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Preface

The essays in this book collect some of the lectures I have given at various
places. Although the lectures ranged over a wide array of topics, they had a
single theme which reflected my deep interest in the role of symmetry and
supersymmetry in quantum theory. As such they are mathematical as well as
personal.

Symmetry and supersymmetry, especially in quantum theory, are expressed
in the language of the theory of unitary representations. This is a subject
of great intrinsic beauty and enters other parts of mathematics at a very
deep level. Two of the greatest figures in its history are Mackey and Harish-
Chandra. Their work (to use the words of Weyl) affords shade to large parts
of present day mathematics and high energy physics. It is to their memory
that this volume is lovingly dedicated.

The essays should perhaps be viewed like a stroll through a garden of
ideas: quantum algebras, super geometry, unitary supersymmetries, differen-
tial equations, non-archimedean physics, are a few of the topics encountered
along the way. My own mathematical education evolved out of interactions
with Mackey and Harish-Chandra, and I conclude this volume with brief
portraits of their work, embedded in the context of personal reminiscences.

Quite a large number of people have had a hand in shaping my views
expressed in these essays. In the essays themselves I have made an effort to
mention some of them. But I must acknowledge my deep gratitude here to my
longtime friend and collaborator Don Babbitt for the hundreds of discussions
on the topics discussed here, spread literally over a lifetime.

I am also indebted to Don Blasius, who, despite many demands, personal
as well as professional, on his time, took a deep interest in these essays and
made many suggestions for improvement. A first draft of a substantial part
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x Preface

of this book was written while my wife Veda and I were vacationing in the
Dordogne, living in Don’s house in May of 2009. The delights of rural France
were a big inspiration for me and so I should thank Don and Peter, as well as
Barry and Julie (not to mention Sukie!), for making life so pleasant in Chez
Blasius.

Finally, I wish to thank Ann Kostant for the help and encouragement she
has given me throughout this enterprise. It was her enthusiastic acceptance of
my suggestion, made in the Spring of 2009, that Springer publish a book of
essays collecting together some of the lectures I have given at various places,
that was the genesis of this book. I really cannot thank her enough.

Pacific Palisades
Summer 2010



Chapter 1
Prologue

The world is built with a great harmony but not always in
the form which we expect before unveiling it.

Goro Shimura

Some thoughts on reality and its description, as well as some personal recollections.

1.1 Reality and its description
1.2 A quantum education and evolution

1.1 Reality and its description

I have always admired the profound insight behind the remark of Shimura
quoted above. He was actually referring to the world of mathematics1 but I
have modified his remark to mean the physical world since it makes even more
sense in that context. The essays that follow, which are essentially reworkings
of lectures I had given at various places, give, among other things, a highly
personal view of the quantum world that has evolved in the twentieth century
as an offspring of the genius of many great physicists and mathematicians. My
discussions are neither complete nor entirely objective, but there are aspects
to them that I feel are rather compelling. This prologue is something like
an introductory discussion that sets the stage for what is to come and gives
a preview of the themes to be explored. I have mixed it with some personal
reminiscences of how these ideas got sorted out in my own mind.

It is generally agreed that it was Galileo Galilei who first insisted that
the description of physical reality must be in the language of mathematics.
However, the phrase physical reality in the above statement should not be
taken in any absolute sense; I use the phrase to mean just what we are able
to perceive under current circumstances. Thus it certainly has a provisional
character, with a more comprehensive meaning to us than to Galileo. Based on

1V. S. Varadarajan, Refl ections on Quanta, Symmetries, and Supersymmetries,
DOI 10.1007/978-1-4419-0667-0_1, © Springer Science+Business Media, LLC 2011



2 1 Prologue

our past experience it appears that physical reality is layered; as our abilities to
make observations improve, we peel off the existing layers to peer inside the
new layer and try to come to an understanding of it. The new perceptions often
force us to invent new mathematics to describe them, as well as new ways of
setting up the dictionary between mathematics and phenomena, which may
be completely different from the earlier ones.

