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Preface

One of the major open problems in the representation theory of finite groups is the
determination of the irreducible representations of the symmetric group Sn over a
field of characteristic p > 0. Thanks to the work of James [179] in the 1970s, we do
have a natural parametrisation of the irreducible representations in the framework of
the theory of Specht modules, but explicit combinatorial formulae for their dimen-
sions are not known in general! Note that the analogous problem in characteristic 0
has been solved for a long time, by the work of Frobenius around 1900.

In a wider context, this problem is a special case of the problem of determin-
ing the irreducible representations of Iwahori–Hecke algebras. These algebras arise
naturally in the representation theory of finite groups of Lie type, but they can also
be defined abstractly as certain deformations of group algebras of finite Coxeter
groups, where the deformation depends on one or several parameters. For the pur-
poses of this introduction, let us assume that all the parameters are integral powers
of a fixed element in the base field. If this base parameter has infinite order and the
base field has characteristic 0, then we are in the “generic case” where the algebras
are semisimple; this case is quite well understood [132], [231]. Also note that, both
for historical reasons and as far as applications are concerned, the case where all
parameters are equal is particularly important.

The main focus in this text will be on the “modular case” where the algebras are
non-semisimple. This situation typically occurs over fields of positive characteris-
tic (a familiar phenomenon from the representation theory of finite groups), but it
also occurs over fields of characteristic 0 when the base parameter is a root of unity.
While leading to a highly interesting and rich theory in its own right, it turns out
that the study of the characteristic 0 situation also provides a crucial step for under-
standing the positive characteristic case, which is most important for applications to
finite groups of Lie type.

Over the last two decades, there has been considerable progress on the char-
acteristic 0 situation. One of the most spectacular advances is the “LLT conjec-
ture” [208] (where “LLT” stands for Lascoux, Leclerc, Thibon) and its proof by
Ariki [7], [10]. This brings deep geometric methods and the combinatorics of crys-
tal/canonical bases of quantum groups into the picture, opening the way for a variety

v



vi Preface

of new theoretical connections and practical applications. Combined with sophisti-
cated computational methods, the theory has now reached the following state:

• The classical theory of “Specht modules” has been generalised to Iwahori–
Hecke algebras associated to arbitrary finite Coxeter groups, giving rise to natural
parametrisations of the irreducible representations.

• Explicit descriptions of these parametrisations are now known in terms of so-
called “canonical basic sets”. Also, the dimensions of the irreducible represen-
tations are known, either by purely combinatorial algorithms (for the classical
types) or in the form of explicit tables (for the exceptional types).

These results remain valid over fields of characteristic p > 0, as soon as p is larger
than some bound depending on the type of the algebra. As far as the parametrisation
of the irreducible representations is concerned, the bound is very mild. For example,
in the equal-parameter case, it will turn out that it is sufficient to assume that the
characteristic is “good” in the sense of the theory of algebraic groups. However, as
far as the dimensions of the irreducible representations are concerned, no explicit
bound on p is known at the present state of knowledge.

But there is a general conjecture – first formulated by James [181] in type A –
specifying such a bound. This conjecture has been verified in a number of cases,
including algebras of type An for n � 9 (see [181]) and all algebras of exceptional
type (see Geck, Lux, and Müller [94], [126], [129]). If true, this conjecture would
also yield explicit results about the dimensions of the irreducible representations of
the symmetric group Sn in characteristic p > 0 where p is such that p2 > n.

The purpose of this book is to develop the general theory along the above lines
and to show how it is transformed into explicit results. In a sense, this book tries
to do for representations of Iwahori–Hecke algebras at roots of unity what the book
by Geck and Pfeiffer [132] did for the “generic case”. However, while [132] was
essentially self-contained, the situation is more complex here. In fact, in order to
obtain our main results, we rely on the following sources:

• Ariki’s proof [7] of the LLT conjecture.
• Certain deep properties of Kazhdan–Lusztig cells [222], [231] which do not seem

to be accessible by elementary methods.
• The existence and basic properties of “canonical bases” and “crystals” for the

Fock space representations of certain quantised enveloping algebras.

The first two ultimately rely on deep geometric theories, an exposition of which
would go far beyond the scope of this text. Fortunately, this material is now more
readily accessible through a number of books; for example, Kirwan [201], Chriss
and Ginzburg [50], Hotta et al. [159], Kiehl and Weissauer [197]. Also note that the
geometry only plays a role in the proofs, but not in the formulation of the results! (It
is not completely impossible that, some day, more direct and purely algebraic proofs
will be found.) Much of what we need about crystal and canonical bases can be
found in Ariki’s book [10]; see also Jantzen [185], Kashiwara [191], Lusztig [230].
Our general policy regarding these topics is that we shall introduce the required
notation to state the results that we need, but we will not endeavour to give the
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proofs. In this way, we can keep the size of this text within reasonable limits, and
yet present some substantial results and applications.

The origin of the theory of Iwahori–Hecke algebras lies in the representation
theory of finite groups of Lie type, where these algebras arise as endomorphism al-
gebras of certain induced representations. Via some natural functors, a well-defined
part of the representation theory of a finite group of Lie type is controlled by the
representation theory of Iwahori–Hecke algebras. Thus, the theory and the results
that we are going to present in this book form a contribution to the general project of
determining the irreducible representations of all non-abelian finite simple groups.
Note that such a group is either an alternating group of degree at least 5, or a simple
group of Lie type, or one of 26 sporadic simple groups; see Gorenstein et al. [142].

A rough outline of the contents of this book now follows.
Chapters 1 and 2 provide a general introduction to the representation theory of

Iwahori–Hecke algebras and, thus, may be of some independent interest. The dis-
cussion will be based on the Kazhdan–Lusztig theory of “cells” [195], [219]. In
Lusztig’s work [220] on characters of reductive groups over finite fields, a crucial
role is played by the “a-function”, which associates with every irreducible represen-
tation E of a finite Coxeter group a numerical invariant aE . One of the main themes
of this book will be to show that these invariants play a similarly important role for
“modular” representations. In Theorem 2.6.12, this culminates in the construction
of a “cell datum” in the sense of Graham and Lehrer [144], giving rise to a general
theory of “Specht modules” for Iwahori–Hecke algebras. (These results originally
appeared in [111], [112].) Thus, we now see that the original Specht module the-
ory in type A, due to Dipper and James [62] and Murphy [256], [257] (see also
the exposition by Mathas [245]), is the prototype of a picture which applies to all
Iwahori–Hecke algebras associated with finite Coxeter groups.

In our exposition, we pay a particular attention to treating Iwahori–Hecke alge-
bras of type A as a model case. The required results on Kazhdan–Lusztig cells will
be established in a complete and self-contained manner, where no use of geometry is
required; see Section 2.8. This treatment of type A is new and entirely independent
of the original approach by Dipper, James, and Murphy.

In Chapter 3, we study non-semisimple Iwahori–Hecke algebras in the spirit of
Brauer’s classical “modular representation theory” involving, in particular, blocks
and decomposition numbers. We shall assume that the reader has some familiarity
which the basic features of this theory (for a general finite-dimensional associative
algebra); this is readily accessible in standard reference texts, like Curtis and Reiner
[53] and Feit [83]. In this setting, we define the key concept of a “canonical basic
set” in Section 3.2. This concept is independent of the existence of a Graham–Lehrer
cell datum, but, in a sense, it captures precisely those features of a cell datum which
can be seen by looking only at the decomposition matrix of the algebra. Again, we
treat Iwahori–Hecke algebras of type A as a model case. In Section 3.5 we give a
new proof of the classification of the modular irreducible representations of these
algebras. For this purpose, we have found it convenient to introduce the formal
concept of an “abstract Fock datum” in Section 3.4. In another direction, we present
a factorisation result for decomposition matrices and formulate a general version of
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James’s conjecture. The exposition in Section 3.7 unifies the original formulation of
James [181] with the further developments in [92], [98], [129], [133].

