

Anita Kirner

Clinical Economics University of Ulm Frauensteige 6 89075 Ulm Germany

Carlo La Vecchia, MD

Mario Negri Institute for Pharmacological Research Laboratory of General Epidemiology Via La Masa 19 20156 Milan Italy and Istituto di Statistica Medica e Biometria "G.A. Maccacaro" Università degli Studi di Milano Via Venezian 1 20133 Milan Italy

Matteo Lazzeroni, MD

Università degli Studi di Roma Tor Vergata Via Montpellier, 1 00133 Rome Italy

Yuxin Li

Lester and Sue Smith Breast Center Baylor College of Medicine Dan L. Duncan Cancer Center One Baylor Plaza, BCM 600 Houston, TX 77030 USA

Attila Lorincz, PhD

Wolfson Institute of Preventive Medicine Queen Mary University London Charterhouse Square London EC1M 6BQ UK

Girieca Lorusso, PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

Douglas M. Noonan, PhD

Laboratory of Molecular Biology and Tumor University of Insubria Via O. Rossi, 9 21100 Varese Italy

Tim Oliver

Wolfson Institute of Preventive Medicine Queen Mary University London Charterhouse Square London EC1M 6BQ UK

Michael Pollak, Prof. Dr. MD FRCPC

General Jewish Hospital Medicine and Oncology 3755 Côte-St. Catherine Rd. Montreal QC H3T1E2 Canada

Franz Porzsolt, MD PhD

Clinical Economics University of Ulm Frauensteige 6 89075 Ulm Germany

David F. Ransohoff, Prof. MD

Professor of Medicine and Clinical Professor of Epidemiology University of North Carolina at Chapel Hill 3203 Kerr Hall 27599-7360 Chapel Hill, NC USA

Elio Riboli, MD PhD

Imperial College London Faculty of Medicine Department of Epidemiology and Public Health Norfolk Place London W2 1PG UK

Anne Ryan

National Cancer Institute NIH Division of Cancer Prevention EPN 2022 6130 Executive Blvd. Bethesda, MD 20852 USA

Cristina Sapienza, PhD

Molecular Oncology and Angiogenesis Laboratory National Cancer Research Institute (IST) Largo R. Benzi, 10 16132 Genoa Italy

Fritz H. Schröder, MD PhD

Professor of Urology Erasmus MC University Medical Center P.O. Box 2040 3000 CA Rotterdam The Netherlands

Ilaria Sogno, PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

Michael B. Sporn, MD PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

Thomas D. Szucs, MD MPH MBA LLM

Institute of Social and Preventive Medicine University of Zurich Hirschengraben 84 8001 Zurich Switzerland

Michael J. Thun, MD MS

Epidemiology and Surveillance Research American Cancer Society 250 Williams Street, NW Atlanta, GA 30303-1002 USA

Francesca Tosetti, PhD

Molecular Oncology and Angiogenesis Laboratory National Cancer Research Institute (IST) Largo R. Benzi, 10 16132 Genoa Italy

Nicola Vannini, PhD

IRCCS MultiMedica Oncology Research Via Fantoli 16/15 20138 Milan Italy

Roberta Venè, PhD

Molecular Oncology and Angiogenesis Laboratory National Cancer Research Institute (IST) Largo R. Benzi, 10 16132 Genoa Italy

Paolo Vineis, Prof. MD MPH

Imperial College London St. Mary's Campus Environmental Epidemiology Norfolk Place London W2 1PG UK

Victor G. Vogel, MD

Operations Center National Surgical Adjuvant Breast and Bowel Project (NSABP) Four Allegheny Center, 5th Floor Pittsburgh, PA 15212 USA

D. Lawrence Wickerham, MD

Operations Center National Surgical Adjuvant Breast and Bowel Project (NSABP) Four Allegheny Center, 5th Floor Pittsburgh, PA 15212 USA

Norman Wolmark, MD

Allegheny General Hospital 320 East North Avenue Pittsburgh, PA 15212 USA

Part I

Cancer Prevention and Health Politics

Do We Make Optimal Use of the Potential of Cancer Prevention?