I want to emphasize that this is not a question of setting up an axiomatic
scheme and showing that the new theories are just natural consequences of
these axioms. Indeed there is “no functor in the sky” that will reveal the
secrets of the physical world to the mathematician. Rather, it is the creation
of a new way of interpreting phenomena that is mirrored in the mathematical
models we propose. These models seem perfect till we penetrate to the next
layer, when their inadequacy is revealed, and we are confronted with new
problems and new dilemmas.

Nothing illustrates this better than the transition from classical to quantum
mechanics which is one of the most dramatic in the entire history of science.
Many serious mathematicians and physicists believed, at the turn of the twen-
tieth century, that the task of the natural philosopher was finished, and all that
remained was the computation of the fundamental constants of nature to ever
greater accuracy. But in just a short time, spectroscopic observations over-
whelmed the ability of classical electromagnetic theory to explain and predict
them. Indeed, according to the classical electromagnetic theory applied to the
model where the electrons are circling around a nucleus, the moving electrons
will radiate and continually lose energy; this would imply that the spectral
lines would be continually shifting, and ultimately the electrons will fall into
the nucleus. This is in stark contradiction to what is observed: the existence
of sharp spectral lines. Thus the stability of matter could not be accounted for
on the basis of classical electromagnetic theory. Clearly, deeper explanations
were required. A great step was taken by Niels Bohr when he created what
is now called the Bohr atom. For a certain period of time it was enough to
work with this hybrid model where the classical structure was buttressed by a
set of rules (quantum conditions) that took into account the new phenomena.
After spectacular initial successes discrepancies began to appear and cloud
the picture, as new phenomena could no longer be explained except by mak-
ing artificial and ad hoc modifications of the theory of Bohr. Eventually it
was recognized that new principles had to be introduced in describing atomic
phenomena. The first step in this transition, which was indeed a gigantic one,
namely the creation of a fundamentally new mechanics, was taken by Heisen-
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berg. He started with the basic principle that the new mechanics should be
based on only quantities that are physically observed. In the case of atomic
transitions this meant to him that each physical quantity should be represented
by an infinite matrix indexed by the energy levels Ea whose entries xab are
the complex amplitudes associated with the transition from Ea to Eb. In an
absolutely mysterious manner he realized that the algebra of matrices entered
into the picture because he stipulated that if X is the matrix associated with
the physical quantity x, then Xn is the matrix corresponding to the quantity
xn(n = 1, 2, . . . ).

The idea that matrices represented physical quantities, with its mystic ori-
gins in Heisenberg’s mind, introduced a strange new complication in the
mathematics because of the fact that matrix multiplication is non commu-
tative. Indeed, Heisenberg believed at first that this was a weakness of his
theory. But it was Dirac who understood that instead of being a weakness
it was the key to the description of the quantum world. To Dirac the set of
physical quantities, which is represented in classical mechanics by an alge-
bra of functions, and hence a commutative algebra, is represented in quantum
mechanics by a non commutative algebra, such as an algebra of matrices.
Dirac called this algebra the quantum algebra. He made the further remark-
able discovery that in the quantum algebra the commutator ab − ba of two
physical quantities a, b, really corresponded to the classical Poisson Bracket
of the quantities interpreted classically, although there would be elements of
the quantum algebra which had no classical analogs, such as spin. The struc-
ture of the quantum algebra depended on h̄, Planck’s constant, in such a way
that when h̄ could be neglected, the quantum algebra became commutative.

It must be noticed that the change in point of view from Heisenberg to
Dirac, is dramatic and yet subtle. The Heisenberg matrices are very concrete
and tied very intimately to very physical aspects: atomic transitions, energy
levels, transition amplitudes, and so on. The Dirac algebra is very abstract,
with a structure dependent on h̄ that becomes commutative when h̄ → 0.
This extra abstraction became so characteristic of Dirac’s entire approach to
the description of Nature that it eventually acquired a special name: the Dirac
mode.

If one looks back at the description of the pre quantum world, and compares
it with the new ideas that were needed to describe the quantum world, it
becomes clear that what had happened was a revolution in thought, in the
way we describe the physical world, and in the dictionary we set up between
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the abstract concepts and concrete aspects of the world. This is what I meant
when I remarked earlier that we had penetrated to a new layer of reality.