In Chapter 4 we explain the fundamental connection between Iwahori–Hecke al-
gebras and representations of a finite group of Lie type G(Fq) (where q is a power
of a prime number and Fq denotes a finite field with q elements). We begin with a
self-contained discussion of the Schur functor and its variations, where we combine
the original approach of Dipper [58] with later developments by Cline et al. [51] and
Schubert [279]. Following [109], we then show in Theorem 4.4.1 how our results on
“cell data” and “canonical basic sets” lead to a natural parametrisation of the modu-
lar irreducible representations of G(Fq) which admit non-zero vectors fixed under a
Borel subgroup. This generalises classical results from the characteristic 0 situation
(due to Bourbaki, Iwahori, Tits, . . .) to positive characteristic. We also explain how
this fits into a (conjectural) classification of all irreducible representations of G(Fq)
in the “non-defining characteristic case”.

The determination of canonical basic sets for the classical types Bn and Dn has
turned out to be an extremely difficult problem. At the end of Chapter 4 we shall
discuss some cases that can be dealt with by elementary methods, based on the
work of Dipper, James, and Murphy [66], [68]. The solution in the general case
requires completely new methods; this will be achieved as a consequence of the
results presented in Chapters 5 and 6.

For this purpose, it will be convenient to work in the framework of the theory
of Ariki–Koike algebras, which are generalisations of Iwahori–Hecke algebras of
type Bn. The main idea of Chapter 5 is to try to generalise as much as possible
the combinatorial constructions involved in the discussion of type A in Chapter 3.
This leads us to consider in Section 5.7 certain special choices of the parameters
which arise from the combinatorics of “FLOTW multipartitions” (where FLOTW
stands for Foda, Leclerc, Okado, Thibon, Welsh [88]); these special choices cover,
in particular, the equal parameter case for Iwahori–Hecke algebras of type Bn and
Dn. As a consequence, in Theorem 5.8.2, we can state the main result concerning the
determination of canonical basic sets for this choice of parameters. The methods in
Chapter 5 do not allow us to complete the proof of this theorem. The missing piece
is a result about the number of irreducible representations of Ariki–Koike algebras
which is due to Ariki and Mathas [15] and which relies on the deep work of Ariki
[7] on the proof of the LLT conjecture. This will be discussed in Chapter 6.

The idea that FLOTW multipartitions are relevant in the modular representation
theory of Iwahori–Hecke algebras of classical type first appeared in the work of
Jacon [172], [173], [174]. Originally, the base field for the algebras was assumed to
be of characteristic 0. The new approach developed in Chapter 5 shows that these
results also hold for fields of positive characteristic.

In Chapter 6 we introduce the quantised enveloping algebra Uq(̂sle) and study
the canonical bases of certain Fock space representations. The associated “crystals”
carry some rich combinatorial structure which will be discussed in detail. We can
state (without proof) Ariki’s theorem [7] which links the canonical bases of the Fock
space representations to the irreducible representations of Ariki–Koike algebras at
roots of unity. This allows us to complete the proofs of the main results of the previ-
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ous chapter; see Section 6.3. Since this only covers certain choices of the parameters
for Ariki–Koike algebras, we then go further and present some deep results of Uglov
[291] on the canonical bases of the Fock space representations. We show how this
leads to an explicit description of the “canonical basic sets” for Ariki–Koike alge-
bras at roots of unity – and, hence, of Iwahori–Hecke algebras of classical type –
for any choice of the parameters, assuming that the base field is of characteristic 0;
see Theorem 6.7.2. We also derive purely combinatorial algorithms for computing
decomposition numbers and the dimensions of the irreducible representations (in
characterictic 0).

Finally, Chapter 7 contains explicit results concerning Iwahori–Hecke algebras
of exceptional type H3, H4, F4, E6, E7, E8. We also explain some basic algorithmic
methods, including Parker’s MEATAXE. The project of computing the decomposi-
tion matrices for these algebras (over fields of characteristic 0) was started almost
20 years ago in [126] and finally completed in [129]; the matrices for type E8 ap-
pear here for the first time in print. From these matrices, one can simply read off the
corresponding “canonical basic sets”.
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Chapter 1
Generic Iwahori–Hecke Algebras

In this chapter we introduce the main objects of our study: Finite Coxeter groups,
generic Iwahori–Hecke algebras, and their representations. The groups and algebras
are defined in a purely algebraic way, in terms of generators and defining relations.
Thus, a generic Iwahori–Hecke algebra H is seen to be a deformation of the group
algebra of a Coxeter group W , where the deformation depends on one or several
parameters. We recall the relevant definitions and basic results in Sections 1.1 and
1.2, but we tacitly assume that the reader already has some familiarity with them.

Following Lusztig [219], [231], we specify the parameters of H by a “weight
function” L : W → Γ , where Γ is a totally ordered abelian group. The typical and
most familiar example is the case where Γ = Z, with its natural order. More general
choices for Γ are useful for several reasons: first of all, this provides the greatest
level of generality and flexibility; furthermore, it brings out more clearly the role
that is played by the given total order on Γ .

In Section 1.3, the total order is used to define Lusztig’s a-function, which as-
sociates with every irreducible representation E ∈ IrrC(W ) an element aE ∈ Γ . The
construction relies in an essential way on the generic algebra H and the known con-
nection (via Tits’s deformation theorem) between the irreducible representations of
W and those of H. The explicit results summarized at the end of Section 1.3 show
the remarkable dependence of the function E �→ aE on the total order of Γ .

The study of the a-function, and its subtle relation with the Kazhdan–Lusztig
basis of H, will be one of the main themes of this book. As a first step we will
introduce in Section 1.5 an “asymptotic” version of H. Our construction, following
[112], is logically independent of Lusztig’s construction of the asymptotic ring J in
[223], [231, Chap. 18], but it is, of course, motivated by it. The advantage of our
approach is that it does not rely on certain deep properties of the Kazhdan–Lusztig
basis of H which are not (yet) known to hold in the general multiparameter case.
Instead, we rely on properties of the “balanced representations” in Section 1.4.

In Section 1.6, using the asymptotic version of H, we can then give a first defi-
nition of the partition of W into left, right, and two-sided “cells” and establish some
basic properties of them. This is followed by the discussion of a number of examples
and further results in Sections 1.7 and 1.8.

M. Geck, N. Jacon, Representations of Hecke Algebras at Roots of Unity,
Algebra and Applications 15, DOI 10.1007/978-0-85729-716-7 1,
© Springer-Verlag London Limited 2011
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2 1 Generic Iwahori–Hecke Algebras

1.1 Coxeter Groups and Weight Functions

We briefly recall the basic definitions concerning Coxeter groups and Iwahori–
Hecke algebras. More details and references can be found in [29], [132], [231].

1.1.1. Let S be a finite set and M = (mst)s,t∈S be a matrix satisfying mss = 1 for
all s ∈ S, and mst = mts ∈ {2,3,4,5, . . .}∪{∞} for all s �= t in S. Such a matrix is
called a Coxeter matrix. Then we define a group W = W (M) by a presentation with
generators S and defining relations as follows:

• s2 = 1 for all s ∈ S;
• (st)mst = 1 for all s �= t in S with mst < ∞.

The pair (W,S) is called a Coxeter system and W is called a Coxeter group.
We encode the above presentation in a graph, called the Coxeter graph of W . It

has vertices labelled by the elements of S, and two vertices labelled by s �= t are
joined by an edge if mst � 3. Moreover, if mst � 4, we label the edge by mst . If the
graph is connected, we say that W is an irreducible Coxeter group. If this is not the
case, we have a direct product decomposition W = W1×·· ·×Wd , where Wi = 〈Si〉
and each subset Si ⊆ S corresponds to the vertices in a connected component of the
Coxeter graph; furthermore, each Wi is a Coxeter group with generating set Si. The
groups Wi will be called the irreducible components of W .

Table 1.1 Coxeter graphs of irreducible finite Coxeter groups
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(The numbers on the vertices correspond to a chosen labelling of the elements of S.)

Type An−1 Bn Dn I2(m)
Order n! 2nn! 2n−1n! 2m

Type H3 H4 F4 E6 E7 E8
Order 120 14400 1152 51840 2903040 696729600
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There is a complete classification of the finite Coxeter groups. The graphs cor-
responding to the irreducible finite Coxeter groups, and the group orders, are given
in Table 1.1. We say that W is a finite Weyl group or is of crystallographic type if
mst ∈ {2,3,4,6}. These are precisely the finite Coxeter groups which arise, for ex-
ample, in the theory of finite-dimensional semisimple complex Lie algebras, or in
the theory of connnected reductive algebraic groups (see also Chapter 4).