Peter Greenwald and Barbara K. Dunn

Abstract Three decades of intensive experimental and clinical research on cancer prevention have yielded an impressive body of scientific knowledge about cancer epidemiology, causation, and preventative measures. Despite our increased understanding in these critical areas, this knowledge is not being translated adequately into initiatives that will impact public health. The recent release of the World Cancer Research Fund/American Institute for Cancer Research report on diet and lifestyle strategies for cancer prevention-grounded in an evidence-based, systematic review of the published literature-is a strong acknowledgment of the benefits of a lifestyle approach to reduce cancer risk. The report also emphasizes the need to increase basic nutritional science research to make optimal use of the knowledge gained in the past three decades. Medical approachesrepresented by chemoprevention clinical trials-also have become more focused based on results from basic science leads. The expansion of preclinical chemoprevention studies and greater attention to "first-in-human" prevention trials that safely shorten the timeline for new drug development are needed. The development

Peter Greenwald (🖂) E-mail: hursens@mail.nih.gov of a prevention focus for what the U.S. Food and Drug Administration calls "exploratory investigational new drug studies" and what investigators at the National Cancer Institute are calling "phase 0" clinical trials will contribute to the decision-making involved in designing larger cancer prevention clinical trials. Past achievements in phase III prevention clinical trials-such as the Prostate Cancer Prevention Trial, the Breast Cancer Prevention Trial, and the Study of Tamoxifen and Raloxifene-have provided early successes as evidence of the potential for public benefit to be derived from this research. Nevertheless, the application of these findings to clinical practice and the design of future prevention trials remains a challenge. Current strategies include the refinement of risk assessment models for several major cancers. Additional initiatives, based on emerging basic and clinical research, involve the development of potential biomarkers for cancer risk and early detection by the National Cancer Institute's Early Detection Research Network. Although a recent progress report indicates that biomarkers of cancer susceptibility and exposure have been identified, continued work is needed to validate such markers for clinical use. Using this information optimally for prevention through lifestyle changes or medical interventions will

4

demand commitments from public and private research institutions. Another area of emerging research is the development of a systems biology approach to cancer prevention. This will demand the creation of multidisciplinary teams of researchers from biological sciences, informatics and engineering scientists, and researchers from many fields not generally focused on disease prevention. To facilitate this and other new approaches, and to make effective use of information and strategies for cancer prevention, intensive training efforts must be implemented to develop the next generation of basic and clinical scientists-and physician researchers-capable of working in a cross- and multidisciplinary research environment. Training current researchers in new approaches will add efficiency to their combined research experiences.

1.1 Introduction

For most of the past 35 years, trends in the incidence and mortality rates of all major cancers in the United States showed steady increases. This pattern changed in the 1990s when decreases started to emerge (National Cancer Institute 2007), with mortality rates declining at approximately half that of incidence rates (Ries et al. 2007). While for some of the most common types of cancer in the United Statesbreast, prostate, colorectal, and lung-considerable progress has been made regarding mortality and incidence, in specific cancer types in some population groups (e.g., lung cancer in women and prostate cancer among African Americans) such progress is not evident.

The role of cancer prevention underlies much of this observed decrease in cancer incidence and mortality. For three decades, an impressive body of research has accumulated indicating that lifestyle and medical prevention strategies can have a major impact on cancer incidence and mortality. Nevertheless, doubt exists as to whether clinicians and other health professionals are making optimal use of existing knowledge regarding cancer prevention strategies. Cancer prevention offers a key opportunity to reduce the disease burden both on individuals and on the healthcare system. To achieve the maximum benefit from cancer reduction, major initiatives in prevention must include both lifestyle and chemoprevention approaches.

The following sections discuss current research on lifestyle and medical intervention studies—as well as selected molecular and genetic studies—in cancer prevention. In addition, a review is presented of progress in several areas: the translation of research findings into public benefit; new approaches for designing and developing clinical trials to target individuals most likely to benefit from trial findings; and suggestions for increased and novel approaches to training with a goal of producing the multidisciplinary researchers needed for working with emerging high-throughput and "-omic" (e.g., genomic, proteomic, transcriptomic, and metabolomic) technologies.