The fact that in the quantum description old pictures based on spacetime
such as electron orbits were thrown out made the connection between reality
and the mathematics that described it very remote from intuition and expe-
rience. The consistent physical interpretation of the mathematical schemes
presented deep problems, many of which were philosophical and epistemo-
logical. Bohr and Heisenberg contributed enormously to this aspect of quan-
tum theory. With characteristic brilliance, Heisenberg realized that there are
truly fundamental reasons why the orbits are unobservable: classical physics
puts severe restrictions on the precision with which we can observe both
the position and the momentum of an electron. This is because the process
of measurement of the position, which typically involves a collision with a
photon, introduces uncontrollable changes in the momentum of the electron.
Heisenberg’s analysis involved his famous thought experiment using a gamma
ray microscope. He then elevated this argument into a far-reaching princi-
ple: we cannot separate the observer from the phenomena that are being
observed so that measurements of atomic systems introduce uncontrollable
disturbances to them. His famous uncertainty principle was a quantification
of this qualitative assumption. Bohr’s contribution was to emphasize the no-
tion of complementarity, most clearly illustrated by the wave-particle duality
of all matter. The difficulties of constructing a consistent theory of quan-
tum measurement were analyzed brilliantly by von Neumann whose work
revealed the thermodynamic nature of quantum measurement.

The state of our description of the world of elementary particles and their
interactions is another illustration of what I have said, perhaps even better,
since it is still unfinished and beset with problems. In the quantum mechanics
of Heisenberg, Dirac, Schrödinger, Pauli, and others, there was no possibility
of deriving the Bohr transition rules with (what Weyl calls) the magic formula

Ea − Eb = h̄νab,

nor could one derive the Planck radiation formula which started the quantum
revolution. The reason for this is easy to understand: these are features that
result from the interaction of the atom (matter) with the electromagnetic field
(radiation). To derive these one has therefore to set up a scheme in which
both the atom and the radiation field are treated quantum mechanically. This
was at an entirely new level because the radiation field is already an infinite
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dimensional system classically. Dirac was the first person to ascend to this
new level, and his treatment obtained not only all these formulae but also a
resolution of one of the most vexing problems of classical physics, namely the
reconciliation of the wave and particle aspects of light. In Dirac’s theory, the
classical radiation field, which was a wave field, acquired particle properties
on quantization. Attempts to generalize the Dirac theory into a systematic
theory of quantum fields which combine quantum theory with special relativ-
ity then encountered new problems, such as divergences. Eventually many
of these difficulties (but not all) were resolved. Even quantum electrodynam-
ics, as currently understood, which is regarded as the most accurate physical
theory ever constructed, is not fully acceptable to some because of the renor-
malization rules which are just recipes for hiding ugly divergences in the
mathematical models that are used. People like Dirac never accepted them
and one cannot entirely give up the feeling that the current status of this and
other even less accurate theories is similar to the hybrid theory of the Bohr
atom with its quantum rules. The standard model does summarize what is
known accurately but its esthetic ungainliness appears to suggest strongly that
it is provisional, and that new phenomena (perhaps coming out of the new
collider at CERN) might be strong enough to suggest more radical models
which are less divergent.

The string theorists try to solve all the problems by a pure intellectual
effort, akin to what Dirac did when his equation predicted anti-matter, or
Einstein did when he invented his theory of gravitation. Only the future can
tell if string theory will join these two as a decisive way, free of singularities,
of looking at elementary particles and their fields, which is as beautiful and
elegant as these two theories.

Quantum theory inaugurated a striking departure in the way things are
described. Before the quantum era, mathematical descriptions of physical
phenomena followed ordinary experience and there was nothing mysterious
about it. But quantum theory changed this in a dramatic fashion. The fact that
the phenomena to be described were remote from ordinary experience forced
one to invent completely new mathematical schemes that were different from
anything that preceded them. In basic nonrelativistic quantum theory one
needs Hilbert spaces, self-adjoint operators and their spectral resolutions,
quantizations, spin structures, and so on. Later on, when quantum mechanics
was combined with special relativity, the framework was enlarged to admit
spacetime symmetry groups and their unitary representations. Quantum elec-
trodynamics brought its own characteristic features: Fock space, creation and
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annihilation operators, and as a culminating flourish, the concept of a quan-
tized field and renormalization rules. The singularities that arise in the adap-
tation of these very deep mathematical theories to understand the physical
world ultimately drove the physicists to enquire into the very foundations of
spacetime, and change its micro-structure from that of the familiar manifolds
to a supercommuting manifold, and even, a noncommuting manifold.