The standard example is type An−1, where W can be identified with the symmetric
group Sn, generated by the basic transpositions si = (i, i+1) for 1 � i � n−1. This
is the Weyl group for the simple Lie algebra sln(C) of n×n-matrices with trace 0,
or for the simple algebraic group SLn(k) of n×n-matrices with determinant 1 over
any algebraically closed field k.

The groups of type H3, H4 or I2(m) (m = 5 or m > 7) are non-crystallographic.

1.1.2. Let k be any commutative ring (with 1) and {ξs | s∈ S}⊆ k× be a collection of
elements such that ξs = ξt whenever s, t ∈ S are conjugate in W . Then, by Bourbaki
[29, Chap. IV, §2, Exc. 23], we have a corresponding Iwahori–Hecke algebra

Hk = Hk(W,S,{ξs}).

This is an associative algebra over k which is free as a k-module, with basis {Tw |
w ∈W}; the multiplication is uniquely determined by the rule

TsTw =
{

Tsw if l(sw) > l(w),
Tsw +(ξs−ξ−1

s )Tw if l(sw) < l(w),

where s ∈ S and w ∈W . Here, l : W → Z�0 is the length function on W . Recall that,
given w ∈W , we can write w = s1 · · ·sp, where si ∈ S. If p is minimal with this
property, we say that this is a reduced expression for w; then l(w) = p is called the
length of w. In this case, the above rules imply that Tw = Ts1 · · ·Tsp .

We note that T1 is the identity element of Hk. The elements {ξs} are called the
parameters of Hk. We also remark that if W = W1×·· ·×Wd is the decomposition
into irreducible components (where Wi = 〈Si〉 as above), then we have

Hk
∼= Hk(W1,S1,{ξs}s∈S1)⊗k · · ·⊗k Hk(Wd ,Sd ,{ξs}s∈Sd );

see [132, Exc. 8.4]. In this way, many questions about Iwahori–Hecke algebras in
general can be reduced to the case where (W,S) is irreducible.

Example 1.1.3. (a) Assume that ξs = 1 for all s ∈ S. Then the map w �→ Tw defines
an isomorphism of k-algebras from kW (the group algebra of W over k) onto Hk.

(b) Assume that ξs = ξt for all s, t ∈ S; this case will be referred to as the equal-
parameter case. We are automatically in this case when W is of type An−1, Dn, I2(m)
(m odd), H3, H4, E6, E7 or E8 (since all generators in S are conjugate in W ).

(c) Assume that W is finite and irreducible. Then unequal parameters can only
occur in types Bn, F4 or I2(m) (m even). In these cases, the set S falls into two classes
under conjugation by W ; see also Example 1.1.11(b) below.

1.1.4. The purpose of this book is to address the following problem.
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Fundamental Problem. Assume that W is finite and k is a field. Then determine the
irreducible representations of Hk(W,S,{ξs}).

By Example 1.1.3, this includes the problem of determining the irreducible rep-
resentations of the symmetric group Sn

∼=W (An−1) over fields of positive character-
istic. Note that there are many open questions even in this special case; in particular,
the dimensions of the irreducible representations are not known!

If Hk(W,S,{ξs}) is semisimple, then the above problem is essentially solved; see
[132], [231]. So the main focus in this text will be on the non-semisimple situa-
tion. The first step consists of noting that any algebra Hk as above can be obtained
from a suitable “generic” Iwahori–Hecke algebra by a process of specialisation. For
this purpose, we introduce the following notion where, following a suggestion of
Bonnafé [21], we combine the two settings in [219], [231].

Definition 1.1.5 (Lusztig). Let Γ be an abelian group (written additively). We say
that a function L : W → Γ is a weight function if the following condition holds:

L(ww′) = L(w)+L(w′) for all w,w′ ∈W such that l(ww′) = l(w)+ l(w′).

Note that L is uniquely determined by the values {L(s) | s ∈ S}. Furthermore, if
{cs | s ∈ S} is a collection of elements in Γ such that cs = ct whenever s, t ∈ S
are conjugate in W , then there is a (unique) weight function L : W → Γ such that
L(s) = cs for all s ∈ S. (This follows from Matsumoto’s lemma; see [132, §1.2].)

1.1.6. Let us assume that a weight function L : W → Γ has been fixed. Let R ⊆ C

be a subring and A = R[Γ ] be the free R-module with basis {εg | g ∈ Γ }. There is a
well-defined ring structure on A such that εgεg′ = εg+g′ for all g,g′ ∈ Γ . We write
1 = ε0 ∈A. Given a∈A we denote by ag the coefficient of εg, so that a =∑g∈Γ ag εg.

We apply the general construction in 1.1.2 to the ring A and the collection of
elements {vs | s ∈ S} where vs := εL(s) for s ∈ S. The corresponding algebra will be
denoted by H = HA(W,S,L) and called the generic Iwahori–Hecke algebra associ-
ated with W,L. Thus, H is an associative algebra which is free as an A-module, with
basis {Tw | w ∈W}; the multiplication is given by

TsTw =
{

Tsw if l(sw) > l(w),
Tsw +(vs− v−1

s )Tw if l(sw) < l(w),

where s ∈ S and w ∈W . The element T1 is the identity element.
In the setting of 1.1.2, assume that there is a ring homomorphism θ : A→ k such

that θ(vs) = ξs for all s ∈ S. Then we can regard k as an A-module (via θ ), and we
find that Hk is obtained by extension of scalars from H:

Hk(W,S,{ξs})∼= k⊗A HA(W,S,L).

In this situation, we say that θ : A → k is a specialisation and that Hk(W,S,{ξs})
is obtained from H by specialisation (via θ ). For example, if θ1 : A → k is a ring
homomorphism such that θ1(εg) = 1 for all g ∈ Γ , then k⊗A HA(W,S,L)∼= kW .
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Example 1.1.7. Let Γ = Z. Then A = R[v,v−1] is the ring of Laurent polynomials
over R in one indeterminate v := ε . Let L : W → Z be a weight function and set
cs = L(s) for s ∈ S. Then the relations in H read as follows, where s ∈ S and w ∈W :

TsTw =
{

Tsw if l(sw) > l(w),
Tsw +(vcs − v−cs)Tw if l(sw) < l(w).

This is the setting of Lusztig [231]; it is particularly relevant for applications to the
representation theory of reductive groups over finite fields; see Section 4.2.

Remark 1.1.8. For various applications, it will be convenient to set Ṫw := εL(w) Tw

for all w ∈W and us := v2
s for all s ∈ S. Then, clearly, {Ṫw | w ∈W} also is an

A-basis of H; furthermore, we have the multiplication rules:

ṪsṪw =
{

Ṫsw if l(sw) > l(w),
usṪsw +(us−1)Ṫw if l(sw) < l(w),

where s ∈ S and w ∈W . Thus, the introduction of the basis {Ṫw | w ∈W} shows that
H is already defined over the subring Z[us | s∈ S]⊆ A; that is, all structure constants
with respect to this basis lie in Z[us | s ∈ S].

Example 1.1.9. A “universal” weight function is given as follows. For s, t ∈ S, we
write s ∼ t if s, t are conjugate in W . Let S′ ⊆ S be a set of representatives for the
equivalence classes of S under this relation. Let Γ0 be the group of all tuples (ns)s∈S′

where ns ∈ Z for all s ∈ S′. (The addition is defined componentwise.) Let L0 : W →
Γ0 be the weight function given by sending s∈ S to the tuple (nt)t∈S′ , where nt = 1 if
t is conjugate to s and nt = 0 otherwise. Let A0 = R[Γ0] and H0 = HA0(W,S,L0) be
the associated Iwahori–Hecke algebra; we denote the parameters by {v◦s | s ∈ S} in
this case. Note that A0 is nothing but the ring of Laurent polynomials in {v◦s | s∈ S′}
(and these elements are algebraically independent).