1.2 Lifestyle Interventions

Preventing cancer through lifestyle modifications and other interventions has received increased attention in the past decade as more is understood about the role of nutrition, weight gain/loss, and the level of physical activity and cancer risk. Since the Doll and Peto quantitative analysis of estimates of avoidable cancer risks in 1981 (Doll and Peto 1981), accumulating evidence suggests that lifestyle may contribute to as much as 70% of cancer cases; nutrition alone is a factor in at least 30%–40% of cancers. Adopting lifestyle modifications—in areas involving diet,

physical activity, use of tobacco, and weight control-offers a major approach to cancer prevention for most individuals. In the past, however, apart from the avoidance of tobacco, limited convincing evidence had been available to make recommendations regarding these lifestyle areas. This situation changed rapidly as findings from basic, epidemiological, and clinical research began to fill in gaps in our knowledge. For example, the recent release of Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective (World Cancer Research Fund 2007)-the 2007 expert report developed and published by the World Cancer Research Fund (WCRF) and the American Institute of Cancer Research (AICR)-highlighted the role of lifestyle on cancer prevention. The report is evidence-based and draws from a substantial body of cancer prevention literature published in the past decade.

What distinguishes this recent report from past documents is the utilization of increasingly available data from controlled clinical trials and large prospective studies on nutrition and cancer. Table 1.1 highlights the recommendations from the report, which incorporates government recommendations (U.S. Department of Health and Human Services 2005). Table 1.2 highlights the report's findings on lifestyle factors and decreased or increased risk of cancer by cancer site. The inclusion of a factor in Table 1.2 indicates that the authors of the report found the evidence to be either "probable" or "convincing" for its use in assessing the level of cancer risk. "Convincing" is the highest level of evidence for a recommendation, based on the judgment that the evidence will be unlikely to change over time and is based on congruent results from at least two independent cohorts. The underlying evidence has favorable attributes including: (1) no substantial heterogeneity in the data; (2) plausible dose responses; (3) consistent evidence from laboratory studies; and (4) accountability for error. Taken in totality, the evidence suggests that specific lifestyle changes could have a major impact on cancer prevention if optimal use of the information became part of physician practice and public policy recommendations.

 Table 1.1
 WCRF/AICR (2007) recommendations adapted from Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective, incorporating 2005 U.S. dietary guidelines

General recommendations for cancer prevention

- 1. Be as lean as possible without becoming underweight (goal: BMI 21-23)
- 2. Be physically active for at least 30 min every day
- 3. Avoid sugary drinks. Limit consumption of energy-dense foods (particularly processed foods high in added sugar, or low in fiber, or high in fat)
- 4. Eat more of a variety of vegetables, fruits, whole grains and legumes such as beans
- 5. Limit consumption of red meats (such as beef, pork, and lamb) and avoid processed meats
- 6. If consumed at all, limit alcoholic drinks to 2 for men and 1 for women a day
- 7. Limit consumption of salty foods and foods processed with salt (sodium). Avoid moldy cereals (grains) or legumes
- 8. Aim to meet nutritional needs through diet alone. Do not use supplements to protect against cancer

Special population recommendations

- 9. New mothers ideally should breastfeed exclusively for up to 6 months and then add other liquids and foods
- 10. Cancer survivors after treatment should follow the recommendations for cancer prevention

Table 1.2 Convincing evidence of decreased or increased risk of cancer by cancer site and lifestyle factor(Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; WCRF/AICR2007)

Lifestyle factors with prob	able and/or convincing decreased risk of cancer ^a
Colorectum	Foods containing dietary fiber, garlic, milk, calcium supplements, increased physical activity (probable evidence)
Mouth, pharynx, larynx	Non-starchy vegetables, fruits, foods containing carotenoids (probable evidence)
Esophagus	Non-starchy vegetables, fruits, foods containing beta-carotene (probable evidence)
Stomach	Non-starchy vegetables, Allium vegetables, fruits (probable evidence)
Lung	Fruits, foods containing carotenoids (probable evidence)
Pancreas	Foods containing folate (probable evidence)
Prostate	Foods containing lycopene, foods containing selenium, selenium supple- ments (probable evidence)
Breast	Lactation
Lifestyle factors with prob	able and convincing increased risk of cancer ^a
Liver	Aflatoxins
Colorectum	Red meat, processed meat, alcoholic drinks (men only), body fatness,
	abdominal fatness, adult-attained height
Lung	Arsenic in drinking water, beta-carotene supplements
Mouth, pharynx, larynx	Alcoholic drinks
Esophagus	Alcoholic drinks, body fatness
Breast, premenopausal	
	Alcoholic drinks (probable evidence)
Breast, post-menopausal	Alcoholic drinks (probable evidence) Alcoholic drinks, body fatness, adult-attained height
Breast, post-menopausal Pancreas	Alcoholic drinks (probable evidence) Alcoholic drinks, body fatness, adult-attained height Body fatness
Breast, post-menopausal Pancreas Endometrial	Alcoholic drinks (probable evidence) Alcoholic drinks, body fatness, adult-attained height Body fatness Body fatness