Some people are uncomfortable with this foray into the deepest parts of
mathematics to explain Nature. They feel that the beauty of mathematics is
very seductive and leads the physicist away from his true quest of describing
Nature. I remember an occasion when we had invited Julian Schwinger to
speak in our department. His lecture was on the Epistemology of Modern
Physics. In a long and far-reaching discussion after the talk, Schwinger
explained to us his view that the phenomena themselves should force us to
the mathematical schemes that will best explain them. At that time he was
referring to his work on the quantum measurement algebra in which he had
shown, quite brilliantly, how the modern way of explaining quantum theory
via vector spaces and operators is literally forced on us by the analysis of
the Stern-Gerlach experiments (see the essay on quantum algebra). This
is however quite opposite to the approach of the string theorists and the
supersymmetricians. For them the idea is to perfect the mathematics first and
only after that look for physical interpretations that tie it to the real world. This
is the Dirac mode mentioned earlier (see also the essay on super geometry).

There is also some misunderstanding, mainly on the part of mathemati-
cians, about the way mathematics is used by the physicists. It is about the
role of rigor in physical calculations. I happen to think that rigor is not that
crucial. The essential issue is whether the particular type of mathematics is
the right language to use. In some sense therefore physics is more concerned
with the formal rather than the analytical structure of things, more with the
question whether we are using the right language, rather than in the minute
details of fitting the language with reality. The situation is quite different
from what it is in mathematics. Here is what Hermann Weyl says about the
role of mathematics in physical sciences: Men like Einstein or Niels Bohr
grope their way in the dark toward their conceptions of general relativity or
atomic structure by another type of experience and imagination than those of
the mathematician, although no doubt mathematics is an essential ingredient.

There is also a philosophical aspect to this quest that has been examined
by many people such as Weyl, Schrödinger, Schwinger, and others. The
creations of the mathematician reflect an esthetic that is purely internal and
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yet, miraculously, these very same constructions are precisely the ones we
need when we try to understand the physical world. The examples are many
and well known:

(a) the theory of ordinary differential equations and their uncanny applica-
tions to the Newtonian theory of celestial motion and universal gravitation;
(b) Riemannian geometry and its use in Einstein’s general theory of rela-
tivity;
(c) fiber bundles, connections, and their emergence as the basic tools in
gauge theories like Yang-Mills;
(d) the use of spin geometry in Dirac’s equation for the electron and in
unified theories;

and so on. In several conversations I had with Harish-Chandra he often
used to refer to this phenomenon as the coincidence of the inner and outer
realities. With so many examples like these, there has emerged a point of
view that what is not forbidden must be true and that only beautiful theories
have a chance of being also true. Weyl, Dirac, and perhaps even Einstein,
in his later years, were among the foremost believers in this principle. It is
in the spirit of this philosophy that one should view the discussions in my
essay on nonarchimedean physics. There it is not a question of immediately
connecting p-adic mathematics with physical reality but one of building a
structure that may have some aspects of reality in it.

In Newtonian mechanics, and even in classical electrodynamics, the phe-
nomena studied are for the most part close to experience, and there is no
difficulty in understanding the forces acting on the bodies and setting up the
dynamical schemes. But in quantum mechanics and quantum field theory
this is no longer true. As a consequence one is often forced to use symmetry
as a guide in the choice of the Lagrangian or Hamiltonian to set up the dy-
namical equations. Consequently underlying all the discussions in this book
is the massif of representation theory. It is the essential ingredient in all de-
scriptions of symmetry and is present in all the essays in this book. My own
understanding of physics and mathematics is built upon this theory whose
power to influence mathematics and physics is unmatched. As an illustration
of its power even in purely mathematical theories I discuss in one of the essays
its application to the theory of differential equations.
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1.2 A quantum education and evolution