Any algebra Hk(W,S,{ξs}) as above is obtained by specialisation from H0

(where we take R = Z). Indeed, since {v◦s | s ∈ S′} are algebraically independent,
we can certainly find a unital ring homomorphism θ0 : A0 → k such that θ0(v◦s ) = ξs

for all s ∈ S. Thus, Hk(W,S,{ξs})∼= k⊗A0 H0 (via θ0).

1.1.10. As in [219], we shall assume that Γ admits a total ordering � which is
compatible with the group structure; that is, whenever g,g′ ∈Γ are such that g � g′,
we have g+h � g′+h for all h ∈Γ . Such an order will be called a monomial order.
We usually assume that L(s) � 0 for all s ∈ S. (We will see in Lemma 1.1.12 below
that this is no severe restriction.) The existence of a monomial order on Γ implies
that Γ is torsion free. Furthermore, we can write any 0 �= a ∈ A uniquely in the form

a = a1εg1 + · · ·+adεgd where 0 �= ai ∈ R, gi ∈ Γ and g1 < .. . < gd .

We denote lt(a) := a1εg1 and call this the leading term of a. We also set lt(0) := 0.
Then one easily checks that lt(aa′) = lt(a)lt(a′) for any a,a′ ∈ A. In particular, if
a �= 0 and a′ �= 0, then lt(aa′) �= 0 and so aa′ �= 0; hence, A is an integral domain.
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Finally, since S is a finite set, it is usually sufficient to consider the case where
Γ is finitely generated. Consequently, in this case, we have Γ ∼= Z

r for some r � 1,
which means that A is a ring of Laurent polynomials in r variables. Then specifying
a monomial order � on Γ amounts to specifying a total order on the monomials in
A (compatible with the multiplication).

Example 1.1.11. (a) In the set-up of Example 1.1.7, there is a natural monomial
order on Γ = Z, and we will usually assume that cs � 0 for all s ∈ S.

(b) Assume that W is of type Bn, F4 or I2(m) (m even). Then, in general, L de-
pends on two values a,b ∈ Γ , which are attached to the generators in S:

Bn �

b 4
�

a
�

a
� � � �

a

I2(m)
m even �

b m
�

a F4 �

a
�

a 4
�

b
�

b

The possible choices of monomial orders that are available here can best be seen
by taking L = L0 to be the “universal” weight function in Example 1.1.9, where
Γ0 = Z

2, b = (1,0) and a = (0,1). Then A0 = R[V±1,v±1] is the ring of Laurent
polynomials in the indeterminates V := ε(1,0) and v := ε(0,1). A familiar monomial
order is the pure lexicographic order given by

(i, j) �lex (i′, j′) def⇔ i � i′ or i = i′ and j � j′ (i, i′, j, j′ ∈ Z).

More generally, for any α ∈ R, we have a monomial ordering �α given by

(i, j) �α (i′, j′) def⇔ i+α j < i′+α j′ or
i+α j = i′+α j′ and j � j′

.

In particular, we see that there are infinitely many monomial orders on Γ0. For a
classification of all orderings on Γ0, see Tutorial 10 in [206, §1.4] and also [271].

(c) Now assume that W is any finite Coxeter group and L : W → Γ is a weight
function. Let � be a monomial order on Γ . By analogy to Bonnafé and Iancu [26],
we say that we are in the asymptotic case if L(s) > 0 for all s ∈ S and if, on any
irreducible component of type Bn, F4 or I2(m) (m even), where L takes values a,b ∈
Γ as above, we have b > ra > 0 for all r ∈ Z�1.

As already mentioned above, we will usually assume that L(s) � 0 for all s ∈ S.
This is justified by the following result, observed by Bonnafé [22, Cor. 5.8].

Lemma 1.1.12. Let � be a monomial order on Γ . For s ∈ S, set δs = 1 if L(s) � 0,
and δs = −1 if L(s) < 0. Then there is a well-defined weight function L′ : W → Γ
such that L′(s) = δsL(s) (s ∈ S); note that L′(s) � 0 for all s ∈ S.

Let H′ be the generic Iwahori–Hecke algebra associated with W,L′ and let {T ′w |
w ∈W} be the standard basis of H′. Then there is a unique A-algebra isomorphism
H→H′ such that Ts �→ δsT ′s for all s ∈ S.

Proof. To show that there is a weight function L′ as above, we need to check that
δs = δt whenever s, t ∈ S are conjugate in W . But, if s, t ∈ S are conjugate, then
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L(s) = L(t) and so δs, δt will either both be +1 or both be −1. Now let us show that
there is an algebra isomorphism H→ H′ as above. By [132, 4.4.5], the algebra H
has a presentation with generators {Ts | s ∈ S} and defining relations

T 2
s = T1 +(εL(s)− ε−L(s))Ts (s ∈ S),

TsTtTs · · ·
︸ ︷︷ ︸

mst terms

= TtTsTt · · ·
︸ ︷︷ ︸

mst terms

(s, t ∈ S,s �= t,mst < ∞).

Hence, all we need to check is whether the elements {δsT ′s | s ∈ S} satisfy the above
relations. Now, we have

(δsT
′

s )
2 = T 2

s′ = T ′1 +(εL′(s)− ε−L′(s))T ′s = T ′1 +(δsεL′(s)−δsε−L′(s))(δsT
′

s ).

It remains to note that if δs = −1, then δsεL′(s)− δsε−L′(s) = −ε−L(s) + εL(s), as
required. Now let us check the second type of relations. Let s �= t in S be such that
mst < ∞. Then the verification reduces to proving that δsδtδs · · · = δtδsδt · · · (with
mst factors on both sides). If δs = δt , this is clear. Now assume that δs �= δt . In
particular, L(s) �= L(t) in this case and so mst must be even. But then, on both sides
of the above identity, we have mst/2 factors corresponding to s and mst/2 factors
corresponding to t. Hence, we get the same result on both sides. ��

Remark 1.1.13. Let θ : A → k be a specialisation into a field k and consider the
specialised algebra Hk. Then, in the setting of Lemma 1.1.12, the algebras Hk and
H′k are isomorphic. Hence, if we have solved our “fundamental problem” in 1.1.4
for H′k, then this problem is automatically solved for Hk as well. Thus, indeed, it
will be sufficient to consider weight functions such that L(s) � 0 for all s ∈ S.

1.2 Representations of H

We will assume from now on that W is finite. Let L : W → Γ be a weight function
and H be the associated generic Iwahori–Hecke algebra. Let us now turn to the
representation theory of W and of H.

1.2.1. We set ZW := Z[2cos(2π/mst) | s, t ∈ S]⊆R. For example, ZW = Z if W is a
finite Weyl group. We shall always assume that ZW ⊆ R (where R⊆C is the subring
used to define A). Then the field of fractions of R, which will be denoted by K, is
a splitting field for W ; see [132, Theorem 6.3.8]. Throughout, we use the following
notation for the irreducible representations of W (up to isomorphism):

IrrK(W ) = {Eλ | λ ∈Λ},

where Λ is a finite indexing set and each Eλ is a K-vector space with a given KW -
module structure. We also use the notation

dλ = dimEλ , M(λ ) = an indexing set for a basis of Eλ
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(where M(λ ) is ordered in some way so that it makes sense to write down matrices
with rows and columns indexed by M(λ )).

Finally, we assume that Γ admits a monomial ordering as in 1.1.10. As we have
seen, this implies that A is an integral domain. Let K be the field of fractions of A; by
extension of scalars, we obtain a finite-dimensional K-algebra HK = K⊗A H which
is known to be split semisimple; see [132, Theorem 9.3.5]. Let Irr(HK) denote the
set of irreducible representations of HK (up to isomorphism). By Tits’s deformation
theorem, there is a bijection between this set and IrrK(W ); see [132, 8.1.7] and also
Exercises 26 and 27 of Bourbaki [29, Chap. IV, §2]. Thus, we can write

Irr(HK) = {Eλε | λ ∈Λ} (dλ = dimEλε ),

where each Eλε is a K-vector space with a given HK-module structure. The corre-
spondence Eλ ↔ Eλε is uniquely determined by the condition

trace(w,Eλ ) = θ1
(

trace(Tw,Eλε )
)

for all w ∈W ,

where θ1 : A→ R is the unique R-linear ring homomorphism such that θ1(εg) = 1
for all g ∈ Γ . Note that, by [132, Theorem 9.3.5], we have

εL(w) trace(Tw,Eλε ) ∈ ZW [vs | s ∈ S] for all w ∈W ;

in particular, these traces lie in A and so it makes sense to apply θ1 to them. It also
follows that, for any HK-module V , we have trace(Tw,V ) ∈ A for all w ∈W .