^a Evidence is convincing unless otherwise noted as probable

The potential for research opportunities geared toward improving the science of nutrition and cancer emerged directly from this report. These opportunities include integrating the recommendations on chronic diseases, and on promoting positive health and well-being. The relationship between causation and prevention should be elucidated and a revived look at descriptive studies, such as those on migrant populations, is needed.

Other important research gaps include studies on determinants of rapid growth and early puberty; dietary energy restriction in humans; food systems and dietary patterns; foods common in traditional diets; populations in parts of the world for which cancer is uncommon; and followup studies of exclusively breastfed children. There also is a need to develop standard definitions of physical activity and processed meat, and to determine when in the course of life specific preventative interventions are most effective. WCRF and AICR have committed to regularly updating the report as new evidence is published. (A summary and complete report can be found at http://www.wcrf.org/research/fnatpoc.lasso.)

Other important findings of the past decade relating lifestyle interventions to cancer prevention include the emerging recognition of obesity as a major factor in cancer etiology. Calle and colleagues suggested that being overweight or obese contributes to 15%–20% of cancer deaths; given the increasing numbers of obese Americans, the promotion of weight control has potential as a broadly effective lifestyle approach to cancer prevention (Calle et al. 2003). Regular, moderate physical activity also has been associated with reduced risk of various cancers, including colon cancer (Samad et al. 2005).

A preventative approach of lifestyle modifications that targets diet, physical activity, and weight control is likely to impact morbidity and mortality due to cancer.

1.3 Medical Interventions

Unlike lifestyle interventions, which are generally designed to target cancer risk broadly in populations, medical interventions are more specific in that they focus on limited cancer types in individuals or subpopulation groups that are at increased risk of developing those cancers. Both types of intervention, however, are important for overall reductions in cancer morbidity and mortality. The field of study involving the medical intervention approach to cancer prevention is maturing as it incorporates knowledge generated from basic, epidemiological, and clinical research. In particular, the increased understanding of the molecular, genetic, and epigenetic processes that contribute to or prevent carcinogenesis feeds directly into the formulation of medical preventative interventions. New approaches for designing and implementing cancer prevention clinical trials will also directly affect investigators' ability to provide evidence of benefits (or lack of benefit) for medical interventions. The use of emerging technologies and the collaborative efforts of multidisciplinary research teams are expected to accelerate the pace of new discoveries.

1.4 The Changing Landscape of Clinical Studies

The use of lifestyle or medical interventions ideally depends on their evaluation in clinical trials-preferably testing each intervention in relation to a control group in a randomized controlled trial (RCT). Before cancer prevention agents-nutrient- and non-nutrient-based-can be tested in RCTs, however, they must undergo testing in a phased clinical trial regimen to guarantee the safety and efficacy of the agent. For cancer prevention clinical research, the U.S. National Cancer Institute (NCI) traditionally has used a three-phase approach for testing chemoprevention agents. These potential chemoprevention agents are tested for safety and pharmacokinetic profiles in a small number of individuals (phase I trial); intermediate-endpoint biomarkers that are modulated by the agent and have potential to serve as surrogates for clinical disease endpoints are identified and tracked in trials with as many as several hundred individuals (phase II trial or a combination of phase I and phase II trials); and a large-scale, randomized, controlled trial is conducted to determine if the agent reduces cancer risk, the critical clinical endpoint in cancer prevention research (phase III trial). NCI encourages extensive follow-up to further evaluate the long-term safety and efficacy of an intervention. More than 150 potential chemopreventative agents have been identified in preclinical studies sponsored by the NCI's Division of Cancer Prevention (DCP), and development continues on the more than 40 agents that have shown evidence of safety and chemopreventative efficacy. Figure 1.1 depicts the approach of chemoprevention research and the stages in the carcinogenic process that may be targeted by chemopreventative agents.

An effort is being made at NCI to shorten the time an agent spends in the phased system, and