My first brush with quantum theory came in 1954 when I was an undergraduate
in my home town, Madras (now called Chennai, with good justification),
studying in the Presidency College for a master’s degree in Statistics. It
was during that year that Dirac came to Madras and gave a lecture at the
University. I had heard of him of course but had absolutely no idea of what
he had done or why he was revered so much. I went to the talk in a big
hall which was overflowing. I understood nothing, but one remark of Dirac
still stands out in my mind: the world is non commutative. My subsequent
progress in my studies had no direct connection with quantum mechanics. It
was mainly probability theory at the Indian Statistical Institute in Calcutta.
After my degree I went to the US, first as a post doctoral fellow to Princeton
University in 1960. In the Fall of 1960 I went to the University of Washington
at Seattle due to the kindness of professor Edwin Hewitt who liked some of
the mathematics I did in my thesis. Seattle was a wonderful place for me.
I made the acquaintances of a number of young people—Ken Ross, Albert
Frodeberg, Roger Richardson, Bill Woolf, Albert Nijenhuis, to mention a
few. Harish-Chandra’s suggestion that I make myself thoroughly familiar
with the Chevalley volumes was always ringing in my years, but they were
difficult to penetrate, especially the first volume. By the greatest of good
fortune, Richardson, who came from the University of Michigan, had his own
handwritten notes of Hans Samelson’s courses on differentiable manifolds
and Riemannian geometry. They were wonderful for a beginner like me and I
worked through these and finally began to understand what the global theory
of Lie groups was all about. At the same time I also carefully read Dynkin’s
famous paper on the classification of simple Lie groups through what we now
call Dynkin diagrams, as well asWeyl’s proof of his famous character formula,
given in his Classical Groups and Group Theory and Quantum Mechanics.

I cannot speak enough of the courtesy and accessibility of Richardson. He
was already a mature mathematician, with a regular position. His beautiful
work with Nijenhuis on deformations of Lie algebras was still to come. He
would come almost daily to the part of the department where Woolf and I had
offices and talked about mathematics. Nijenhuis and Woolf were collaborat-
ing on their extension of the Newlander–Nirenberg work to the C1+α case,
and Nijenhuis would come almost daily to our little alcove. So I was in daily
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contact with beautiful mathematics, and these influences were pivotal for my
career.

In Seattle two things happened: the first, a minor event, was that I picked
up a used copy of Dirac’s book, almost new, for one dollar (I still have it); the
second was that in the summer of 1961, Professor George Mackey came to
Seattle as aWalkerAmes Professor and delivered a series of lectures on unitary
representations and quantum mechanics. I had by this time become very
interested in group representations and had studied, in a desultory fashion,
the famous Murray–von Neumann papers on Rings of operators and some
parts of Weyl’s Classical Groups. But the connections of representation
theory with quantum theory were not there in my mind until I heard Mackey
explain them. For me these lectures were a revelation, a first glimpse of the
noncommutative world. I fell in love with quantum theory, and from then
on, quantum theory and representation theory were to be my most beloved
interests.

That summer in Seattle with its customary lovely rain-free weather, was a
most idyllic time in my life. I had no duties except for teaching one summer
course. Mackey lectured every day for four weeks. The lectures were a
tour de force, connecting all kinds of things with a unified philosophy that
was profound and inspiring. I attended the lectures, and talked with him
about almost all aspects of his work. His philosopy, his perspective in both
mathematics and physics, and his passion, all made the deepest impression
on me. It was the single sustained personal learning experience that I have
ever had in my entire scientific career.