Remark 1.2.2. The proofs of the statements summarized in 1.2.1, especially the
statements concerning splitting fields for W and HK , are by no means easy. In fact,
various chapters of [132] are concerned with these questions, where case-by-case
arguments (according to the classification of finite Coxeter groups) are required. A
number of authors have contributed to the establishment of these results, over an
extended period of time; see the bibliographic comments in [132, §5.7 and §9.5].

If one is mainly interested in finite Weyl groups and the equal-parameter case,
then more conceptual arguments are available via the geometry of an associated
algebraic group; see Springer [282] and Lusztig [216] (see also Example 2.5.7).

Example 1.2.3. Let Cl(W ) be the set of conjugacy classes of W . For C ∈ Cl(W ), let
wC ∈C be a representative which has minimal length in C. Then the matrix

(a) X(H) :=
(

trace(ṪwC ,Eλε )
)

λ∈Λ ,C∈Cl(W )

is called the character table of H, where we define Ṫw := εL(w) Tw for any w ∈W , as
in Remark 1.1.8. By a result due to Geck and Pfeiffer [132, 8.2.9], X(H) does not
depend on the choice of the representatives {wC |C ∈ Cl(W )}; furthermore, there is
a unique set of polynomials { fw,C | w ∈W,C ∈ Cl(W )} ⊆ Z[v2

s | s ∈ S] such that

(b) trace(Ṫw,Eλε ) = ∑
C∈Cl(W )

fw,C trace(ṪwC ,Eλε ) for any λ ∈Λ and w ∈W .
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The tables X(H) are explicitly known for all W,L; see [132, Chap. 10 and 11] and
the references there. When we apply the specialisation homomorphism θ1 : A→ R
to the entries of X(H), we obtain the classical character table of the finite group W .

Example 1.2.4. We shall frequently apply the following “specialisation argument”
for representations. Let V be an HK-module and V ′ be a KW -module such that

(∗) trace(w,V ′) = θ1
(

trace(Tw,V )
)

for all w ∈W ,

where θ1 is defined as above; recall that KW ∼= K⊗A H, where K is regarded as
an A-module via θ1. For example, (∗) will certainly hold when V ∼= K⊗A M and
V ′ ∼= K⊗A M, where M is an H-module which is finitely generated and free over A.

For any λ ∈ Λ , denote by m(V,λ ) the multiplicity of Eλε as an irreducible con-
stituent of V , and denote by m(V ′,λ ) the multiplicity of Eλ as an irreducible con-
stituent of V ′. Thus, we have

trace(Tw,V ) = ∑
λ∈Λ

m(V,λ ) trace(Tw,Eλε ) for all w ∈W ,

trace(w,V ′) = ∑
λ∈Λ

m(V ′,λ ) trace(w,Eλ ) for all w ∈W .

Applying θ1 and using Tits’s deformation theorem, we obtain that

∑
λ∈Λ

m(V,λ ) trace(w,Eλ ) = ∑
λ∈Λ

m(V ′,λ ) trace(w,Eλ ) for all w ∈W .

Since the trace functions associated with the irreducible representations of W are
linearly independent, we deduce that m(V,λ ) = m(V ′,λ ) for all λ ∈Λ .

Example 1.2.5. It is known that every w ∈W is conjugate to its inverse; see [132,
3.2.14]. Hence, we have trace(w,Eλ ) = trace(w−1,Eλ ) for all λ ∈ Λ . A similar
property holds on the level of HK ; that is, we have

(a) trace(Tw,Eλε ) = trace(Tw−1 ,Eλε ) for all w ∈W .

This is seen as follows. It is easily checked that the A-linear map h �→ h� defined by
T �

w = Tw−1 (w ∈W ) is an anti-involution of H. So we can define the contragredient
module Êλε := HomK(Eλε ,K) where Tw acts via Tw : ϕ �→ ϕ ◦Tw−1 for ϕ ∈ Êλε .

For any w ∈W , we have trace(Tw, Êλε ) = trace(Tw−1 ,Eλε ) and, hence,

θ1
(

trace(Tw, Êλε )
)

= trace(w−1,Eλ ) = trace(w,Eλ ) = θ1
(

trace(Tw,Eλε )
)

.

By Tits’s deformation theorem, this implies that Êλε ∼= Eλε and so (a) holds.

Example 1.2.6. Let sgn denote the sign representation of W , which is given by the
group homomorphism sending each w ∈W to (−1)l(w). Via tensoring with sgn, we
obtain a bijection λ �→ λ † of Λ such that

(a) Eλ
† ∼= Eλ ⊗ sgn for all λ ∈Λ .
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This operation can be lifted to representations of HK . Namely, there is a unique
A-algebra automorphism †: H → H such that T †

s = −T−1
s for all s ∈ S; see [132,

Exc. 8.2]. By extension of scalars, this induces a K-algebra automorphism of HK ,
which we denote by the same symbol. Given any finite-dimensional HK-module V ,
denote by V † the HK-module with the same underlying vector space V , but where
h ∈HK acts via h†. Then, by [132, Prop. 9.4.1], we have

(b) (Eλ
†
)ε ∼= (Eλε )† for all λ ∈Λ .

The trace of Tw on Eλ
†

ε is determined as follows. There is a unique R-linear ring
homomorphism A→ A, a �→ ā, such that εg = ε−g for all g ∈ Γ . Then we have

(c) trace(Tw,Eλ
†

ε ) = (−1)l(w)trace(Tw,Eλε ) for all w ∈W ;

see [132, Prop. 9.4.1].

Example 1.2.7. Let w0 ∈W be the longest element. Then T 2
w0

lies in the centre of
HK and, hence, acts by a scalar in every irreducible representation of HK . This scalar
can be explicitly described, as follows. Let T := {wsw−1 | s ∈ S,w ∈W} be the set
of all reflections in W . Let S′ ⊆ S be a set of representatives of the conjugacy classes
of W which are contained in T . For s ∈ S′, let Ns be the cardinality of the conjugacy
class of s; thus, |T |=∑s∈S′ Ns. Let ρλ : HK →Mdλ (K) be a representation afforded
by Eλε . Then, by an argument due to Springer (see [132, Theorem 9.2.2]), we have

(a) ρλ (T 2
w0

) = ε2Nλ Idλ where Nλ := ∑
s∈S′

(Ns trace(s,Eλ )
dimEλ

)

L(s) ∈ Γ

and Idλ denotes the identity matrix of size dλ . Note that, since every s ∈ S′ has order
2, we have trace(s,Eλ ) ∈ Z and so, by a well-known result in the character theory
of finite groups, the quantity Nstrace(s,Eλ )/dimEλ also is an integer. Thus, the
expression defining Nλ is a well-defined element of Γ .

Now let us set P := ε−Nλ ρλ (Tw0). Then P2 = Idλ and so P is a diagonalisable
matrix with eigenvalues ±1; in particular, m := trace(P) ∈ Z. Thus, we obtain that
trace(Tw0 ,E

λ
ε ) = mεNλ . Applying the specialisation homomorphism θ1 : A→ R, we

conclude that m = trace(w0,Eλ ) and, hence,

(b) trace(Tw0 ,E
λ
ε ) = trace(w0,E

λ )εNλ .

Thus, trace(Tw0 ,E
λ
ε ) is explicitly described in terms of character values of W .