Inspired by Mackey’s lectures I hastened to read Dirac and von Neumann.
From my point of view as a probabilist, I was most struck by von Neumann’s
wonderful conception that in quantum theory an orthocomplemented partially
ordered set replaced the Boolean algebra of events of classical probability the-
ory. This structure, whose members are the experimental propositions, was
called by von Neumann the quantum logic, and, for the standard models in
physics, was just the projective geometry of the closed subspaces of a complex
Hilbert space. The concept of an observable as a self-adjoint operator arises
naturally in this context and is the proper substitute for the classical notion of
a random variable. But, and this was the essential difference in the quantum
case, classical calculations involving more than one random variable could
not be carried out in the quantum world unless the variables are simultane-
ously measurable. It was a beautiful theorem of von Neumann that quantum
observables in the standard Hilbert space model are simultaneously measur-
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able if and only if their operators commute with each other, or equivalently, if
and only if they are all functions of a single observable. It occurred to me to
ask if this theorem of von Neumann on simultaneous observability could be
proved in the abstract setting of a more or less general quantum logic. I was
able to do this in the summer of 1961. Then I went to the Courant Institute,
where I met Warren Hirsch who was very friendly to me and we became
close friends. He encouraged me to publish this work and I submitted it to
the Communications in Pure and Applied Mathematics, where it appeared.

Warren and I became close friends for we shared many common interests. I
was very young, far away from home, knew nobody. Warren took me under his
wing and cheered me up tremendously. I will always remember his infectious
laugh, sense of humor, and supreme courteousness. I shared an office with
Hermann Hannish; and Warren, who was collaborating with Hermann, would
come in every morning and we would chat briefly of many things. I remember
his telling me that the main qualification of Byron “Whizzer” White to be a
supreme court justice was his ability as a football player!! I did not know if
he was joking or serious but I enjoyed it!!

Of all the people I met during my year at Courant (1962), Warren was the
most vivid, the most humane, and the most interesting, to me. In retrospect
I realize that he was extraordinarily generous, to have been so accessible
to an unknown young mathematician (I was 25) from nowhere. He was a
probabilist, but eventually branched into mathematical epidemiology, where
he made fundamental contributions and became a seminal figure.

I returned to the Indian Statistical Institute at Calcutta in 1962. I have
spoken elsewhere2 about these years and the efforts of a few of us to build
something lasting at the Institute. From this group only Varadhan remained
that year. We ran a seminar where we discussed whatever came to our minds:
quantum theory, markov processes, representation theory, and so on. Markov
processes were Varadhan’s great love but I was more interested in represen-
tation theory, and so we switched to that topic. As a first step(!!) we started
a project of specializing Harish-Chandra’s work on infinite dimensional rep-
resentations to complex semisimple Lie algebras [2].

For me this was the start of a long period of working on Lie groups and
their representations, and represented a turning point in my mathematical
education and growth. The work of Harish-Chandra and the immense effort
required to understand it, led me into the world of semisimple groups. No
one who has not entered it can understand its incredible beauty. Here are
objects which are special but are beautiful to an almost limitless degree, and
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which have moved so many people to spend extraordinary amounts of time
investigating them.

Why are semisimple groups so fundamental and so all-pervasive? This
question seems to have no satisfactory answer. I remember vividly the
Williamstown conference on representations of semisimple groups in 1972
when Harish-Chandra was giving a series of lectures on his work on the
Plancherel formula for p-adic semisimple groups. The lectures were built
around what he called the Lefschetz Principle, to the effect that all primes
must be treated on an equal footing. He had used this principle to guide him
in his work on p-adic groups by starting from his immense insight on real
groups (at the infinite prime) and seeing how the theory of real groups led him
to a substantial part of the harmonic analysis of the p-adic groups. He was of
course aware that this approach may not give everything in the p-adic case.
To buttress his own conviction perhaps, but certainly to take the audience
into his confidence, he recounted a story that Chevalley had told him. The
time of the story was that of the Genesis, when God and his faithful disciple,
the Devil, were creating the universe. God told the Devil that he (the Devil)
had a free hand in creating whatever he wanted, but there were a few things
that He (God) will take care of Himself; According to Chevalley, semisimple
groups were among these special things(!). Harish-Chandra, after reciting
this story, added, that he hoped that the Lefschetz Principle was also among
these special things!

My interest in the world of semisimple groups would last a long time,
during which period the world of physics was on the back burner, so to speak.
However events changed all this very abruptly. In 1983 Harish-Chandra died
of a heart attack and that was an event that changed my entire intellectual
landscape. The loss of someone who was a close personal friend as well as a
great mentor was too much to bear and to understand. When I recovered from
it eventually, I started to work on other themes in which I could create my
own paradigm. The idea that I should revive my original interest in quantum
theory was a natural one and an opportunity to bring it to the front arose
in 1988 when I was invited to go to Genoa, Italy, to work with the physics
group there, led by Enrico Beltrametti, and his younger associates Gianni
Cassinelli, Piero Truini, and their students, especially Ernesto De Vito and
Alberto Levrero. We called ourselves the quantum group of Genoa for fun
and that visit was the first of many since then. We worked on fundamental
questions of quantum theory, relativistic wave equations, extension of the
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Mackey theory to orbit schemes, and so on. The interest in physics remained
unabated after that.

I had, by then, also started talking about physics with Don Babbitt and
among the topics we wanted to understand was the spectral theory of first or-
der Schrödinger systems. Gradually we realized that there was no systematic
treatment of the foundations of first order systems, and that there was a group
theoretic approach that appeared tantalizingly new. This was the beginning
of my interest in the group theoretic view of differential equations and the
starting point of a very long collaboration with Don Babbitt, my longest and
most sustained with anyone. It led to many long papers [3] on differential
equations with irregular singularities, and to very happy and deep interac-
tions with the great masters of the theory such as Yasutaka Sibuya, Bernard
Malgrange, Tosihasu Kimura, Jean-Pierre Ramis, Werner Balser, and above
all, Pierre Deligne. Their interest and comments [4] were responsible for
some of our best work and deepest insights, although our work touched only
a small part of the beautiful theory of ordinary differential equations in the
complex domain. The local reduction theory and moduli of irregular systems
touches in a surprising manner on semisimple groups and their orbit spaces,
not only over C but also over function fields.

In UCLA I had the privilege of becoming friends with a great master,
Bob Finkelstein, and learning, not only physics but also the attitudes and ap-
proaches of physicists to physical problems. The situation became even better
for me in the 1990s when Sergio Ferrara, one of the world’s leading authorities
on super symmetry, accepted a permanent part-time position at UCLA and
started to come regularly to Los Angeles. We started discussing physics and
mathematics and that was how I began to get interested in Picard-Fuchs equa-
tions, regular singular differential equations, their moduli and monodromy,
and most importantly, supersymmetry. Attending Sergio’s lectures gave me
the idea to investigate the mathematical underpinnings of unitary represen-
tations of super Lie groups, especially super Poincaré groups. This I did
with the Genoa group of Gianni Cassinelli, Alessandro Toigo, and Claudio
Carmeli. I must mention that the work of Kostant [5] was a great pioneer-
ing effort in super geometry. To me however, personally it was the paper
of Deligne and Morgan [6] that was truly inspirational and started my own
excursions into super geometry.

The p-adic story represents an entirely different direction. Of course rep-
resentations of the p-adic semisimple groups have long been of interest to
mathematicians. Already in the early 1960s, Gel’fand, Mautner, Bruhat,
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Harish-Chandra, Jacquet, Langlands, and others saw that unitary representa-
tions of p-adic semisimple groups had deep arithmetic significance. But no
one has thought much of the relevance of nonarchimedean models to physics
except Beltrametti and his collaboratiors in the early 1970s. Their view was
that the singularities that were the plague of quantum field theory could have
arisen from the fact that the micro-structure of spacetime was radically dif-
ferent from what is usually assumed, for instance, that it is a real manifold.
They had the idea that one should investigate the possibility that it is a p-adic
manifold. This idea was revived in a big way in the late 1980s when Igor
Volovich [7] proposed that in regions of spacetime whose sizes are of the
order of the Planck units, no measurements are possible and so spacetime
geometry in such regions could not satisfy the archimedean axiom. From
the Volovich point of view it is a reasonable assumption that the micro ge-
ometry of spacetime is non archimedean. I came across thse ideas in 1990s
when I was already aware of the work of Beltrametti and his collaborators, of
Weyl’s work on the commutation rules over finite rings. and Manin’s paper
on adelic physics. My interest received a big stimulus when I went to Dubna
and Moscow and had the opportunity of spending time with Igor Volovich
and Anatoly Kochubei. The group-theoretic connections were (and are) es-
pecially fascinating to me. Although the groups involved are not semisimple,
the physically interesting cases of the Poincaré groups and the associated
quantum field theories over p-adic fields and adelic rings present interesting
challenges [8].