Remark 1.2.8. We have already remarked in 1.2.1 that trace(Tw,Eλε ) ∈ A for all w ∈
W . So it is natural to ask if it is even possible to find a representation ρλ afforded by
Eλε such that ρλ (Tw) ∈Mdλ (A) for all w ∈W . This is indeed the case, but the proof
requires some deep results on the Kazhdan–Lusztig basis of H and a case-by-case
analysis; see [132, 9.3.8] and the references there. (We will recover this result in
the context of cellular algebras in Corollary 2.7.14.) However, we can establish a
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weak version of this statement by a general argument, and this will be useful in our
discussion of cells in Section 1.6. This relies on the following ring-theoretic result.

Lemma 1.2.9 (Rouquier [272]). Assume thatΓ = Z, so that A is the ring of Laurent
polynomials in one indeterminate v = ε . Then the subring

R :=
{

f
g

∣

∣

∣ f ∈ Z[v,v−1],g ∈ Z[v] and g has constant term 1

}

⊆ K.

is a principal ideal domain.

Proof. We need some standard results from commutative ring theory; a suitable
reference is Matsumura [248]. Following Broué and Kim [33, §2.B], the first and
crucial step is to show that R is a Dedekind domain. For this purpose, by [248,
Theorem 11.6], it is enough to show that R is a one-dimensional noetherian domain
which is integrally closed in Q(v) (its field of fractions). Now note that R ⊆ Q(v)
is the localisation of Z[v,v−1] with respect to the multiplicatively closed set

M = {g ∈ Z[v] | g has constant term 1}.

But the ring Z[v,v−1] is known to be noetherian and integrally closed in Q(v). These
properties pass on to localisations and, hence, R is noetherian and integrally closed
in Q(v). In order to show that R is one-dimensional, we must show that every
non-zero prime ideal of R is maximal. So let p be a non-zero prime ideal of R.
By [248, Theorem 4.1], p is generated by a prime ideal I ⊆ Z[v,v−1] such that I ∩
M = ∅. The prime ideals in Z[v,v−1] are explicitly known (see, for example, [132,
Exc. 7.9]). Thus, I is either principal (generated by a prime number in Z or by an
irreducible polynomial in Z[v]) or generated by two elements � and f where � > 0
is a prime number and f ∈ Z[v] is a monic polynomial whose reduction modulo �
is an irreducible polynomial in Fl [v]. But ideals of the latter type have non-empty
intersection with M. Indeed, every irreducible polynomial in Fl [v] divides vlm − v
for some m � 1. Hence, we have vlm − v ∈ I for some m � 1. Since v is a unit in
Z[v,v−1], this implies that 1− vlm−1 ∈ I∩M and so I∩M is non-empty, as claimed.

Consequently, all the non-zero prime ideals in R are principal. In particular, this
shows that every non-zero prime ideal in R is maximal and, hence, R is a Dedekind
domain. Finally, in a Dedekind domain, every non-zero ideal is a product of a finite
number of prime ideals. We have just seen that every prime ideal in R is principal.
Hence, every ideal in R is principal. ��

Corollary 1.2.10. Assume that W is a Weyl group and Γ = Z. Then, for each λ ∈Λ ,
there exists a representation πλ : HK →Mdλ (K) afforded by Eλε such that πλ (Tw)∈
Mdλ (R) for all w ∈W.

Proof. Since W is a Weyl group, we have ZW = Z and so we can take R = Z. Hence,
K = Q(v) is the field of fractions of the ring R, which is a principal ideal domain by
Lemma 1.2.9. But then a standard argument (see, for example, [132, 7.3.7]) shows
that every irreducible representation of HK can be realised over R. ��
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1.2.11. We define an A-linear map τ : H→ A by τ(T1) = 1 and τ(Tw) = 0 for 1 �=
w∈W . Then we have τ(TyTx) = τ(TxTy) = δx−1y (Kronecker delta); see [132, 8.1.1].
So τ defines a non-degenerate symmetric bilinear form on H, where {Tw | w ∈W}
and {Tw−1 | w ∈W} form a pair of dual bases. Thus, H is a symmetric algebra, with
trace form τ . Let τK be the canonical extension to a trace form on HK .

For λ ∈Λ , let χλ denote the character of Eλε ; we have χλ (h) = trace(h,Eλε )∈ A
for all h ∈ H. Since HK is split semisimple, the characters {χλ | λ ∈ Λ} form a
basis of the vector space of all trace functions on HK . Hence, by the general theory
of symmetric algebras, there is a unique expression (see [132, 7.2.6]):

(a) τK = ∑
λ∈Λ

c−1
λ χ

λ where 0 �= cλ ∈ K.

The elements cλ were called Schur elements in [96]. By [132, Theorem 9.3.5], we
have the following important integrality property:

(b) εL(w0)cλ ∈ ZW [vs | s ∈ S] for all λ ∈Λ ;

In particular, cλ lies in A. The generic degree corresponding to Eλ is defined by

(c) δλ := c−1
λ PW,L ∈ K where PW,L := ∑

w∈W
ε2L(w),

but note that this may no longer be an element of A.

Choosing a basis of Eλε , indexed by M(λ ) as above, we obtain a matrix repre-
sentation ρλ : HK →Mdλ (K). Given h ∈HK and s, t ∈M(λ ), we denote by ρλst(h)
the (s, t)-entry of ρλ (h). We now have the following Schur relations. In particular,
these yield an alternative characterisation of the elements cλ .

Proposition 1.2.12 (Schur relations; cf. [132, 7.2.2]). Let {Bw | w ∈W} be any
basis of H and {B∨w |w∈W} the corresponding dual basis, such that τ(BxB∨y ) = δxy

for all x,y ∈W. Given λ ,μ ∈Λ , let s, t ∈M(λ ) and u,v ∈M(μ). Then

∑
w∈W

ρλst(Bw)ρμuv(B∨w) =
{

cλ if λ = μ , s = v, t = u,
0 otherwise.

In particular, this implies the orthogonality relations

∑
w∈W

χλ (Bw)χμ(B∨w) =
{

dλ cλ if λ = μ ,
0 otherwise.

The origin of the definition of the elements cλ and of the generic degrees δλ lies
in the representation theory of finite groups of Lie type. Without going into much
detail at this stage, let us briefly describe this connection.

1.2.13. Let us assume that W is of crystallographic type and arises as the Weyl group
of a family of finite groups of Lie type
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S = {G(q) | q any prime power}.

Assume that all groups G(q) are of “split type”. Some examples are given by

W = W (An−1) where G(q) = GLn(Fq) for all q,

W = W (Bn) where G(q) = SO2n+1(Fq) for all q,

W = W (E8) where G(q) = E8(Fq) for all q.

Let Γ = Z and the weight function L be such that L(s) = 1 for all s ∈ S. Then
A = R[v,v−1] is the ring of Laurent polynomials in one indeterminate v = ε . In this
situation, it is known that cλ divides PW,L in K[v,v−1] and that there is a polynomial
Dλ ∈ Q[u] (where u is an indeterminate) such that δλ = Dλ (v2) ∈ Q[v]; see [132,
9.3.6]. This polynomial Dλ has the following interpretation.

Given a prime power q, let us consider the complex irreducible representations
of G(q). Let B(q)⊆ G(q) be a Borel subgroup and define

IrrC(G(q),B(q)) :=
{

ρ ∈ IrrC(G(q))
∣

∣

∣

ρ occurs in the permutation
representation C[G(q)/B(q)]

}

,

the set of (unipotent) principal series representations. Then, by classical results due
to Iwahori, Tits, Benson and Curtis, there exists a bijection

IrrC(W ) ∼→ IrrC(G(q),B(q)), Eλ �→ ρλq ,

such that dimρλq = Dλ (q) for all λ ∈Λ . (See [53, §68], [132, §8.4] or Section 4.3 in
this book.) Thus, Dλ (q) is the dimension of an irreducible representation of G(q).

1.3 Lusztig’s a-Invariants

In Lusztig’s work [220] on characters of reductive groups over finite fields, a crucial
role is played by a certain function which attaches to each irreducible representation
Eλ of W an invariant aλ ∈ Z�0. In the situation of 1.2.13, this is defined by

aλ := max{i � 0 | ui divides Dλ} for any λ ∈Λ .

(See also 2.2.12 and 4.3.12 for further interpretations of aλ .) One of the main themes
of this book will be to show that these a-invariants play a similarly important role
for “modular” representations.