All of these topics are discussed in these essays. In this sense the essays
must be read like a travelogue, an account of an intellectual journey. I mean
this in the simplest and most naive sense: an account of some of the things
that I came across which interested me, and which I hope will interest some
others. The musical analogy with what I am going to say is that it is like a
string quartet or quintet, a recital of some voices, which I, as a moderator, try
to blend and present.

It should be clear to anyone who has read what I have to say in this prologue
that I have a great indebtedness to a huge collection of friends. But above all
the greatest debt I owe is to George Mackey and Harish-Chandra. In the last
essay I write about their work and how my personal interactions with them
allowed me a glimpse into what may be called, without any controversy, the
right way of looking at things.
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Chapter 2
Quantum Algebra*

The ways of gods are mysterious, inscrutable and beyond
the comprehension of ordinary mortals.

Julian Schwinger

Quantum algebra was created by Dirac. Its evolution also bears the imprint of the genius

of many great mathematicians and physicists such as Weyl, von Neumann, Schwinger,

Moyal, Flato, and others. It has inspired developments in deformation theory, represen-

tation theory, quantum groups, and many other mathematical themes.

2.1 The quantum algebra of Dirac
2.2 The von Neumann perspective
2.3 The measurement algebra of Schwinger
2.4 Weyl–Moyal algebra and the Moyal bracket
2.5 Quantum algebras over phase space
2.6 Moshe Flato remembered

2.1 The quantum algebra of Dirac

The quotation above is Julian Schwinger’s tribute to Weyl on the occasion of
Weyl’s birth centenary∗, but it applies with even greater force to the mysterious
way in which Dirac and Heisenberg slew all the dragons of classical physics
and let quantum theory emerge. We can understand almost all of their thought
processes but there will always be a residue of mystery to the moment of
creative genius when things suddenly go to a new level of perception and
imagination, and everything falls into its place as if by magic.

The term quantum algebra appeared for the first time in a paper of Dirac[1a,
1b] which has now become famous. Just a few months earlier Heisenberg [2]

* This essay and the next are based on lectures given at Howard University, Washington
D.C., sponsored by my friend D. Sundararaman, in the 1990s.

15V. S. Varadarajan, Refl ections on Quanta, Symmetries, and Supersymmetries,
DOI 10.1007/978-1-4419-0667-0_2, © Springer Science+Business Media, LLC 2011
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had come up with the startling and revolutionary idea that in quantum theory
physical observables must be represented by hermitian matrices which are in
general of infinite order; and that if the physical observable x is represented
by the matrix X, then the observable xn is represented by the matrix Xn(n =
1, 2, . . . ), the nth power of X. However Heisenberg had realized that the
matrices do not obey the commutative rule of multiplication that the classical
observables did, and felt that this was a serious flaw in his scheme. Heisenberg
had sent the proof sheets of his article to Fowler at Cambridge; and Fowler,
who was at that time the thesis advisor to Dirac, passed them on to Dirac. After
a study of Heisenberg’s paper Dirac realized that the noncommutativity of the
quantum observables, which had appeared to Heisenberg as an unwelcome
aspect of the new mechanics, was in fact one of its central features, and led
to a structure for the new mechanics which was a beautiful and far-reaching
generalization of classical mechanics, and which had the classical mechanics
as its limiting case in the correspondence limit when h̄ → 0. Dirac’s great
conceptual insight was that the quantum observables belong to an algebra
which is noncommutative but in which the commutator

(1) xy − yx =: [x, y]

of two elements x, y, which measures the departure from their commutativity,
corresponds to

ih̄{x, y}
where

{x, y} =
∑

1≤r≤k

(
∂x

∂qr

∂y

∂pr
− ∂x

∂pr

∂y

∂qr

)
is the classical Poisson Bracket:

(1a) [x, y] = ih̄{x, y}

Implicit here is the assumption that the observables in both the classical
and quantum theories are denoted by the same symbols but have different
multiplicative structures. It is not clear from Dirac’s discussion whether the
commutator is exactly equal to the Poisson Bracket, although for the position
and momentum observables

q1, . . . , qk, p1, . . . , pk