Throughout this section, let W be a finite Coxeter group and L : W → Γ be a
weight function. Let � be a monomial order onΓ such that L(s) � 0 for all s∈ S. Let
Γ�0 := {g ∈ Γ | g � 0} and denote by R[Γ�0] the set of all R-linear combinations of
terms εg where g � 0. The notations R[Γ>0], R[Γ�0], R[Γ<0] have a similar meaning.
We are now ready to introduce the invariants aλ in general.
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Proposition 1.3.1 (Lusztig). Let λ ∈ Λ . Then there exist some aλ ∈ Γ�0 and a
strictly positive real number fλ ∈ ZW such that

ε2aλ cλ ∈ R[Γ�0] and ε2aλ cλ ≡ fλ mod R[Γ>0].

Note that aλ and fλ are uniquely determined by these conditions. We have

aλ = min{g ∈ Γ�0 | εgχλ (Tw) ∈K[Γ�0] for all w ∈W}.

Proof. (Cf. [217, 1.9].) For the following discussion, it will be useful to assume that
K ⊆ R. By Example 1.2.5(a), we have χλ (Tw) = χλ (Tw−1) for all w ∈W . Hence,
using the orthogonality relations in Proposition 1.2.12 we obtain

∑
w∈W

χλ (Tw)2 = ∑
w∈W

χλ (Tw)χλ (Tw−1) = dλ cλ .

Now we set aλ := min{g ∈ Γ�0 | εgχλ (Tw) ∈ K[Γ�0] for all w ∈W}. For each w ∈
W , denote by cw,λ ∈K the constant term of εaλ χλ (Tw); note that cw,λ �= 0 for at least
one w ∈W . Let f ′λ := ∑w∈W c2

w,λ . Since all cw,λ are real numbers, not all of which
are zero, we conclude that f ′λ is a strictly positive real number. Now we obtain

ε2aλ ∑
w∈W

χλ (Tw)2 ≡ ∑
w∈W

(

εaλ χλ (Tw)
)2 ≡ ∑

w∈W
c2

w,λ ≡ f ′λ mod K[Γ>0].

Hence, setting fλ = f ′λ/dλ , we see that ε2aλ cλ ∈ fλ +K[Γ>0]. Finally, since cλ ∈
ZW [Γ ], we must have fλ ∈ ZW . ��

Remark 1.3.2. Let λ ∈Λ and w ∈W . By Proposition 1.3.1, we can write

εaλ χλ (Tw) = cw,λ +K-linear combination of terms εg where g > 0,

where cw,λ ∈ K. These are the “leading coefficients of character values” consid-
ered by Lusztig [220, Chap. 5], [225]. From the orthogonality relations in Proposi-
tion 1.2.12 (see also [132, Exc. 9.8]), we immediately deduce that

∑
w∈W

cw,λ cw−1,μ =
{

fλdλ if λ = μ,
0 otherwise.

Thus, the coefficients cw,λ behave as if they were the character values of an algebra
with a basis indexed by the elements of W ; see Section 1.5 for a further discussion.

Example 1.3.3. Assume that L(s) > 0 for all s ∈ S. Let λ ∈Λ .

(a) If Eλ is the unit representation, then aλ = 0 and fλ = 1.
(b) If Eλ is the sign representation, then aλ = L(w0) and fλ = 1.
(c) If Eλ is neither the unit nor the sign representation, then 0 < aλ < L(w0).

Here, w0 ∈W denotes the longest element. (Note that these statements fail if L(s) =
0 for some s ∈ S; see Example 1.3.7 below.) First note that the unit and the sign
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representation of W correspond to the following representations of HK , respectively:

indε : HK → K, Tw �→ εL(w),

sgnε : HK → K, Tw �→ (−1)l(w)ε−L(w).

The condition that L(s) > 0 for all s ∈ S implies that 0 < L(w) < L(w0) for all
w ∈W \ {1,w0}. This immediately yields (a) and (b). To prove (c), first note that
indε(Tw) ∈ R[Γ>0] for w �= 1. This yields that

εaλ ∑
w∈W

χλ (Tw) indε(Tw−1)≡ εaλ χλ (T1) mod R[Γ>0].

Since Eλε �∼= indε , the sum on the left-hand side must be zero by Proposition 1.2.12.
Hence, aλ > 0, as required. On the other hand, by 1.2.1, we have εL(w)χλ (Tw) ∈
R[Γ�0] for all w ∈W . This already shows that aλ � L(w0). Now assume, if possible,
that aλ = L(w0). Then εL(w0)χλ (Tw) ∈ R[Γ>0] for all w �= w0 and εL(w0)χλ (Tw0) has
a non-zero constant term. Using (b), it follows that

ε2L(w0) ∑
w∈W

χλ (Tw)sgnε(Tw−1)≡±εL(w0)χλ (Tw0) �≡ 0 mod R[Γ>0].

But, since Eλε �∼= sgnε , we also deduce from Proposition 1.2.12 that the sum on the
left-hand side is zero, which is a contradiction. So we have aλ < L(w0), as required.

Example 1.3.4. Recall from Example 1.2.6 that we have a “duality” operation λ �→
λ † on Λ such that Eλ

† ∼= Eλ ⊗ sgn. By [132, Prop. 9.4.3], we have

cλ † = cλ = ε−2Nλ cλ and aλ † −aλ = Nλ , with Nλ as in Example 1.2.7(a).

Here, the map A→ A, a �→ ā, is defined as in Example 1.2.6.

Remark 1.3.5. Let W = W1×·· ·×Wd be the decomposition into irreducible compo-
nents. Correspondingly, we have

IrrK(W ) = {Eλ1 � · · ·�Eλd | λi ∈Λi}, where IrrK(Wi) = {Eλi | λi ∈Λi}.

Thus, we can identify Λ = Λ1 × ·· · ×Λd . As already noted in 1.1.2, we have a
tensor product decomposition H∼= H1⊗A · · ·⊗A Hd , where Hi is the generic algebra
associated with Wi and the restriction of L to Wi. Hence, we also have

Irr(HK) = {Eλ1
ε � · · ·�Eλd

ε | λi ∈Λi}.

By [132, Exc. 8.5], this yields that cλ = cλ1
· · ·cλd

, where λ = (λ1, . . . ,λd). Conse-
quently, we have aλ = aλ1

+ · · ·+aλd
and fλ = fλ1

· · · fλd
. Thus, the determination

of aλ and fλ can be reduced to the case where (W,S) is irreducible.

Remark 1.3.6. The elements cλ are explicitly known for all types of W ; see [132,
Chap. 10 and 11] and the references there. It turns out that they have a quite special
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Table 1.2 The invariants fλ and aλ for type F4

b > 2a > 0 b = 2a > 0 2a > b > a > 0 b = a > 0 b > a = 0
Eλ fλ aλ fλ aλ fλ aλ fλ aλ fλ aλ
11 1 0 1 0 1 0 1 0 6 0
12 1 12b−9a 2 15a 1 11b−7a 8 4a 6 12b
13 1 3a 2 3a 1 −b+5a 8 4a 6 0
14 1 12b+12a 1 36a 1 12b+12a 1 24a 6 12b
21 1 3b−3a 2 3a 1 2b−a 2 a 12 3b
22 1 3b+9a 2 15a 1 2b+11a 2 13a 12 3b
23 1 a 1 a 1 a 2 a 3 0
24 1 12b+a 1 25a 1 12b+a 2 13a 3 12b
41 2 3b+a 2 7a 2 3b+a 8 4a 6 3b
91 1 2b−a 2 3a 1 b+a 1 2a 2 2b
92 1 6b−2a 1 10a 1 6b−2a 8 4a 2 6b
93 1 2b+2a 1 6a 1 2b+2a 8 4a 2 2b
94 1 6b+3a 2 15a 1 5b+5a 1 10a 2 6b
61 3 3b+a 3 7a 3 3b+a 3 4a 12 3b
62 3 3b+a 3 7a 3 3b+a 12 4a 12 3b
121 6 3b+a 6 7a 6 3b+a 24 4a 6 3b
42 1 b 1 2a 1 b 2 a 6 b
43 1 7b−3a 1 11a 1 7b−3a 4 4a 6 7b
44 1 b+3a 1 5a 1 b+3a 4 4a 6 b
45 1 7b+6a 1 20a 1 7b+6a 2 13a 6 7b
81 1 3b 1 6a 1 3b 1 3a 12 3b
82 1 3b+6a 1 12a 1 3b+6a 1 9a 12 3b
83 1 b+a 2 3a 1 3a 1 3a 3 b
84 1 7b+a 2 15a 1 6b+3a 1 9a 3 7b
161 2 3b+a 2 7a 2 3b+a 4 4a 6 3b

The notation for IrrK(W ) is defined in [132, Appendix C.3].
Here, a := L(s1) = L(s2) and b := L(s3) = L(s4), cf. Table 1.1.

form. Indeed, one checks that there is a family {Φd | d ∈ I} of monic polynomials
in one variable over ZW such that

cλ = fλ εγλ ∏
d∈I

Φd
(

εγλ ,d
)nλ ,d , where γλ ∈ Γ , nλ ,d � 0 and 0 �= γλ ,d ∈ Γ ;(a)

all the (complex) roots of Φd are roots of unity;(b)

the product of all cλ (for λ ∈Λ ) lies in Z[u±1
s | s ∈ S], where us := v2

s (s ∈ S).(c)

Note that the monomials γλ and γλ ,i are not uniquely determined. In fact, depending
on the monomial order � on Γ , the terms involving those monomials are rearranged
so as to produce the relation ε2aλ cλ ≡ fλ mod R[Γ>0] in Proposition 1.3.1.

From the explicit knowledge of cλ one can deduce explicit formulae for the in-
variants aλ and fλ . If L(s) = 0 for all s ∈ S, then cλ = |W |/dλ . Hence, aλ = 0 and
fλ = |W |/dλ for all λ ∈Λ in this case. Now assume that L(s) > 0 for at least some
s ∈ S. For W of exceptional type H3, H4, E6, E7, E8 (where we are automatically in
the equal-parameter case), see the tables in [220, Chap. 4] and in the Appendices C
and E in [132]. For type F4, see Table 1.2 (p. 16); note that, by the symmetry of the
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diagram, we can assume without loss generality that L(s1) = L(s2) � L(s3) = L(s4).
For the types I2(m), An−1, Bn and Dn, see the examples below.

Table 1.3 The irreducible representations of HK in type I2(m)

1εW : Ts1 �→ vs1 , Ts2 �→ vs2 ,

sgnε : Ts1 �→ −v−1
s1

, Ts2 �→ −v−1
s2

,

sgnε1 : Ts1 �→ vs1 , Ts2 �→ −v−1
s2

,

sgnε2 : Ts1 �→ −v−1
s1

, Ts2 �→ vs2 ,

σεj : Ts1 �→
(

−v−1
s1

0

μ j vs1

)

, Ts2 �→
(

vs2 1

0 −v−1
s2

)

λ 1W (sgn1) σ j (sgn2) sgn

aλ 0 a a a ma (b = a > 0)
fλ 1 m

2
m

2−ζ j−ζ− j
m
2 1 (b = a > 0)

aλ 0 a b m
2 (b−a)+a m

2 (a+b) (b > a � 0)
fλ 1 1 m

2−ζ 2 j−ζ−2 j 1 1 (b > a > 0)

fλ 2 2 m
2−ζ 2 j−ζ−2 j 2 2 (b > a = 0)

(where b := L(s1), a := L(s2) and μ j := vs1 v−1
s2

+ζ j +ζ− j + v−1
s1

vs2 )

Example 1.3.7. Let W be of type I2(m) (m � 3); that is, W = 〈s1,s2〉, where s2
1 =

s2
2 = (s1s2)m = 1. In this case, ZW = Z[ζ +ζ−1], where ζ ∈ C is a root of unity of

order m, chosen such that ζ +ζ−1 = 2cos(2π/m). By [132, §5.4], we have

IrrK(W ) =
{

{1W ,sgn,σ1,σ2, . . . ,σ(m−1)/2} if m is odd,
{1W ,sgn,σ1,σ2, . . . ,σ(m−2)/2,sgn1,sgn2} if m is even,

where 1W is the unit and sgn is the sign representation, all σ j are two-dimensional,
and sgn1,sgn2 are two further one-dimensional representations when m is even, in
which case we fix the notation such that s1 acts as +1 in sgn1 and as −1 in sgn2.
By [132, §8.3], explicit realisations of the corresponding representations of HK are
known; see Table 1.3. Using the formulae for cλ in [132, Theorem 8.3.4], one ob-
tains the invariants aλ and fλ . In Table 1.3, the columns are ordered such that the
invariants aλ are increasing from left to right; the columns corresponding to sgn1,
sgn2 must be deleted if m is odd.

Let us give a concrete example to see how aλ and fλ are computed as a function
of the monomial order �. Let m = 4 so that W is the dihedral group of order 8. Let
ζ ∈C be a fourth root of unity; then, by the general formula in [132, 8.3.4], we have
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cσ1 = 4
(v2

s1
v2

s2
− (ζ +ζ−1)vs1vs2 +1)(v2

s1
+(ζ +ζ−1)vs1vs2 + v2

s2
)

v2
s1

v2
s2

(2− (ζ 2 +ζ−2))

= v−2
s1

v−2
s2

(v2
s1

v2
s2

+1)(v2
s1

+ v2
s2

)

= ε−2a + ε−2b + ε2a + ε2b,

where b := L(s1) and a := L(s2). Hence, if b > a > 0, then all four terms are dif-
ferent, fσ1 = 1 and the “lowest” term is ε−2b; so aσ1 = b. Similarly, if a > b > 0,
then fσ1 = 1 and aσ1 = a. If b > a = 0, then cσ1 = ε−2b + 2 + ε2b and so fσ1 = 1,
aσ1 = b. Finally, if a = b > 0, then cσ1 = 2(ε−2a + ε2a) and so fσ1 = 2, aσ1 = a.

In the next three examples, we describe the invariants aλ for W of type An−1, Bn,
Dn. In these cases, Irr(W ) is parametrised by suitable partitions or pairs of partitions,
where we follow the notational conventions of [220, Chap. 4], [132, Chap. 5].

Recall that a partition is a finite, weakly decreasing sequence of non-negative
integers; we often write this in the form λ = (λ1 � λ2 � . . . � λN � 0). We say that
λ is a partition of n, and write λ � n, if |λ | := λ1 + · · ·+λN equals n; the numbers
λi which are non-zero are called the parts of λ . As is usual, we will not distinguish
between two partitions which have identical parts.

Example 1.3.8. Let W be of type An−1, where W ∼= Sn. We are automatically in the
equal-parameter case; write a := L(s) > 0 for s ∈ S. There is a standard labelling

IrrK(W ) = {Eλ | λ ∈Λ}, where Λ = {set of all partitions of n}.

For example, the unit and the sign representation are labelled by (n) and (1n), re-
spectively; see [132, §5.4]. (Here, (1n) denotes the partition which has n parts equal
to 1.) By [132, Prop. 9.4.5], given a partition λ of n, we have

fλ = 1 and aλ = n(λ )a, where n(λ ) := ∑
1�i�N

(i−1)λi;

here, we write λ = (λ1 � λ2 � . . . � λN � 0) for some N � 1. We have

λ † = λ ∗ and aλ ∗ = a ∑
1�i�N

1
2
λi(λi−1),

where λ ∗ denotes the conjugate (or transpose) partition; see [132, 5.4.3, 5.4.9].

Example 1.3.9. Let W be of type Bn with weight function L : W → Γ given by

Bn �

b 4
�

a
�

a
� � � �

a
where a,b � 0

There is a standard labelling IrrK(W ) = {Eλ | λ ∈Λ}, where

Λ = {set of all pairs of partitions (λ ,μ) such that |λ |+ |μ |= n}.

For example, the unit and the sign representation are labelled by ((n),∅) and
(∅,(1n)) respectively; see [132, §5.5]. We have (λ ,μ)† = (μ∗,λ ∗); see [132, 5.5.6].


